Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/toxicology

1	A quantitative proteomic approach for unveiling novel mechanisms associated to
2	MeHg-induced toxicity: Effects on the methylation cycle
3	
4	
5	Pablo Cabezas-Sanchez, Estefania Garcia-Calvo, Carmen Camara, Jose L. Luque-Garcia*
6	Department of Analytical Chemistry. Faculty of Chemistry. Complutense University of Madrid. 28040,
7	Madrid, Spain
8	*Address correspondence to jlluque@quim.ucm.es Tel. +34913944318
9	
10	Abstract
11	
12	Methylmercury (MeHg) is still a major threat for human health and the environment due to its
13	extremely high toxicity that mainly affects the nervous system. Despite the great efforts carried out
14	during the last decades, the specific molecular mechanisms involved in MeHg-induced toxicity are still
15	not completely unveiled. In this work we explored such mechanisms using neuroblastoma cells (Neuro-
16	2a) and SILAC as quantitative proteomic approach. We found that exposure of Neuro-2a cells to 2 mg
17	L ⁻¹ MeHg for 8 h decreased the cell viability to a 70% and caused significant changes in the
18	morphology of the cells, specially regarding neurites development. Our proteomic results showed
19	different proteins altered upon MeHg exposure that helped to identify pathways related to the toxicity
20	exerted by MeHg. Specifically, we have found that MeHg affect the methylation cycle by inhibiting the
21	expression of key enzymes including MTHFD1 and MTR. Moreover, we demonstrate that inhibition of
22	MTHFD1 is not observed when exposing the cells to inorganic Hg and other heavy metals such as Pb
23	or Cu. Thus, this work set the stage for dissecting a specific molecular mechanism for MeHg-induced
24	toxicity.
25	
26	
27	
28	
29	
30	Key words: Methylmercury toxicity, methylation cycle enzymes, SILAC, quantitative proteomics

31

32 Introduction

33

34	Mercury is one of the most hazardous environmental pollutants representing a serious risk to human
35	health. It can be easily methylated by widespread sulfate-reducing bacteria into methylmercury (MeHg),
36	which easily penetrates into organisms through the lipid bilayer. ¹ As a result of this biomethylation,
37	MeHg distributes among tissues, being the central nervous system the most sensitive target organ. ² It is
38	also known that ingested mercury can interact with some proteins and enzymes causing organ
39	dysfunction. ³ Some neurotoxic effects such as mental retardation, dysmorphogenesis of the cerebellum,
40	degeneration of granule cells, neurons or dorsal root ganglia have been observed in episodes of
41	mercury poisoning. ⁴ Extensive research has been conducted to determine the molecular mechanisms
42	associated to MeHg uptake and neurotoxicity. It has been suggested that MeHg entered in neural cells
43	as a cysteine complex via the L-type neutral amino acid carrier transport (LAT) system due to the
44	similitude between this complex and L-methionine, a substrate for the amino acid transport system. ⁵ It
45	is also known that MeHg inhibits several mitochondrial enzymes such as glutathione peroxidase,
46	glutathione reductase ⁶ and the thioredoxin system, ⁷ and induces apoptosis and necrosis in neural
47	cells. ^{8,9} However, despite all the efforts conducted over the last half century, identification of particular
48	biomolecular mechanisms underlying the observed neurotoxic effects of MeHg have not yet been
49	proposed. ¹⁰
50	With the advent of biological mass spectrometry, novel proteomic strategies have been
51	applied to investigate toxicity mechanisms. ¹¹ Specifically, quantitative proteomics allows for the
52	identification of differentially expressed proteins between two or more different physiological
53	conditions, thus contributing to the discovery of candidate toxicity-specific targets and molecular
54	pathways. Stable isotopic labeling by amino acids in cell culture (SILAC) is one of the most widely
55	used alternatives for relative protein quantitation due to its high accuracy and because it offers the
56	possibility for the identification and quantitation of proteins within the same experiment. ^{12,13} SILAC
57	involves the addition of ¹² C- and ¹³ C-labeled lysine and arginine to growth media of separately cultured
58	cells, giving rise to cells containing "light" or "heavy" proteins, respectively.
59	In this work, we have used the SILAC approach as a discovery platform for the identification
60	of 125 proteins affected by MeHg exposure. The combination of this quantitative proteomic strategy

61	with additional bioanalytical assays has allowed for the identification of mechanisms related to MeHg
62	toxicity and to set the stage for dissecting a specific molecular mechanism in which the methylation
63	cycle blockage upon MeHg exposure is involved.
64	
65	Materials and methods
66	Cell culture and cytotoxicity assay
67	Mouse neuroblastoma cells (Neuro-2a) were maintained in Dulbecco's Modified Eagle Medium
68	(DMEM) supplemented with 10% fetal bovine serum (FBS) and 100 units/ml of
69	penicillin/streptomycin in 5% CO_2 at 37°C. 2 x 10 ⁴ cells were plated onto 96-well plates and incubated
70	with methylmercury (MeHg) at different exposure times. Cell viability was determined using the MTT
71	assay. 20 μL of MTT (5 mg $L^{\text{-1}})$ were added to each well and incubated during 5 h. After this time, the
72	MTT solution was removed and 100 μL of dimethyl sulfoxide (DMSO) were added to dissolve the
73	insoluble purple formazan product. Cell viability was quantified by measuring the absorbance at 595
74	nm in a microplate absorbance reader (Sunrise, Tecan). The same procedure was used for measuring
75	the viability when exposing the cells to the combination MeHg-vitamin B12, and for cells transfected
76	with siRNA against MTHFD1.
77	
78	Determination of MeHg uptaked by Neuro-2a cells
79	After exposing 1 x 10^7 cells to 2 mg L ⁻¹ MeHg for 8 h, the exposure medium was removed and reserved,

80 and the cells were thoroughly washed with PBS and collected. Samples were digested in a microwave

81 oven with a mixture of HNO₃ (65%) and H_2O_2 (35%). Digested samples were introduced in a flow

82 injection system where mercury was reduced to atomic mercury vapor with 3% stannous chloride.

83 Determination of total mercury in both, the exposure media and the cells was carried out by cold vapor

84 atomic fluorescence spectroscopy (CV-AFS) (Merlin 10.023). All samples were analyzed in

85 quadruplicate. Certificated reference materials from the Commission of the European Communities

86 (CRM) were also analyzed to ensure the quality of the results. Recoveries from CRM-029 and CRM-

87 710 were within 5% of the certificated values. Calculated limits of detection (LOD) and quantification

88 (LOQ) were 6 ng L^{-1} and 23 ng L^{-1} , respectively.

89

90 Evaluation of morphological changes

91	Cells (2 x 10^6 cells) were seeded onto coverslips 48 h before MeHg exposure in order to reach 80 %
92	confluence. At this point, cell viability was checked and no significant decrease was observed. Cells
93	were incubated with MeHg 2 mg L^{-1} for 8 h and then washed with ice-cold PBS, fixed with
94	paraformaldehyde (4% v/v) for 15 min at room temperature and permeabilized with 5 ml of Triton X-
95	100 (0.1% v/v, 40 mM glycine). Cells were then incubated with Alexa Fluor 488-labeled phalloidine
96	(1:60) for 20 min at room temperature. Staining of nuclei was performed in a 1 mg mL ⁻¹ solution of
97	4',6-diamino-2-phenylindole (DAPI) and finally, coverslips were mounted with Mowiol® 4-88.
98	Fluorescence microscopy was performed in a Motic AE31 epifluorescence microscope and
99	representative images were acquired with a 60x objective using the Motic Images Advanced 3.2
100	Software.
101	
102	SILAC protein profiling
103	Neuro-2a cells were maintained in DMEM medium supplemented with 10 % dialyzed FBS, 100
104	units/ml of penicillin/streptomycin and either naturally-occurring isotope abundances ("light") or stable
105	isotope-labeled ("heavy") $^{13}C_6$ arginine and $^{13}C_6$ lysine amino acids. Culture media were refreshed
106	every 2 days and cells were grown for at least 6 doublings to allow full incorporation of labeled amino
107	acids. Two large-scale SILAC replicates (1 x 10^7 cells per condition) were performed. Complete
108	incorporation of ¹³ C-Arg and ¹³ C-Lys into control and MeHg-exposed Neuro-2a cells after 6 cell
109	divisions in isotopically heavy medium (direct and reverse SILAC, respectively) was verified by MS
110	analysis of a protein digest (data not shown).
111	After differential labeling, control and cells exposed to $2 \text{ mg } \text{L}^{-1}$ MeHg for 8 h were mixed in
112	a 1:1 ratio. Cell lysates were prepared in RIPA buffer containing protease inhibitor cocktail (Roche).
113	Protein extracts were separated by SDS-PAGE on 10% SDS-polyacrylamide gels, visualized by
114	Coommassie blue staining and the gel lanes were cut horizontally into 20 sections. Excised gel bands
115	were de-stained in 50:50 25 mM ammonium bicarbonate/acetonitrile and dried. Gel pieces were
116	rehydrated with 12.5 ng μL^{-1} trypsin solution in 25 mM ammonium bicarbonate and incubated
117	overnight at 37°C. Peptides were extracted using acetonitrile and 5% formic acid, dried by vacuum
118	centrifugation and reconstituted in 10 μL 2% acetonitrile in 0.1% formic acid.
119	The peptide mixtures from in-gel digestions were analyzed using nanoflow LC-MS/MS
120	(Eksigent). Peptides were loaded onto a 0.3 x 10 mm C18 precolumn (SGE) and separated on a

