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Abstract

Transparent conducting oxides (TCOs) are an essential component in modern op-

toelectronic devices, such as solar panels and touch screens. Their ability to combine

transparency and conductivity, two properties that are normally mutually exclusive,

have made them the subject of intense research over the last 50 years. SnO2, doped

with F or Sb, is a widely used and relatively inexpensive transparent conducting ma-

terial, however, its electronic structure leaves scope for improving its properties for use

in many TCO applications, especially in solar cell devices. Here we show using den-

sity functional theory that incorporation of Pb into SnO2 reduces the band gap through

lowering of the conduction band minimum, thereby increasing the electron affinity. The

electron effective mass at the conduction band minimum decreases alongside the band

gap, indicating improved charge carrier mobilities. Furthermore, the calculated optical

absorption properties show the alloys retain their transparency in the visible spectrum.
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Our results suggest that alloying of PbO2 with SnO2 will enable improved electronic

properties, including a highly tuneable workfunction, which will open up the material

for other applications, such as hole injection layers in organic photovoltaics.

Introduction

Transparent conducting oxides (TCOs) are a class of materials that simultaneously possess

the conflicting properties of optical transparency and conductivity. First documented over

half a century ago,1 TCOs are now an essential component in modern optoelectronic devices,

including flat panel displays, touch-screen sensors and solar cells.2–5 The industry standard

n-type TCO is Sn-doped In2O3 (In2O3:Sn or ITO), which possesses excellent optical and

electronic properties, with carrier densities exceeding 1021 cm−3, resistivities below 10−5Ωcm

and high optical transparency in the visible spectrum.6 However, the low abundance of

indium in the earth’s crust together with massive demand for ITO has lead to increasing

concerns over indium supply.7,8 As such, the price of indium has fluctuated wildly in recent

years and there are concerted efforts to eliminate its use in TCOs.9,10 Alternative materials

such as ZnO:Al (AZO), SnO2:Sb (ATO), and SnO2:F (FTO) have been employed in a range

of devices but have so far been unable to replicate the high performance seen in ITO.11

There are several properties necessary for an n-type TCO to achieve optimal performance.

The optical band gap, Eopt
g , must be greater than 3.1 eV to provide transparency in the visible

spectrum. Additionally, conductivity is dependent on the ability of the material to form a

degenerate semiconductor upon donor doping, termed the dopability. In excellent n-type

TCOs, donors will donate electrons directly into the conduction band (CB), leading to filled

states at the conduction band minimum (CBM) and Moss–Burstein widening of the optical

band gap.12–14 The dopability is largely controlled by the position of the CBM relative to the

vacuum level, i.e. the electron affinity (EA).15–18 A large EA indicates that it is easier to get

charge carriers into the system, effectively increasing carrier concentrations. To guarantee

transparency after doping, a large separation from the first to the second conduction band
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(CBM to CBM+1) is necessary to prevent interband excitation of electrons. Finally, a highly

disperse CB ensures a small carrier effective mass at the CBM. This generally arises from

having a CB composed of metal-s-like orbitals allowing for high carrier mobilities.19

The TCO deposited in the largest quantity, with regard to area, is F or Sb doped SnO2, for

use in a variety of applications such as low-emissivity windows in buildings, electrochromic

mirrors and defrosting windows in supermarkets.20 Undoped SnO2 is itself a prototypical

TCO, with a large fundamental band gap of ∼3.6 eV,21 up to 97% transparency in the

visible spectrum and carrier densities approaching 1021 cm−3.22 Importantly, as Sn is earth-

abundant (∼30–40 times more abundant than In in the Earth’s crust23), the raw materials

needed for SnO2 are less expensive than for ITO.24 Manufacturing is also simplified due

to the availability of chemical deposition methods, such as spray pyrolysis and atmospheric

pressure chemical vapour deposition.25–28 Similar to other TCO materials, a debate exists as

to whether intrinsic oxygen vacancies (VO) and tin interstitials (Sni) play a role in conduc-

tion.29,30 The most recent studies, however, have indicated that they are deep donors or have

restrictively high formation energies.31,32 Instead, hydrogen acting as an unintentional donor

(Hi or HO) has been identified both theoretically,31,33 and experimentally34,35as a suitable

defect to explain the conductivity seen in SnO2. Regardless, due to the propensity for native

defects, hydrogen interstitials, and surface states to all be donor-like, King and Veal have ar-

gued that the charge neutrality level in n-type TCOs is likely to be above the CBM.36 Thus,

donor defect states remain energetically favourable even when the Fermi level appears inside

the conduction band. In SnO2, due to the large gap between the Fermi level and the energy

level of the first unoccupied states, any such defects do not cause vertical optical transitions

in the visible range, enabling high carrier concentrations with little effect on transparency.29