121	reverse-phase column (75 μm x 15 cm fused silica capillary C18 HPLC PepMap column, 3 μm , 100 A,
122	Thermo) with linear gradient of 5-95% acetonitrile in 0.1 % aqueous solution of formic acid. The
123	samples were delivered over 120 min at a flow-rate of 200 nL min ⁻¹ through the analytical column to a
124	stainless steel nano-bore emitter (Proxeon). The peptides were scanned and fragmented with an LTQ
125	XL linear ion trap mass spectrometer (Thermo Scientific) operated in data-dependent ZoomScan and
126	MS/MS switching mode using the three most intense precursors detected in a survey scan from 400 to
127	1600 u (three µscans). ZoomScan mass widow was set to 12 Da enabling monitoring of the entire
128	¹² C/ ¹³ C isotopic envelope of most doubly and triply charged peptides. Singly charged ions were
129	excluded for MS/MS analysis. Normalized collision energy was set to 35% and dynamic exclusion was
130	applied during 3 min periods to avoid repetitive fragmentation ions.
131	Generated .raw files were converted to .mgf files for MASCOT data search. A database
132	containing the NCBInr Mouse sequences containing 34966 entries (as of 10-09-14) was searched using
133	MASCOT Software (version 2.3 MatrixScience) for protein identification. Oxidation of methionine
134	and ${}^{13}C_6$ -Arg and ${}^{13}C_6$ -Lys were specified as variable modifications, trypsin as specific enzyme and one
135	missed cleavage allowed. Minimum precursor and fragment-ion mass accuracies for 1.2 and 0.3 Da
136	were used. A requirement of at least one bold (unique) red peptide (i.e. highest scoring peptide
137	matching to protein with highest total score) was required for protein identification and at least two
138	bold red (unique) peptides were required for quantification. Cut-off values for MASCOT scores of
139	peptides and proteins were set to 38 ($p < 0.05$) and 45 ($p < 0.01$), respectively. The false positive rate was
140	calculated by searching the same spectra against the NCBInr Mouse decoy database. Relative
141	quantitation ratios of identified proteins were calculated using QuiXoT (version 1.3.26). SILAC ratios
142	were defined by the area of the heavy peptides (^{13}C) divided by the area of light peptides (^{12}C) . Protein
143	ratios obtained by QuiXot were manually verified for all peptides. As observed in previous studies, a
144	proportion of ${}^{13}C_6$ -Arg was converted to ${}^{13}C_5$ -Pro leading to a reduction in the intensity of the isotope-
145	labeled peptide peak; this was corrected for all peptides containing one or more proline residues by
146	adding the intensity found for the peptide containing ${}^{13}C_6$ -Arg ${}^{13}C_5$ -Pro or ${}^{13}C_6$ -Lys ${}^{13}C_5$ -Pro to the
147	intensity of the peak containing only ${}^{13}C_6$ -Arg or ${}^{13}C_6$ -Lys. Molecular and cellular functions of the
148	proteins found de-regulated by SILAC were assigned based on the biological knowledge available in
149	Gene Ontology (GO) annotations.
150	

Toxicology Research Accepted Manuscript

151 Western blotting

- 152 Total protein content was extracted from Neuro-2a cells using RIPA lysis buffer and quantified with
- the Bradford assay using BSA as standard. Total protein extracts were separated on 7.5% SDS-
- 154 polyacrylamide gels and electrotransferred to nitrocellulose membranes (BioRad). Membranes were
- blocked with 3% skim dry milk in PBS-T (0.05 % Tween-20) for 1 h at room temperature and
- 156 incubated overnight at 4°C with primary antibodies against: Methylenetetrahydrofolate dehydrogenase
- 157 1 (MTHFD1) (1:500, Santa Cruz), methionine synthase (MTR) (1:1000, Sigma-Aldrich) and
- 158 glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (1:10000, Sigma-Aldrich). The blots were
- 159 washed in PBS-T and incubated with horseradish peroxidase-conjugated secondary antibodies for 1 h
- 160 at room temperature. Antibody binding was visualized using enhanced chemiluminescent
- 161 immunoblotting detection system (GE Healthcare).

162

163 MTHFD1 gene knock-down

- 164 Knock-down of MTHFD1 was performed by transient transfection with Lipofectamine and reduced
- serum media (Opti-MEM) using control (not-targeting) small interfering doubled-stranded RNA
- 166 (siRNA) and siRNA targeted against MTHFD1. MTHFD1 silencing transfectants exposed to 10 and 30
- 167 pmoL of targeted siRNA were collected at 24 h for MTT assay as described above. MTFHD1 silencing
- 168 was confirmed by immunoblotting.
- 169

170 Results and discussion

171 Cytotoxicity, mercury uptake and morphological changes induced by MeHg exposure

172 We evaluated the cytotoxicity induced by MeHg in Neuro-2a cells using the MTT assay that measures

- the reducing potential of cells; while viable cells are able to reduce the MTT to formazan (a purple
- 174 compound), non-viable cells are unable to do so. We selected concentrations of MeHg ranging from
- 175 0.5 to 5 mg L^{-1} and exposure times between 6 and 24 h. The viability of cells exposed to 0.5 mg L^{-1}
- 176 MeHg was not affected at the exposure times tested (see Fig. 1a). However, the highest concentration
- 177 assayed (5 mg L^{-1}) caused a decrease on the cell viability close to 100% even after 6 h of exposure. On
- 178 the other hand, the viability of Neuro-2a cells exposed to 2 mg L^{-1} MeHg decreased on a time-
- dependent manner. It is important to mention that since MeHg was dissolved in MeOH, we tested the
- 180 potential effect of MeOH on the cell viability, and no significant changes were observed as compared

181 to control cells (data not shown). This data is in accordance with a previous report in which HepG2 182 cells were exposed to MeHg. Cell viability of HepG2 cells diminished to practically the same extent at 183 the same MeHg concentrations and exposure times tested¹³ as Neuro-2a cells. In order to evaluate the 184 effect of MeHg in Neuro-2a cells but without drastically compromising the cell viability, we selected 2 185 mg L^{-1} and 8 h as exposure time for further experiments. 186 We also evaluated morphological changes induced after MeHg exposure by fluorescence 187 microscopy. Neuro-2a cells were allowed to extend neurites for 48 h before exposure to 2 mg L^{-1} 188 MeHg for 8 h. Exposure to MeHg markedly disrupted the structural integrity of neurites (see Fig. 1b). 189 We finally determined the total amount of MeHg internalized by the cells by atomic 190 fluorescence spectroscopy (AFS). Our results (see Fig. 1c) showed that a 10% of the total MeHg added 191 were actually found inside the cells. These results reflect that the amount of internalized MeHg can 192 significantly impair cell viability, functioning and morphology. 193 194 Differential protein expression of Neuro-2a cells exposed to MeHg 195 In order to identify novel molecular pathways related to MeHg toxicity, we have used a state-of-the-art 196 quantitative proteomic approach (SILAC) able to quantify differentially expressed proteins in MeHg-197 exposed cells as compared to control Neuro-2a cells. In our SILAC experiment, we carried out two 198 large-SILAC experiments. We identified a total of 1524 proteins (see Fig. 2a), from which 978 proteins 199 passed the criteria established for protein quantitation. Most of the quantified proteins presented a 200 SILAC ratio close to 1, as expected for a 1:1 mixture (see Fig. 2b). The overall false discovery rate was 201 1.3% being estimated by the number of hits against the reverse sequence/total hits (p < 0.01). The mean 202 relative standard deviation (RSD) of the ratios obtained from replicates was lower than 20%, indicating 203 good agreement between experiments. Using 1.5 as the threshold ratio, we found 125 proteins altered, 204 48 of which were over-expressed (Table 1) and 77 down-regulated (Table 2) upon MeHg exposure. 205 The full list of proteins identified in both replicates using SILAC is in Supplementary Table 1. 206 The functional annotation of the 125 altered proteins upon MeHg exposure were obtained 207 from the gene ontology GO consortium website. Major molecular and cellular functions altered 208 included cell death, RNA post-transcriptional modification, protein synthesis, cellular assembly and 209 organization, and cell cycle (see Fig. 2c). We also looked for the molecular pathways in which altered 210 proteins might play key roles. Such pathways included apoptosis (PIR, CDK1, CAD, MO25, BAX,

Toxicology Research Accepted Manuscript

211 CEND1, CUL3, BCL2A1, COP9), stress resistance (MCM5, MCM2, ALDH2, TRX, TRXR1), ROS

212 generation (NDUFS3, GST), axonogenesis (IPO9, TUBB2B, MSN, DYN) and neurodegeneration

213 (RAB1B, COPE). Alteration or activation of some of these mechanisms has already been associated

with MeHg toxicity.

215

216 MeHg induces cell death through the intrinsic and extrinsic apoptotic pathways

217 Several previous reports have demonstrated how MeHg exposure activates the apoptotic pathway in 218 different cell cultures and animals.^{8,13–15} Apoptosis is a naturally occurring process by which a cell is 219 directed to programmed cell death. It involves the activation of caspases, a family of cysteine proteases, 220 and a complex cascade of events that link the initiating stimuli to the final demise of the cell.¹⁶ 221 Activation of caspases can be initiated at the plasma membrane upon ligation of death receptor 222 (extrinsic pathway) or at the mitochondria induced by intracellular stress (intrinsic pathway). Most 223 previous studies on MeHg toxicity have demonstrated the activation of the apoptotic intrinsic pathway 224 and thus, alteration of the expression of well-known apoptotic markers such as the caspases and the 225 Bcl2 protein family after MeHg exposure.¹⁷ In agreement with these studies, we have also found 226 alteration of some of these proteins, thus suggesting MeHg-mediated activation of the apoptotic 227 intrinsic pathway. We show overexpression of the pro-apoptotic protein BAX ($R_{SILAC} = 2.52$) and 228 inhibition of anti-apoptotic proteins BCL2A1 (R_{SILAC} = -1.64) and BAG3 (R_{SILAC} = -1.81), in Neuro-2a 229 cells exposed to MeHg. While BAX induces opening of the mitochondrial voltage-dependent anion 230 channel (VDAC) resulting in the release of cytochrome c and other pro-apoptotic factors, BCL2A1 231 have the opposite role by reducing the release of pro-apoptotic cytochrome c and blocking caspase 232 activation. BAG3 is a modulator of cellular anti-apoptotic activity that functions through its interaction 233 with Bcl-2.^{18–20} We also found significant overexpression of CAD ($R_{SILAC} = 2.92$), which is activated 234 by caspase 3 and causes DNA degradation in the nucleus of apoptotic cells. Besides these well-known 235 apoptotic markers, our SILAC approach has allowed us to find additional routes that are also being 236 activated by MeHg and thus, should be considered for a better understanding of the mechanisms related 237 to MeHg-induced cell death. 238 The ubiquitin-proteasome system (UPS) constitutes a major degradation pathway for

intracellular proteins and plays an important role regulating apoptosis. In this pathway, proteins, whichare going to be degraded by the proteasome, are first tagged with a polypeptide called ubiquitin (Ub) in

8

241	order to be later recognized and degraded by the 26S proteasome. Ubiquitination reaction is carried out
242	by a set of enzymes called ubiquitin ligases or E3s, which transfer the ubiquitin moiety to the
243	substrate. ²¹ Within this molecular machinery, there is an essential family of proteins named cullins,
244	which provide a scaffold for ubiquitin ligases. These proteins combined with RING proteins form the
245	Cullin-RING ubiquitin ligases (CRLs) that contain the catalytic core needed for the ubiquitination
246	reaction. In our experiment, we have found overexpression of CUL3 ($R_{SILAC} = 1.88$) in Neuro-2a cells
247	exposed to MeHg. CUL3, which is one of the four members of the cullin protein family, ²² mediates the
248	ubiquitination of caspase-8.23 Overexpression of CUL3 might increase aggregation of CUL3-modified
249	caspase-8, thus inducing full activation and processing of caspase-8 and thereby, leading to robust
250	stimulation of effector caspases and apoptosis. ²⁴ It is also important to consider the interplay between
251	Ub family modifiers that creates a regulatory network with the Ub family proteins. One of the best-
252	studied crosstalks between Ub family modifiers is the stimulation of ubiquitination by Nedd8 (neural
253	precursor cell expressed developmentally down regulated 8) modification. Neddylation of the cullin
254	scaffolds of the CRLs, allosterically activates the transfer of Ub from the CRLs to the target
255	substrates. ²⁵ The neddylation-deneddylation pathway of the CRLs is regulated by the COP9
256	signalosome (CSN). CSN has an intrinsic metalloproteinase that removes the Nedd8 from cullins
257	(deneddylation), thus converting CRLs into an inactive state. ²⁵ Interestingly, COP9 is downregulated in
258	our experiment (R_{SILAC} = -3.45), this deficiency of COP9 induced by MeHg exposure might preclude
259	deneddylation of the CRLs, also promoting ubiquitination of caspase-8 by CUL3 and therefore, the
260	apoptotic pathway. These results are in agreement with a recent report demonstrating that deficiency of
261	COP9 induces ubiquitin-proteasome system impairment and apoptosis. ²⁶ Although previous reports
262	support the idea that MeHg-induced apoptosis occurs through activation of the intrinsic apoptotic
263	pathway; ^{13,27} taken together, our results suggest that MeHg could induce apoptosis through both
264	extrinsic and intrinsic pathways in Neuro-2a cells.
265	Considering the link between cell cycle and apoptosis, it is not surprising that some of the
266	proteins we found affected by MeHg exposure are related with cell cycle regulation. CDK1, also
267	known as CDC2, is a serine/threonine protein kinase that plays a well-characterized role in cell cycle
268	control and cellular differentiation. CDK1 is critical for G2/M transition and mitosis. Several studies
269	have demonstrated the relevant role of CDK1 in some forms of apoptosis. ²⁸ It has been shown that

270 CDK 1-mediated phosphorylation of BCL2 family proteins enhances their pro-apoptotic function.²⁹

Thus, the overexpression of CDK1 ($R_{SILAC} = 2.80$) in cells exposed to MeHg, might explain the significant overexpression of pro-apoptotic proteins observed in our SILAC experiment. We have found a similar degree of overexpression for CEND1 ($R_{SILAC} = 2.10$), which is a neuronal-lineage specific regulator that coordinates cell cycle withdrawal and differentiation of neuronal progenitors. It is involved in histone deacetylase inhibition-mediated growth arrest of neuroblastoma cells,³⁰ and its overexpression in fibroblasts has been shown to trigger cell cycle exit, droving cells towards a proapoptotic pathway.³¹

278 We have also found two additional proteins highly upregulated, MO25 ($R_{SILAC} = 2.68$) and 279 PIR ($R_{SILAC} = 2.98$), whose overexpression have been previously associated to a higher degree of 280 apoptosis. MO25 is a scaffold protein that can directly interact with certain STE20 kinases including MST4 (mammalian STE20-like kinase) increasing its kinase activity.³² MST4 regulates multiple 281 282 cellular aspects such as cell polarity and proliferation. In fact, MST4 might be one of the targets for 283 caspase 3.³³ It has been demonstrated that overexpression of MO25 activates MST4 resulting in dramatically increased apoptosis.³⁴ PIR is an iron-binding nuclear protein and transcription cofactor 284 285 that stabilizes the formation of quaternary complexes between Bcl-3, NF-kB and a DNA target protein 286 directing the NF-kB DNA binding towards a pro-apoptotic response.³⁵ Overexpression of PIR has been associated with an increased apoptosis in several cellular types.^{35,36} 287