Comparison of the properties of In2O3 and SnO2 reveals many similarities: both are direct

wide band gap semiconductors, have a CBM+1 greater than 3.1 eV above the CBM, and

have highly dispersed conduction bands.39 The EA of In2O3, however, is significantly larger

than that of SnO2 and, in fact, of all other TCOs (Fig. 1).40 With the fundamental materials
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Figure 1: Valence and conduction band offsets between Cu2O, ZnO, In2O3 and SnO2 taken
from recent experiments37 and calculations.32,38 The vacuum level is set to 0 eV.

physical limits being approached in known TCO materials,41 the road to higher performance

must occur through concomitant increase in carrier mobilities and carrier densities.19 The

large band gap of SnO2, ∼0.5 eV greater than is needed for transparency, provides scope to

lower the CBM relative to the vacuum level whilst simultaneously decreasing the electron

effective mass.

Band gap modulation in semiconductors can be achieved in a number of ways, including

chemical doping,42 strain engineering,43 and inducing lattice disorder.44,45 Band gap engi-

neering in In2O3 was recently demonstrated by alloying with Tl2O3.46 As both compounds

crystallise in the same structure, incorporation of Tl resulted in a monotonic decrease of

the band gap without otherwise affecting the electronic structure. The desired properties of

the material best suited for alloying with SnO2 are therefore: i) a smaller band gap, ii) a

highly dispersed conduction band, and iii) a compound that crystallises in the rutile crystal

structure.

Of the group 14 oxides, PbO2 is isostructural and isoelectronic to SnO2 and therefore

likely to allow for efficient alloying. Furthermore, it was recently identified as a narrow

band gap semiconductor, with a conduction band dominated by low-lying Pb s states due

to relativistic effects.47 The electronic structure of the conduction band of PbO2 is nearly
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ideal for a TCO, with a low electron effective mass of 0.18me and a very large separation

between the CBM and the CBM+1. The fundamental band gap, however, is too small

for transparency when undoped. Oxygen substoichiometry48,49 and possibly adventitious

hydrogen50–52 cause the Fermi level to sit far above the CBM of PbO2, leading to high levels

of conductivity. Furthermore, it has even been suggested that through tuning of the Fermi

level position in the conduction band, PbO2 could be transformed into a TCO itself.53 Pb

is also significantly more abundant and less expensive than Sn,54 and as such PbO2 was

considered the ideal compound to incorporate into SnO2.

In this Article we propose incorporation of Pb as an efficient method of modulating the

band gap of SnO2. Using hybrid density functional theory (DFT) we demonstrate that the

fundamental band gap of Sn1–xPbxO2 (0 ≤ x ≤ 0.125) can be tuned from ∼3.67 eV to

3.17 eV. The enthalpy of mixing is shown to be favourable at moderately high temperatures,

suggesting the system can be achieved experimentally. Crucially, band gap modulation oc-

curs primarily through lowering of the CBM relative to the vacuum level, thereby increasing

the electron affinity. The ability to modulate the band gap – and consequently work function

– has significant implications in the field of organic photovoltaics, in which the work function

alignment of the cathode and hole injection layer is essential to form an Ohmic contact and

increase the built-in potential of the interface.

Methodology

All our DFT calculations were performed using the Vienna ab initio Simulation Package

(VASP),55–58 with interactions between the core (Sn:[Kr], Pb:[Xe], and O:[He]) and valence

electrons described using the Projector Augmented Wave method.59 Two different functionals

were employed: PBEsol,60 a version of the Generalised Gradient Approximation (GGA)

PBE61 functional revised for solids and PBE0, a hybrid density functional proposed by

Adamo and Barone.62 In the PBE0 approach, 25% exact Hartree-Fock (HF) exchange is

combined with 75% exchange and the correlation energies from PBE.61 PBEsol is known
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to accurately predict lattice constants for solid state systems, while PBE0 reproduces the

band gap and electronic structure of SnO2 seen in experiment.21,63,64 PBE0 also replicates

the recently confirmed semiconductor nature of PbO2.47

Both k-point sampling and the plane wave basis set were checked for convergence, with

a cutoff of 450 eV and k-point grid of Γ-centred 4× 4× 6, for the 6 atom unit cells of SnO2

and PbO2, found to be sufficient. The structures were geometrically optimized and deemed

to be converged when the forces on all the atoms totalled less than 10meVÅ
−1

. Optical

absorption spectra were determined using the optical transition matrix elements calculated

within the transversal approximation.65 This approach sums the absorption spectra over all

direct valence to conduction band transitions and, as such, does not account for indirect

and intraband absorptions.66 Supercell calculations, due to shrinking of the Brillouin zone,

result in folded band structures that can be difficult to interpret. To prevent this, primitive

cell representations of supercell band structures were obtained using the band unfolding

code BandUp,67,68 based on the methodolgy described by Popescu and Zunger.69 Electron

effective masses at the band edges were calculated according to:

1

m∗

=
1

~

d2E

dk2
(1)

where m∗ is the effective mass, ~ is the reduced Planck constant, and d2E
dk2

is the curvature

of the band at the CBM.

In this work we investigate the thermodynamics of alloying and select the lowest energy

alloy structures at particular compositions. Investigations into configuration effects in solid

solutions are complicated by the large number of possible structures that can exist for a

particular supercell. To avoid this problem we have followed the procedure implemented in

the Site Occupancy Disorder (SOD) program developed by De Leeuw and co-workers.70 Here,

the complete configurational space for each supercell composition is generated, from which

the subspace of symmetrically inequivalent configurations can be extracted. This method
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is able to reduce the computational complexity by several orders of magnitude, making

previously prohibitive problems tractable. The process of calculating the configurational

averages and entropies has been explained in more detail elsewhere in the literature,71,72

but is based on the assumption that a Boltzmann-like probability can predict the extent of

occurrence of a particular configuration. This takes into account both the energy, Em, of the

configuration and its degeneracy, Ωm, i.e. how many times the configuration appears in the

complete configurational space:

P̃m =
1

Z
Ωm exp(−Em/kBT ) =

1

Z
exp(−Ẽm/kBT ) (2)

where m = 1, . . . ,M (M is the number of inequivalent configurations) and kB is Boltzmann’s

constant. From this, it can be shown that the average of any observable quantity at each

composition, Q, can be estimated from the values of the quantity at each configuration, Qm,

as:

Q =
M∑

m=1

P̃mQm (3)

Finally, the configurational free energy, G, can be obtained directly from the partition func-

tion as:

G = −kT lnZ (4)

Results and Discussion

SnO2 and β-PbO2 (mineral names, cassiterite and plattnerite) both crystallise in the rutile

crystal structure, containing 6 atoms in a unit cell.73 The cation is coordinated to six oxygen

in a distorted octahedron (D4h symmetry), with each oxygen coordinated to three cations by

one short and two long bonds. The PBEsol calculated a and c lattice parameters for SnO2

were 4.772Å and 3.216Å respectively. These are in close agreement (within 0.9%) with

neutron diffraction experiments.74,75 In order to calculate the electronic properties of SnO2,

the structure was relaxed using PBE0, after which the electronic structure was calculated,
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again using PBE0. The fundamental band gap of SnO2 was found to be 3.67 eV. This is

very similar to the experimentally observed fundamental band gap of 3.59 eV.76–78 We note

that this experimental measurement has not been performed in the traditional way (i.e. the

ionisation potential – electron affinity, measured, for instance using inverse photoemission

spectroscopy) but instead has been measured using two-photon spectroscopy and factors

in the known exciton binding energy in SnO2 of 30 meV.79–81 The valence band maximum

(VBM) and CBM both occur at the Γ point, resulting in a fundamental band gap that

is direct. For PbO2 the calculated lattice parameters were 4.994Å and 3.416Å, for a and

c respectively. These again closely matched experimental results (within 1.0%).82,83 The

semiconductor nature of PbO2 was reproduced in the PBE0 calculated direct band gap of

0.64 eV, which again was calculated from the PBE0-relaxed structure. However, due to large

carrier concentrations and the relative lack of optical measurements in the literature, the

exact magnitude of the band gap is unknown.84,85

To investigate the effects of alloying, we have considered the substitution of Sn by Pb

in a 2 × 2 × 2 (48 atom) supercell of SnO2 containing 16 cation sites. Table 1 shows the

total (N ) and symmetrically inequivalent (M ) number of configurations as a function of Pb

concentration (Sn16–nPbnO32 where n = 0, 1, 2, . . . , 16). The equilibrium geometries and

energies of all inequivalent configurations were calculated using PBEsol as described above.

An analysis of the results reveals that, for each composition, the difference in energy between

the most and least stable configurations is very small, at most 16meV per atom. As such, a

disordered alloy is more likely to form rather than an ordered solid solution.