288

289 MeHg induces overexpression of proteins involved in ROS generation and stress resistance

290 MeHg is considered to increase reactive oxygen species (ROS) generation, thus inducing an 291 imbalance in the normal redox state of cells, which results in damaging of cell components and 292 structures.³⁷ Since this process, known as oxidative stress, is directly related with apoptosis, we 293 expected to find some proteins involved in ROS generation, oxidative stress and stress resistance, up-294 or down-regulated upon MeHg exposure. Actually, we found overexpression of NDUFS3 ($(R_{SILAC} =$ 295 2.65) and downregulation of GST ($R_{SILAC} = -1.74$). NDUFS3 is a subunit of the NADH: ubiquinone 296 oxidoreductase ETC complex I involved in electron transfer and coupling.³⁸ Overexpression of 297 NDUFS3 has been previously related to ROS generation and apoptosis.^{39,40} GST is a well-known 298 antioxidant enzyme and its inhibition markedly exaggerates oxidative-stress induced apoptosis.⁴¹ In 299 addition, it has also been demonstrated that GST inhibition is associated with increased activation of 300 MAP kinases, a family of proteins that play crucial roles in stress response, cell survival and

301	apoptosis.42 We also found overexpression of several antioxidant proteins such as TRXR1
302	$(R_{SILAC}=2.23)$ and TRX $(R_{SILAC}=1.99)$, which upregulated or overexpressed, protect against oxidative
303	stress. Upregulation of these proteins show a defense mechanism against MeHg-induced toxicity based
304	on the disulfide reductase activity of TRX, and thereby on the supply of NADPH and the activity of
305	TRXR1. ⁴³ Upregulation of ALDH2 (R _{SILAC} =2.93) show an additional defense mechanism since
306	ALDHs metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative stress in
307	prokaryotic and eukaryotic organisms. ⁴⁴ In the case of minochromosome maintenance proteins
308	(MCMs), which are required for DNA replication in eukaryotic cells, their expression is restricted to
309	proliferating and dedifferentiated tissues and is a typical feature of many malignant and premalignant
310	diseases. Overexpression of MCM is one of the molecular determinants of highly mitogenic
311	phenotypes. ⁴⁵ Thus, we could have expected downregulation of these proteins since Neuro-2a cells
312	exposed to MeHg undergo apoptosis. However, we found upregulation of two MCM proteins (MCM5,
313	R_{SILAC} = 3.71; MCM2, R_{SILAC} = 1.85) what can be explained as an additional cellular defense
314	mechanism against MeHg toxicity, since it has been demonstrated that overexpression of MCM is
315	needed for cells to withstand stress conditions. ⁴⁶
316	
317	MeHg exposure affects neurites integrity and development
318	Our evaluation of morphological changes in Neuro-2a cells after exposure to MeHg demonstrates a
319	significant disruption of the structural integrity of neurites, which are precursors of either axons or
320	dendrites (see Fig. 1b). In relation with this observation, we found significantly inhibited several
321	proteins related to axonogenesis, neurite outgrowth and microtubule formation. While IPO is
322	constitutively complexed with the retrograde motor DYN, being the DYN-IPO complex essential for
323	axonogenesis. ⁴⁷ the complex DYN-CTTN plays a central structural role in focal adhesion assembly in

324 neuronal growth cone.⁴⁸ In our SILAC experiment, we found not only down-regulation of DYN

 R_{SILAC} = -1.68), which is in agreement with a previous study that demonstrated that a reduction in

326 DYN prevented neurite formation in cultured hippocampal neurons;⁴⁹ but also IPO (R_{SILAC} = -2.24) and

- 327 CTTN (R_{SILAC}= -3.84), which form key complexes with DYN as commented before, also appeared
- 328 downregulated, showing a significant damage induced by MeHg on axonogenesis. We observed a
- 329 similar down-regulation in the case of MSN (R_{SILAC} = -1.72), which plays a key role in generating and
- 330 maintaining the normal structure and functional organization of neuronal growth cones.⁵⁰ In addition,

	we found downregulated other proteins directly related to neurite extension such as tubulins (TUBB2B,
332	R_{SILAC} = -4.48; TUBA1C, R_{SILAC} = -1.83), whose assembly is essential for microtubule formation and
333	thus, for neurite extension; and kinesins (KIF5C, R_{SILAC} = -18.73; KIF11, R_{SILAC} = -2.41), which have
334	been recently recognize as microtubule motors providing the mechanical forces necessary for initial
335	neurite extension. ⁵¹ Altogether, these findings are consistent with earlier evidences demonstrating that
336	microtubule metabolism is compromised in the presence of Hg ions, ⁵² and confirm how MeHg directly
337	affect development of neurites, therefore demonstrating the detrimental effect of MeHg on
338	axonogenesis.
339	
340	MeHg induces blockage of the methylation cycle mediated by downregulation of MTHFD1 and
341	MTR
342	One of the down-regulated proteins that we found particularly interesting in our SILAC experiment is
343	the enzyme methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) (R_{SILAC} = -1.67), which plays a key
344	role in the methylation cycle. This cycle is the principal mechanism whereby vitamin B12 and folate
345	metabolism influence in brain function and to DNA methylation, synthesis and repair. Folate
346	metabolism plays a vital function for cell division and homeostasis due to the multiple enzymes ⁵³
347	involved in nucleic acid synthesis, methionine regeneration and reduction of carbon units required for
348	normal metabolic regulation. ⁵⁴ The methylation pathway involves the conversion of homocysteine to
349	methionine where tetrahydrofolate is converted to 5,10-methylenetetrahydrofolate (5,10-MTHF) by the
350	enzyme methylenetetrahydrofolate dehydrogenase 1 (MTHFD1), followed by conversion of 5,10-
351	MTHF to 5-methyltetrahydrofolate (5-MTHF) by the methylenetetrahydrofolate reductase (MTHFR).
352	Finally, 5-MTHF reacts with homocysteine to form methionine and to regenerate tetrahydrofolate (see
353	Fig. 3). Methionine synthase (MTR) regulates this reaction, being vitamin B12 a cofactor of MTR. ⁵⁵
354	Based on these premises and a previous work ⁵⁶ that correlates exposure to Hg^{2+} with inactivation of
355	MTR, we decided to further study the effect of MeHg on the methylation cycle (see Fig. 3) and,
356	particularly, on the expression of MTHFD1 and MTR. We validated the SILAC results by
357	immunoblotting (see Fig. 4), and indeed we observed a significantly decreased expression of MTHFD1
358	with increasing concentrations of MeHg. A similar behavior was observed for MTR, whose expression
359	also decreased significantly in Neuro-2a cells exposed to 2 mg L^{-1} of MeHg for 8 h as compared to

Toxicology Research Accepted Manuscript

361	methylation and reparation of DNA; thus, we hypothesize that the alteration in the expression of these
362	enzymes could be related with the mechanism of neurotoxicity activated by MeHg exposure.
363	To support our previous results, we investigated whether siRNA-mediated gene knock-down
364	of MTHFD1 induces a decrease in the cell viability of Neuro-2a cells similar to that induced by MeHg.
365	After validating the suitability of the transfection (see Fig. 5a) by Western blot, we measured the cell
366	viability in transfected cells and in cells exposed to 2 mg L^{-1} of MeHg for 8 h using the MTT assay.
367	The results show that MTHFD1 knock-down affected the viability of Neuro-2a cells, although the
368	decrease in cell viability was more pronounced in cells exposed to MeHg (see Fig. 5b). This could be
369	explained by the fact that additional mechanisms (besides the methylation cycle) are also being
370	affected by MeHg exposure.
371	Another important aspect to be considered is the fact that the methylation cycle requires
372	vitamin B12, which acts as coenzyme required for correct functioning of the methyl donation from 5-
373	methyl-THF to THF.54 Vitamin B12 deficiency blocked the methylation cycle and induces a series of
374	pathological conditions that are quite similar to the effects induced by Hg poisoning. ⁵⁷ Vitamin B12 is
375	highly reactive and vulnerable to inactivation by oxidation of the Co atom in its structure; this
376	oxidation inactivates the enzyme MTR and blocks the methylation cycle. ⁵⁸ The blockage of the
377	methylation cycle causes an increase in levels of homocysteine that generates an increase concentration
378	of calcium, accumulation of reactive oxygen species (ROS), activation of MAP kinases and the release
379	of arachidonic acid from platelets that inhibits glutathione peroxidase, an antioxidant that protects cells
380	against oxidative stress. ⁵⁹ Homocysteine is easy accumulated inside the cells where it undergoes
381	autoxidation transforming it into homocysteic acid accompanied by H_2O_2 accumulation. ⁶⁰ In fact, a
382	long-term incubation of neurons with homocysteic acid induced necrotic cell death. ⁶¹ It is well known
383	that the effects on human health induced by Hg poisoning are very similar to those experimented by
384	individuals with a significant vitamin B12 deficiency. Several years ago, a possible hypothesis of the
385	Hg/vitamin B12 connection suggested that Hg could oxidize the Co atom in the vitamin B12, thus
386	causing denaturation of the vitamin, blockage of the methylation cycle and an increase in the levels of
387	homocysteine. ⁶² Although we have previously shown inhibition of MTHFD1 and MTR as the main
388	cause for the methylation cycle to be blocked upon MeHg exposure, we decided to test whether the
389	oxidation of vitamin B12 by MeHg could also be another factor to be considered. This would explain
390	why both conditions caused similar symptoms, although this hypothesis has never been experimentally

demonstrated. In order to demonstrate if another way by which MeHg affect the methylation cycle is by denaturizing vitamin B12, we added increasing concentrations of vitamin B12 to Neuro-2a cells exposed to MeHg. Considering the initial hypothesis, high concentrations of vitamin B12 would counteract the partial oxidation of the vitamin induced by MeHg and would restore the cell viability to a certain level. Our results (see Fig. 6) show that supplementation with vitamin B12 did not ameliorate the decreased in cell viability observed in MeHg-exposed cells, not even at the higher concentration of vitamin B12 tested.

398

399 Comparative effect of MeHg and other heavy metals on the expression of MTHFD1 and MTR 400 One of the challenges in toxicoproteomics is the identification of particular molecular mechanisms or 401 pathways associated to the toxicity exerted by a particular compound rather than general mechanisms 402 related to stress-response and/or cell defense.⁶³ To investigate whether blockage of the methylation 403 cycle mediated by downregulation of MTHFD1 and MTR could also be induced by inorganic mercury 404 or other heavy metals, we carried a comparative Western blot analysis using Neuro-2a cells exposed to 405 MeHg, Hg^{2+} , Pb^{2+} or Cu^{2+} . We selected concentrations of these ions that caused a decrease in the 406 viability of the cells similar to that induced by 2 mg L^{-1} MeHg during 8 h. Our results show that while 407 the four species highly affect the expression of MTR (see Fig. 7), the expression pattern for MTHFD1 408 was significantly different depending on the metallic species tested. Surprisingly, Hg²⁺ did not affect 409 the expression of MTHFD1, while Pb^{2+} and Cu^{2+} slightly affected the expression of this enzyme but to 410 a much lesser extent as compared to MeHg (see Fig. 7). The different behavior observed for MTHFD1 411 and MTR after exposure to these metals could explain why in a previous study, stimulation of MTR 412 with dopamine and insulin resulted in the re-activation of the methylation cycle of Neuro-2a cells 413 exposed to Cu²⁺ and Pb²⁺, but was inefficient for cells exposed to MeHg.⁵⁷ This fact reinforces the 414 specific negative interaction found between MeHg and MTHFD1.

415

416 Conclusion

A quantitative proteomic approach (SILAC) has been used for the discovery of novel molecular
pathways associated to MeHg induced neurotoxicity. We have identified a set of proteins altered upon
MeHg exposure of Neuro-2a cells. Such altered proteins turned out to be involved in pathways related
to apoptosis, stress resistance, ROS generation, axonogenesis and neurodegeneration. One of the main

421	discoveries derived of our study is the MeHg-induced downregulation of key enzymes of the
422	methylation cycle (MTHFD1 and MTR). We hypothesize that the effect of MeHg blocking the
423	methylation cycle could be related with the mechanisms of neurotoxicity and the symptons observed
424	after MeHg poisoning. It could also explain the similarity observed in the symptomatology between
425	MeHg poisoning and vitamin B12 defficiency. Moreover, we have demonstrated that inhibition of
426	MTHFD1 is specific of MeHg as compared to inorganic Hg and other heavy metals such as Pb or Cu.
427	Thus, this work set the stage for dissecting a specific molecular mechanism for MeHg-induced toxicity.
428	
429	Acknowledgments
430	Authors thank the Spanish Ministry of Economy and Competitiveness (grant CTQ2014-55711-R) and
431	the Comunidad Autónoma of Madrid (Spain) and European funding from FEDER program (Project
432	S2013/ABI-3028, AVENSACAL-CM). P.C. was supported by a FPU predoctoral fellowship from the
433	Spanish Ministry of Education.
434	
435	
436	
437	
438	
439	
440	
441	
442	
443	
444	
445	
446	
447	
448	
449	
450	

References V. Glaser, E. M. Nazari, Y. M. R. Müller, L. Feksa, C. M. D. Wannmacher, J. B. T. Rocha, A. F. de Bem, M. Farina and A. Latini, Int. J. Dev. Neurosci., 2010, 28, 631-637. M. Farina, J. B. T. Rocha and M. Aschner, Life Sci., 2011, 89, 555-563. K. Eto, Toxicol. Pathol., 1997, 25, 614-623. C. Watanabe and H. Satoh, Environ. Heal. Perspect., 1996, 104, 367-379. L. E. Kerper, N. Ballatori and T. W. Clarkson, Am J Physiol Regul. Integr. Comp Physiol., 1992, 262, 761–765. R. Dringen, Prog. Neurobiol., 2000, 62, 649-671 V. Branco, J. Canario, A. Holmgren and C. Carvalho, Toxicol. Appl. Pharmacol., 2011, 251, 95-103. M. Kunimoto, Biochem. Biophys. Res. Commun., 1994, 204, 310-317. S.-H. Chang, H. J. Lee, B. Kang, K.-N. Yu, A. Minai-Tehrani, S. Lee, S. U. Kim and M.-H. Cho, J. Toxicol. Sci., 2013, 38, 823-31. E. M. Faustman, R. A. Ponce, Y. C. Ou, M. A. C. Mendoza, T. Lewandowski and T. Kavanagh, Environ. Heal. Perspect., 2002, 110, 859-864. J. L. Luque-Garcia, R. Sanchez-Diaz, I. Lopez-Heras, P. Martin and C. Camara, Trends Anal. Chem., 2013, 43, 254-268. S. E. Ong and M. A. Mann, Nat. Protoc., 2006, 1, 2650-2660 S. Cuello, L. Goya, Y. Madrid, S. Campuzano, M. Pedrero, L. Bravo, C. Camara and S. Ramos, Food Chem. Toxicol., 2010, 48, 1405-1411. E. Fonfria, E. Dare, M. Benelli, C. Sunol and S. Ceccatelli, Eur. J. Neurosci., 2013, 16, 2013-S. Cuello, P. Ximenez-Embun, I. Ruppen, H. B. Schonthaler, K. Ashman, Y. Madrid, J. L. Luque-Garcia and C. Camara, Analyst, 2012, 137, 5302-5311. S. Elmore, Toxicol. Pathol., 2007, 35, 495–516. S. Cuello, S. Ramos, Y. Madrid, J. L. Luque-Garcia and C. Cámara, Anal. Bioanal. Chem, 2012, 404, 315-324.

- 480 18 Q. Liao, F. Ozawa, H. Friess, A. Zimmermann, S. Takayama, J. C. Reed, J. Kleeff and M. W.
- 481 Büchler, FEBS Lett., 2001, 503, 151–157.
- 482 19 M. MacFarlane and A. C. Williams, *EMBO Report*, 2004, **5**, 674-678.
- 483 20 M. Vogler, Cell Death Differ., 2012, 19, 67–74.
- 484 21 C. Wójcik, J. Cell Mol. Med., 2002, 6, 25-48.
- 485 22 L. Grau, J. L. Luque-Garcia, P. Gonzalez-Peramato, D. Theodorescu, J. Palou, J. M.
- 486 Fernandez-Gomez and M. Sanchez-Carbayo, *Plos One*, 2013, **8**, DOI: 10.1371/journal.pone.0053328.
- 487 23 A. B. Parrish, C. D. Freel and S. Kombluth, *Cold Spring Harb. Perspect. Biol.*, 2013, 5, DOI:
- 488 10.1101/cshperspect.a008672
- 489 24 Z. Jin, Y. Li, R. Pitti, D. Lawrence, V. C. Pham, J. R. Lill and A. Ashkenazi, *Cell*, 2009, 127,
- 490 721-735.
- 491 25 T. Schmaler and W. Dubiel, *Subcell Biochem.*, 2010, **54**, 57–68.
- 492 26 D. Lei, F. Li, S. Huabo, J. Liu, N. Wei and X. Wang, *Plos One*, 2013, 8, DOI:
- 493 10.1371/journal.pone.0067793
- 494 27 K. Sokolowski, A. Falluel-Morel, X. Zhou and E. DiCicco-Bloom, *Neurotoxicology*, 2011, **32**,
- **495** 535-544.
- 496 28 Y. Furukawa, S. Iwase, Y. Terui, J. Kikuchi, T. Sakai, M. Nakamura, S. Kitagawa and M.
- 497 Kitagawa, J. Biol. Chem., 1996, 271, 28469–28477.
- 498 29 L. Zhou, X. Cai, X. Han, N. Xu and D. C. Chang, Cell Biol. Int., 2014, 38, 737–746.
- 499 30 P. K. Politis, S. Akrivou, C. Hurel, O. Papadodima and R. Matsas, *FEBS Lett.*, 2008, 582,
- **500** 741–748.
- 501 31 N. Georgopoulou, C. Hurel, P. K. Politis, M. Gaitanou, R. Matsas and D. Thomaidou, J. Biol.
- 502 Chem., 2006, 281, 33606–33620.
- 503 32 B. M. Filippi, P. de los Heros, Y. Mehellou, I. Navratilova, R. Gourlay, M. Deak, L. Plater, R.
- 504 Toth, E. Zeqiraj and D. R. Alessi, *EMBO J.*, 2011, **30**, 1730–1741.
- 505 33 I. Dan, S. E. Ong, N. M. Watanabe, B. Blagoev, M. M. Nielsen, E. Kajikawa, T. Z.
- 506 Kristiansen, M. Mann and A. Pandey, J. Biol. Chem., 2002, 277, 5929–5939.
- 507 34 Z. Shi, S. Jiao, Z. Zhang, M. Ma, Z. Zhang, C. Chen, K. Wang, H. Wang, W. Wang, L. Zhang,
- 508 Y. Zhao and Z. Zhou, *Structure*, 2013, **21**, 449-461.