To study the stability of the alloys against that of the individual components, the en-

thalpies and free energies of mixing were calculated as a function of composition, across a

range of temperatures, as:

∆Hmix = E(Sn1−xPbxO2)− (1− x)E(SnO2)− xE(PbO2) (5)

8
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Table 1: Total number (N) of configurations with NPb substitutions and the number (M) of
inequivalent configurations for Sn1–x

Pb
x
O2.

NPb x N M

0 0.000 1 1
1 0.062 16 1
2 0.125 120 6
3 0.188 560 13
4 0.250 1,820 41
5 0.312 4,368 65
6 0.375 8,008 120
7 0.438 11,440 145
8 0.500 12,870 180
9 0.562 11,440 145
10 0.625 8,008 120
11 0.688 4,368 65
12 0.750 1,820 41
13 0.812 560 13
14 0.875 120 6
15 0.938 16 1
16 1.000 1 1

Total 65,535 963

and

∆Gmix = G(Sn1−xPbxO2)− (1− x)E(SnO2)− xE(PbO2) (6)

respectively, where E(Sn1−xPbxO2) is the average energy calculated according to eqn (3)

and G(Sn1−xPbxO2) is the configuration free energy of the composition calculated via eqn

(4).

Figure 2a shows the results plotted as a function of composition. The enthalpy of mixing

is small but positive, indicating that the mixing is a slightly exothermic process. The free en-

ergy of mixing turns negative at temperatures greater than 850K (580 ◦C), for compositions

where x = 0.062 and 0.125, indicating that the structures formed will be thermodynamically

stable. The lines corresponding to 850K and 1050K contain two minima, one at Sn-rich and

another at Pb-rich compositions, highlighting that any intermediate compositions would sep-

arate into two phases if kinetically allowed.86,87 At higher temperatures this thermodynamic
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O2 for: (a) the enthalpy and

free energy of mixing, (b) the unit cell lattice parameters, and (c) the direct fundamental
band gaps (Edir

g ).

miscibility gap disappears due to increasing contribution from the entropic term.

The dependence of the calculated lattice parameters on composition is shown in Figure

2b. Each point represents the average lattice constant across the entire configurational space

for that composition, with the assumption of full disorder. This discounts any preference

for ordering of the cations, however, as the difference in energy between configurations is

small, the change in the average lattice parameters will be negligible. The lattice constants

of the alloy display a linear increase with increasing Pb concentration, as expected due to

the increase in atomic radius from Sn to Pb, and following Vegard’s law.88

In order to find the optimum doping levels, the band gap trend of the alloys was inves-

tigated. To calculate the electronic properties of almost 1000 structures accurately would

have been prohibitively resource intensive. Instead, the lowest energy configurations at each

composition were geometrically relaxed using the PBE0 functional, after which the electronic

structures were calculated, again using PBE0. Figure 2c shows the band gaps of the lowest

energy alloy structures at each composition. The alloy band gaps decrease monotonically

with increasing Pb concentration, from 3.37 eV at x = 0.062 to 0.74 eV at x = 0.938. The

decrease is not linear, indeed the band gap bowing parameter, defined from:

Eg(x) = (1− x)Eg(SnO2) + xEg(PbO2)− bx(1− x) (7)
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shows a slight bowing of b = 0.81 eV, comparable with other ternary compounds.89 This is in

agreement with the band gap bowing parameter of 0.79 eV seen in experiment,90 however, we

note that whilst we provide the fundamental band gap bowing parameter, experimentally

the optical band gap bowing parameter has been measured. The results predict a target

region of ∼6.25–12.5% Pb concentration, where the band gap is reduced but remains larger

than the 3.1 eV needed to maintain transparency. As such, the lowest energy structures at

these compositions (x = 0.062 and 0.125) were chosen for further analysis.

Z        Γ       M Z        Γ       M Z        Γ       M

E
n

e
rg

y
 (

e
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2
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 x = 0.00  x = 0.06  x = 0.12

Figure 3: The calculated effective band structure for Sn1–xPbxO2 where x = 0.00, 0.06, and
0.12. The conduction bands are coloured orange whereas the valence bands are shown in
blue, with the VBM is set to 0 eV in each case.