Toxicology Research Accepted Manuscript

- 509 35 B. D. Gelbman, A. Heguy, T. P. O'Connor, J. Zabner and R. G. Crystal, *Respir. Res.*, 2007, 8,
- 510 10
- 511 36 D. Orzaez, A. J. de Jong and E. J. Woltering, *Plant Mol. Biol.*, 2001, **46**, 459–468.
- 512 37 E. Patel and M. Reynold, *Toxicol. Lett*, 2013, 222, 265-272.
- 513 38 D. Martinvalet, D. M. Dykxhoorn, R. Ferrini and J. Lieberman, *Cell*, 2008, **133**, 681-692.
- 514 39 G. Huang, Y. Chen, H. Lu and X. Cao, *Cell Death Differ.*, 2007, 14, 327–337.
- 515 40 S. Suhane, H. Kanzaki, V. Arumugaswami, R. Murali and V. K. Ramanujan, *Biol. Open*, 2013,
- **516 14**, 295–305.
- 517 41 E. Röth, N. Marczin, B. Balatonyi, S. Ghosh, V. Kovács, N. Alotti, B. Borsiczky and B. Gasz,
- 518 Exp. Clin. Cardiol., 2011, 16, 92–96.
- 519 42 T. Wada and J. Penninger, *Oncogene*, 2004, 23, 2838-2849.
- 520 43 E. S. J. Arner and A. Holmgren, *Eur. J. Biochem.*, 2000, 267, 6102–6109.
- 521 44 S. Singh, C. Brocker, V. Koppaka, C. Ying, B. Jackson, A. Matsumoto, D. C. Thompson and
- 522 V. Vasiliou, Free Radic., 2013, 56, 89-101.
- 523 45 T. Guida, G. Salvatore, P. Faviana, R. Giannini, G. Garcia-Rostan, L. Provitera, F. Basolo, A.
- 524 Fusco, F. Carlomagno and M. Santoro, J. Clin. Endocrinol. Metab., 2005, 90, 4703–4709.
- 525 46 M. Das, S. Singh, S. Pradhan and G. Narayan, *Mol. Biol. Int.*, 2014, DOI:
- 526 10.1155/2014/574850.
- 527 47 R. Ohara, K. Hata, N. Yasuhara, R. Mehmood, Y. Yoneda, M. Nakagawa and T. Yamashita,
- 528 Biochem. Biophys. Res. Commun., 2011, 405, 697–702.
- 529 48 S. Kurklinsky, J. Chen and M. A. McNiven, J. Neurochem., 2011, 177, 48–60.
- 530 49 E. Torre, M. A. McNiven and R. Urrutia, J. Biol. Chem., 1994, 269, 32411–32417.
- 50 G. Paglini, P. Kunda, S. Quiroga, K. Kosik and A. Caceres, J. Cell Biol., 1998, 143, 443–455.
- 532 51 E. Lu, P. Fox, M. Lakonishok, M. W. Davidson and V. I. Gelfand, *Curr. Biol.*, 2013, 23,
- 533 1018–1023.
- 52 J. C. Pendergrass, B. E. Haley, M. J. Vimy, S. A. Winfield and F. L. Lorscheider,
- 535 *Neurotoxicology*, 1997, **18**, 315-324.
- 53 T. J. Lightfoot, C. F. Skibola, E. V Willett, D. R. Skibola, J. M. Allan, F. Coppede, P. J.
- 537 Adamson, G. J. Morgan, E. Roman and M. T. Smith, *Cancer Epidemiol. Biomarkers Prev.*, 2005, 14,
- 538 2999-3003.

539	54	L. B. Bailey and J. F. Gregory, J. Nutr., 1999, 129, 779-782.	
540	55	J. Y. Fowdar, M. V Lason, A. L. Szvetko, R. A. Lea and L. R. Griffiths, Int. J. Hypertens.,	
541	2012, DOI: 10.1155/2012/190923.		
542	56	M. Waly, H. Olteanu, R. Banerjee, SW. Choi, J. B. Mason, B. S. Parker, S. Sukumar, S.	
543	Shim,	a Sharma, J. M. Benzecry, V. Power-Charnitsky and R. C. Deth, Mol. Psychiatry., 2004, 9, 358-	
544	370.		
545	57	M. J. Shipton and J. Thachil, 2015, Clin.Med., 2015, 15, 145-150.	
546	58	D. G. Weir and J. M. Scott, Br. Med. Bull, 1999, 55, 669-682.	
547	59	C. M. Gallagher and J. R. Meliker, Sci. Total Env., 2011, 409, 1399-1405.	
548	60	A. Boldyrev, E. Bryushkova, A. Mashkina and E. Vladychenskaya, Aging Sci, 2013, 6, 29-36.	
549	61	E. Ziemińska, A. Stafiej and J. W. Łazarewicz, Neurochem. Int, 2003, 43, 481-492.	
550	62	B. Ahlrot-Westerlund, Heavy Metal Bull., 1995, 3, 11-12.	
551	63	J. L. Luque-Garcia, P. Cabezas-Sanchez and C. Camara, Trends Anal. Chem. 30, 2011, 30,	
552	703–716.		
553			
554			
555			
556			
557			
558			
559			
560			
561			
562			
563			
564			
565			
566			
567			
568			

Toxicology Research Accepted Manuscript

569

570 Figure Captions

571	Fig. 1 Cytotoxicity, mercury uptake and morphological changes induced by MeHg exposure. a
572	Viability of Neuro-2a cells exposed to different concentrations (0.5 , 2 and 5 mg L ⁻¹) of MeHg at
573	various exposure times (n = 10) While the viability of cells exposed to 0.5 mg L^{-1} MeHg was not
574	affected at any of the exposure times tested, 5 mg L^{-1} MeHg caused a decrease on the cell viability
575	close to 100% even after 6 h of exposure. We selected 2 mg L^{-1} and 8 h exposure for further
576	experiment to evaluate the effect of MeHg on Neuro-2a cells without drastically compromising the cell
577	viability. b Morphological changes induced after MeHg exposure visualized by fluorescence
578	microscopy after staining with phalloidin-FITC and DAPI (n = 3). Exposure to MeHg markedly
579	disrupted the structural integrity of neurites. c Determination of the total amount of MeHg internalized
580	by the cells by atomic fluorescence spectroscopy (AFS) ($n = 4$). Only 10% of the total MeHg added
581	were actually found inside the cells.
582	
583	Fig. 2 SILAC results. a General scheme of the SILAC procedure. b Distribution of the SILAC ratios
584	for the identified proteins. Most quantified proteins presented a SILAC ratio close to 1, as expected for
585	a 1:1 mixture. c Functional annotation of the 125 altered proteins upon MeHg exposure obtained from
586	the gene ontology GO consortium website. Major molecular and cellular functions altered included cell
587	death (CD), RNA post-transcriptional modification (PT), protein synthesis (P), cellular assembly and
588	organization (AO), and cell cycle (CC).
589	
590	Fig. 3 Schematic representation of the methylation cycle. Vitamin B12 (B12); glutathione S-transferase
591	P (GSTP1); methionine synthase (MTR); methylenetetrahydrofolate dehydrogenase (MTHFD1);
592	methylenetetrahydrofolate reductase (MTHFR); S-adenosylmethionine (SAM); S-
593	adenosylhomocystine (SAH); tetrahydrofolate (THF).
594	
595	Fig. 4 Evaluation of the levels of MTHFD1 and MTR in Neuro-2a cells exposed to different
596	concentration of MeHg by Western Blot analysis ($n = 3$). The expression of MTHFD1 and MTR

597 decreased significantly with increasing concentrations of MeHg. GAPDH was used as loading control.

598	
599	Fig. 5 siRNA-mediated gene knock-down of MTHFD1. a Immnunoblotting of Control vs. MTHFD1
600	knock-down (KD) that shows the suitability of the transfection ($n = 3$). b Comparison of viability
601	between Neuro-2a cells transfected with 30 pmols of siRNA-MTHFD1 and cells exposed to 2 mg L^{-1}
602	of MeHg for 8 h (n = 10). MTHFD1 knock-down affected the viability of Neuro-2a cells, although the
603	decrease in cell viability was more pronounced in cells exposed to MeHg.
604	
605	Fig. 6 Effect of high levels of vitamin B12 supplementation to MeHg-exposed Neuro-2a cells (n = 10).
606	Supplementation with vitamin B12 did not ameliorate the decreased in cell viability observed in
607	MeHg-exposed cells.
608	
609	Fig. 7 Comparative effect of MeHg and other heavy metals on the expression of MTHFD1 and MTR (n
610	= 3). The four species highly affect the expression of MTR while the expression of MTHFD1 was
611	significantly different depending on the metallic species tested.
612	
613	
614	
615	
616	
617	
618	
619	
620	
621	
622	
623	
624	
625	
626	
627	

628 **Table 1**. Proteins up-regulated in Neuro-2a cells exposed to MeHg

629

Common	Accession		Silac		Mascot
Name	Number	Protein name	ratio	RSD	Score
MCM5	112293273	minichromosome maintenance deficient 5, cell division cycle 46	3,71	4,14	131
PIR	51317401	pirin	2,98	4,71	113
ALDH2	6753036	aldehyde dehydrogenase 2, mitochondrial	2,93	12,14	194
CAD	51093867	carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase	2,92	11,24	92
CDK1	31542366	cell division cycle 2 homolog A	2,80	1,87	502
MO25	31982582	MO25 protein	2,68	8,85	82
NDUFS3	58037117	NADH dehydrogenase (ubiquinone) Fe-S protein 3	2,65	1,03	238
RPF2	110347519	brix domain containing 1 isoform 1	2,53	10,31	119
BAX	6680770	Bcl2-associated X protein	2,52	12,48	750
PRPF8	115583687	pre-mRNA processing factor 8	2,30	9,28	320

TRXR1	13569841	thioredoxin reductase 1 isoform 2	2,23	13,31	381
CEND1	10946620	cell cycle exit and neuronal differentiation 1	2,10	17,11	128
EIF4B	21704128	eukaryotic translation initiation factor 4B	2,05	16,61	57
DUT	21281687	deoxyuridine triphosphatase	2,00	15,19	408
TRX	31543902	thioredoxin	1,99	0,98	136
USMG5	77404294	upregulated during skeletal muscle growth 5	1,91	4,96	169
CUL3	7710014	cullin 3	1,88	12,53	98
NXF1	31980798	nuclear RNA export factor 1	1,85	13,70	122
AP1B1	88853578	adaptor protein complex AP-1, beta 1 subunit	1,85	15,07	444
MCM2	6678826	minichromosome maintenance deficient 2 mitotin	1,85	16,25	118
PSMB2	31981327	proteasome (prosome, macropain) subunit, beta type 2	1,83	14,80	555
PDXP	47059486	pyridoxal phosphate phosphatase	1,80	12,33	272
NAP1L4	6679012	nucleosome assembly protein 1-like 4	1,79	12,67	256

RPS28	21426821	ribosomal protein S28	1,76	10,93	131
EIF2S3X	6753738	eukaryotic translation initiation factor 2, subunit 3, structural gene X-linked	1,75	17,77	101
SORD	22128627	sorbitol dehydrogenase	1,73	12,27	109
EIF2S2	14149756	eukaryotic translation initiation factor 2, subunit 2 (beta)	1,71	8,30	149
PAICS	13385434	phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase	1,69	19,50	258
СКАР5	66955862	cytoskeleton associated protein 5	1,67	18,10	238
PRDX5	6755114	peroxiredoxin 5 precursor	1,67	0,45	169
LMNA	50355692	lamin A isoform A	1,67	17,15	642
ENO1	12963491	enolase 1, alpha non-neuron	1,65	15,15	141
RSL24D1	38348464	ribosomal protein L24-like	1,62	6,94	280

PLCXD3	28893495	phosphatidylinositol-specific phospholipase C, X			
		domain containing 3	1,62	6,82	193
IPO4	19745156	RANBP4	1.61	9.44	154
				,	
EIF3I	9055370	eukaryotic translation initiation factor 3, subunit 2			
		(beta)	1,59	17,18	621
U2AF1	17530980	U2 small nuclear ribonucleoprotein auxiliary factor			
		(U2AF) 1	1,59	17,21	96
AIG2	31560366	alpha-1.3-mannosyltransferase ALG2			
			1,58	9,45	92
PSMD11	134053905	proteasome 26S non-ATPase subunit 11	1 58	10 38	425
			1,50	10,50	125
FAM49B	21450053	hypothetical protein LOC223601			
			1,58	12,93	238
TIMM23	12025536	translocase of inner mitochondrial membrane 23			
		homolog	1,55	18,91	184
ATAD1	31560168	ATPase family, AAA domain containing 1			
			1,53	8,15	378
CNOT1	94383743	PREDICTED: CCR4-NOT transcription complex, subunit 1			
		isoform 2	1,53	0,90	137

VAMP3	6678553	vesicle-associated membrane protein 3	1,51	2,20	193
TSTA3	13654268	tissue specific transplantation antigen P35B	1,51	11,51	291
DNAJC8	27369493	DnaJ (Hsp40) homolog, subfamily C, member 8	1,51	2,81	88
PRPF19	19527358	nuclear matrix protein SNEV	1,51	9,57	115
ITGB1	45504394	integrin beta 1 (fibronectin receptor beta)	1,50	11,37	152
630					
631					
632					
633					
634					
635					
636					
637					
638					
639					
640					
641					
642					
643					
644					

Common

Accession

Silac

Mascot

Nomo	Number	Protein name	ti o	RSD	Casta
Name	Number		ratio		Score
KIF5C	45433560	kinesin family member 5C	-18,73	8,92	139
RAB1B	21313162	RAB1B, member RAS oncogene family	-15,31	12,26	1199
NSF	31543349	N-ethylmaleimide sensitive fusion protein	-8,34	12,52	265
PCM1	13540494	pericentriolar material 1	-8,02	10,22	96
SMARCA4	76253779	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4	-7,95	10,04	156
PICALM	32567788	phosphatidylinositol-binding clathrin assembly protein	-7,70	12,36	287
ТРРРЗ	13385968	hypothetical protein LOC67971	-7,20	16,97	90
TCEB1	21312712	transcription elongation factor B (SIII), polypeptide	-5,94	5,98	142
ACSL4	46518528	acyl-CoA synthetase long-chain family member 4 isoform 1	-5,76	14,62	105
-	149262716	PREDICTED: similar to hCG1813078	-5,72	14,82	117
ATP5L	31980744	ATP synthase, H+ transporting, mitochondrial F0 complex, subunit G	-4,93	9,37	232
NT5C3B	31980891	5'-nucleotidase, cytosolic III-like	-4,73	4,95	92

Table 2. Proteins down-regulated in Neuro-2a cells exposed to MeHg

TUBB2B	21746161	tubulin, beta	-4,48	8,62	3658
PGM2	31980726	phosphoglucomutase 2	-4,48	6,41	114
CBR3	27413160	carbonyl reductase 3	-4,34	6,04	38
CTTN	75677414	cortactin	-3,84	5,83	51
COD0	7242142	COP9 (constitutive photomorphogonic) homolog			
COPS	/242142	cors (constitutive photomorphogenic) homolog,	-3,45	5,81	242
		subunit 7a			
DDX39	38372907	DEAD (Asp-Glu-Ala-Asp) box polypeptide 39	-3,30	17,44	297
	50007400				
NDUFB10	58037109	NADH denydrogenase (ubiquinone) 1 beta	-2,83	2,15	433
		subcomplex, 10			
ATP5J2	10181184	ATP synthase, H+ transporting, mitochondrial F0	-2 73	11 28	70
		complex, subunit f, isoform 2	-2,75	11,20	70
PSMA4	6755196	proteasome (prosome, macropain) subunit, alpha			
		type 4	-2,56	16,41	230
ТМРО	121949765	thymopoietin isoform epsilon	-2,51	2,00	313
KIF11	45476577	kinesin family member 11	-2,41	7,51	87
RQCD1	10946722	rcd1 (required for cell differentiation) homolog 1	-2,33	10,46	103
THOP1	31981237	thimet oligopeptidase 1	-2,29	3,82	376
100	112724964	importin	2.24	12.02	170
IPO	112/34861		-2,24	13,83	1/2
	149252028	PREDICTED: hypothetical protein	-2 17	0.65	231
-			-,-,	0,00	231