To see how alloying affects the band structure, we have calculated the “effective” primitive

cell band structure using the PBE0 functional and BandUp code, as described above. Figure

3 shows a comparison between the band structures of undoped SnO2 and the two doping

concentrations, where the direct band gap (Z to Γ to M) is shown. The alloys have main-

tained the ideal electronic structure needed for an efficient TCO, with the band gap reduction

immediately obvious. Furthermore, the dispersion at the band edges remains excellent, indi-

cating high carrier mobilities. The calculated electron effective mass at the CBM decreases
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with Pb concentration, from 0.27me to 0.26me, for Sn0.938Pb0.062O2 and Sn0.875Pb0.125O2

respectively. This is an improvement on undoped SnO2, which has a calculated effective

mass of 0.28me, in excellent agreement with experiment (0.29me).91

A simple band alignment derived from an O 1s level is displayed in Figure 4.92–95 Band

alignments relative to the band positions of SnO2 provide useful informational about the

nature of the band gap changes.96–99 It is clear that the reduction in band gap occurs

overwhelming through lowering of the CBM relative to the vacuum level, in the case of

Sn0.875Pb0.125O2 by 0.592 eV, effectively increasing the EA. This is due to the relativistic

contraction of the Pb 6s orbitals, which increases their stability and causes these states

appear at lower energies relative to the vacuum level. This indicates that Pb doped SnO2

should display an increased n-type dopability and, as such, could possess increased carrier

concentrations when donor doped. Unexpectedly, the VBM also decreases slightly with in-

creasing Pb concentration. Based on the increased Pb d – O 2p repulsion in PbO2 relative

to the Sn d – O 2p repulsion in SnO2, the VBM of the alloys would generally have been

expected to rise. It is possible that this is an artefact of the simplified alignment model,

however, the large modulation of the CBM is to be expected.

 x = 0.00  x = 0.06  x = 0.12

0.000 0.077 0.092

0.000

0.333
0.592

3.67 eV 3.41 eV 3.17 eV

CBM

VBM

Figure 4: Band alignment for Sn1–x
Pb

x
O2, where x = 0.00, 0.06, and 0.12. All energies are

given relative to a O 1s state.

Having established that Pb incorporation decreases the fundamental band gap of SnO2,
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it is instructive to investigate the effects of the alloying on optical properties. As the in-

version symmetry of the lattice results in disallowed transitions at the Γ point, the opti-

cal band gaps (Eopt
g ) of SnO2 and PbO2 are considerably widened relative to the funda-

mental band gaps.47,79,81,100 The optical absorption spectra for SnO2, Sn0.938Pb0.062O2 and

Sn0.875Pb0.125O2, calculated using PBE0 from the frequency dependent dielectric matrix, are

presented in Figure 5. We can clearly see that incorporation of Pb does not affect the disal-

lowed nature of the optical band gaps, as in all cases the optical band gaps are significantly

larger than the fundamental band gaps, indicating that the Sn1−xPbxO2 alloys will retain

high levels of optical transparency.
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Figure 5: Calculated optical absorption spectra for Sn1–xPbxO2 where x = 0.00, 0.06, and
0.12. Full lines indicate optical absorption and dashed lines indicate fundamental band gap.

Conclusions

In this study we set out to tailor the band gap of SnO2 in order to improve its performance

as a transparent conducting oxide. Our approach was centred around reducing the band gap

by decreasing the position of the conduction band minimum, thereby increasing the electron

affinity and thus increasing the dopability.18,46 To be effective, the fundamental band gap of

the improved SnO2 material must be greater than 3.1 eV whilst no detrimental effects on the
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effective mass at the conduction band minimum should be seen, in the interest of retaining

high electron mobilities.

Through alloying with isoelectronic and isostructural PbO2, we have demonstrated that

the band gaps of Sn1–xPbxO2 alloys can be tuned from 3.67 eV to 0.64 eV with increasing Pb

content, arising from stabilization of the conduction band minimum relative to the vacuum

level. We have found that Sn0.875Pb0.125O2 displays a fundamental band gap that is just

above 3.1 eV, possesses effective masses that are lower than for pure SnO2, and has an

electron affinity 0.59 eV larger than SnO2. Furthermore, the optical transparency of this alloy

remains extremely high. These properties should therefore, in principle, make SnO2:Pb a

more efficient n-type transparent material and an ideal candidate for use in TCO applications.

Additionally, as lowering of the conduction band minimum results in an increase in the

work function (provided the Fermi level remains near to the band edges), these results

demonstrate the possibility of a single generic system, in which the work function can be finely

tuned over a wide range, based only on single parameter. This poses significant advantages

for organic solar cells, which require efficient alignment between the work functions of the

cathode and hole injection layer in order to produce an Ohmic contact and maximise device

efficiency. As such, we stress the pressing need for experimental verification of these results.
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