SRSF6	31543689	arginine/serine-rich splicing factor 6	-2,14	10,06	109
ATAD3	30725845	AAA-ATPase TOB3	-2,09	17,44	141
PDLIM3	7948997	PDZ and LIM domain 3	-2,07	10,83	201
ARPC3	9790141	actin related protein 2/3 complex, subunit 3	-2,05	19,19	65
COX5A	112181182	cytochrome c oxidase, subunit Va	-2,02	13,30	141
CHCHD3	149254953	PREDICTED: hypothetical protein	-1,99	12,73	228
HNRNPC	8393544	heterogeneous nuclear ribonucleoprotein C	-1,98	6,39	336
SLC25A1	23943838	solute carrier family 25, member 1	-1,96	13,33	82
COPE	10946972	epsilon subunit of coatomer protein complex	-1,94	10,74	353
TRNT1	33859692	tRNA nucleotidyl transferase, CCA-adding, 1	-1,92	5,80	187
MYEF2	27819594	myelin basic protein expression factor 2, repressor	-1,91	3,53	78
KRAS	84370270	c-K-ras2 protein	-1,91	0,65	137
PFKL	31560653	phosphofructokinase, liver, B-type	-1,89	12,56	88
RPF2	110347521	brix domain containing 1 isoform 2	-1,89	10,02	179
HNRNPR	33859724	heterogeneous nuclear ribonucleoprotein R	-1,86	18,16	226
BDH1	31982169	3-hydroxybutyrate dehydrogenase, type 1	-1,83	0,56	132
TUBA1C	6678469	tubulin, alpha 1C	-1,83	14,45	507
TNPO1	115385966	transportin 1 isoform 2	-1,81	13,62	389

BAG3	115270960	Bcl2-associated athanogene 3	-1,81	15,06	384
H1FX	38348566	H1 histone family, member X	-1,81	16,15	207
RBM25	124430762	RNA binding motif protein 25	-1,80	9,76	72
BCAT1	66792792	branched chain aminotransferase 1, cytosolic isoform 1	-1,78	3,61	257
-	149249564	PREDICTED: hypothetical protein isoform 1	-1,77	14,21	224
GST	6754086	glutathione S-transferase	-1,74	15,07	207
PPP2R4	31981677	protein phosphatase 2A, regulatory subunit B (PR 53)	-1,73	0,51	200
SRRT	13937395	arsenate resistance protein 2	-1,73	13,47	132
MSN	70778915	moesin	-1,72	4,91	141
-	94390383	PREDICTED: similar to La ribonucleoprotein domain family, member 1	-1,72	17,54	105
RRM1	31982026	ribonucleotide reductase M1	-1,71	16,03	175
MEST	6678866	mesoderm specific transcript	-1,70	3,33	259
SNCB	15809030	synuclein, beta	-1,69	7,68	208
DYN	134288917	dynein	-1,68	18,65	733
MTHFD1	31559887	methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1	-1,67	18,63	317

AP2A1	6671561	adaptor protein complex AP-2, alpha 1 subunit			
		isoform a	-1,66	6,45	132
NACD	125/00278	nuclear autoantigenic sporm protein isoform 2	1 65	14.21	60
NASP	125490578	nuclear autoantigenic sperm protein isoform z	-1,05	14,21	60
	(755200	DNA hinding motif protoin V linked	1 (1	0.10	221
RBINIX	6/55296	RNA binding motif protein, X-linked	-1,64	9,19	221
				10.50	
BCL2A1	24496776	BCL2-associated transcription factor 1 isoform 2	-1,64	18,50	82
-	149265144	PREDICTED: filamin B, beta	-1,62	14,83	422
STMN1	9789995	stathmin 1	-1,59	17,20	129
SMC1A	9790237	SMC1 structural maintenance of chromosomes 1-	-1 59	14.20	120
		like 1	-1,58	14,20	129
DDX18	31981163	DEAD (Asp-Glu-Ala-Asp) box polypeptide 18	-1,58	19,13	80
_					
PSMD5	134053913	proteasome 26S non-ATPase subunit 5	-1,56	16,01	98
			-		
SLC3A2	31560670	solute carrier family 3 (activators of dibasic and			
			-1,55	13,75	178
		neutral amino acid transport), member 2			
TRA2B	6677975	splicing factor, arginine/serine-rich 10	-1,55	0,74	235
LOC433762	149253163	PREDICTED: hypothetical protein	-1,54	13,95	444
DDX21	72384374	DEAD (Asp-Glu-Ala-Asp) box polypeptide 21	-1,53	1,82	701
PRPH	7305413	peripherin	-1,52	17,67	1706
SNX2	13385878	sorting nexin 2	-1,51	18,33	73
TARS	27229277	threonyl-tRNA synthetase	-1,51	10,43	319

EIF4A3	20149756	eukaryotic translation initiation factor 4A, isoform 3	-1,50	1,16	389

646

647

Cytotoxicity, mercury uptake and morphological changes induced by MeHg exposure. a Viability of Neuro-2a cells exposed to different concentrations of MeHg at various exposure times.

While the viability of cells exposed to 0.5 mg L-1 MeHg was not affected at any of the exposure times tested, 5 mg L-1 MeHg caused a decrease on the cell viability close to 100% even after 6 h of exposure. We selected 2 mg L-1 and 8 h exposure for further experiment to evaluate the effect of MeHg on Neuro-2a cells without drastically compromising the cell viability. b Morphological changes induced after MeHg exposure visualized by fluorescence microscopy after staining with phalloidin-FITC and DAPI. Exposure to MeHg markedly disrupted the structural integrity of neurites. c Determination of the total amount of MeHg internalized by the cells by atomic fluorescence spectroscopy (AFS). Only 10% of the total MeHg added were actually found inside the cells.

199x199mm (300 x 300 DPI)

SILAC results. a General scheme of the SILAC procedure. b Distribution of the SILAC ratios for the identified proteins. Most quantified proteins presented a SILAC ratio close to 1, as expected for a 1:1 mixture. c Functional annotation of the 125 altered proteins upon MeHg exposure obtained from the gene ontology GO consortium website. Major molecular and cellular functions altered included cell death (CD), RNA post-transcriptional modification (PT), protein synthesis (P), cellular assembly and organization (AO), and cell cycle (CC).

203x199mm (300 x 300 DPI)

Figure 2

Schematic representation of the methylation cycle $174 \times 199 \text{mm}$ (300 x 300 DPI)

Evaluation of the levels of MTHFD1 and MTR in Neuro-2a cells exposed to different concentration of MeHg by Western Blot analysis. The expression of MTHFD1 and MTR decreased significantly with increasing concentrations of MeHg. GAPDH was used as loading control. 119x150mm (300 x 300 DPI)

Figure 5

siRNA-mediated gene knock-down of MTHFD1. a Immnunoblotting of Control vs. MTHFD1 knock-down (KD) that shows the suitability of the transfection. b Comparison of viability between Neuro-2a cells transfected with 30 pmols of siRNA-MTHFD1 and cells exposed to 2 mg L-1 of MeHg for 8 h. MTHFD1 knock-down affected the viability of Neuro-2a cells, although the decrease in cell viability was more pronounced in cells exposed to MeHg. 99x160mm (300 x 300 DPI)

Figure 6

Effect of high levels of vitamin B12 supplementation to MeHg-exposed Neuro-2a cells. Supplementation with vitamin B12 did not ameliorate the decreased in cell viability observed in MeHg-exposed cells. 140x150mm (300 x 300 DPI)

Comparative effect of MeHg and other heavy metals on the expression of MTHFD1 and MTR. The four species highly affect the expression of MTR while the expression of MTHFD1 was significantly different depending on the metallic species tested. 119x150mm (300 × 300 DPI)

263x140mm (72 x 72 DPI)