This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Solution processable amorphous hafnium silicate dielectrics and its application for oxide thin film transistors

Y. N. Gao, Y. L. Xu, J. G. Lu, J. H. Zhang and X. F. Li*

Abstract: A novel solution-processed amorphous high-k dielectric for thin film transistors (TFTs) has been systematically studied with the objective of achieving high performance and reducing costs for the next generation displays. In this research, the amorphous hafnium silicon multiple oxide (HfSiOx) was fabricated by simple spin-coating method. Here, we have demonstrated that the incorporation of a silicon oxide has significant effects on the properties of HfOx. The HfSiOx dielectrics have no obvious crystallization peaks even the annealing temperature reach up to 800 °C while the HfOx films were crystallized at 400 °C. The HfSiOx films have an energy band gap of 6.05 eV, which was wider than HfOx films (5.69 eV), the breakdown voltage was increased from 2.4 MV/cm (HfOx) to 2.9 MV/cm (HfSiOx) and the leakage current was decreased from 4.4×10⁻⁷ A/cm² to 3.7×10⁻⁸ A/cm² at an electric field of 2 MV/cm. To achieve optimized device performance, the influence of annealing temperature on the characteristics (including the surface and interface, the chemical and structural evolution) of the solution processed HfSiOx dielectrics was emphasized in this research. To demonstrate the HfSiOx application on oxide TFTs, we fabricated HfInZnO (HfIZO) and ZnSnO (ZTO) TFTs with HfSiOx dielectrics, and both of them showed low off-state current indicating the HfSiOx is an attractive candidate used in TFTs. The ZTO TFTs with amorphous HfSiOx dielectrics were operated well under a gate voltage of 0.53 V, exhibiting a high saturation mobility of 153 cm²/V·s, a small subthreshold swing of 0.17 V/dec, a large on/off current ratio 3.4×10⁶, and a high k value of 22.6, which is 2.9 times larger than that of the HfOx. This result is superior to any reported results in the literature.

1. Introduction

Transparent amorphous semiconductors (AOS) thin film transistors (TFTs) have been extensively investigated for potential application in the large size active matrix flat panel display (AMFPD) owing to their excellent optical transparency, high carrier mobility and electrical stability 1-3. Along with the rapid development of the AMFPD technology, high resolution and low power consumption with low operating voltage is desirable for battery-powered and portable applications. To reduce the operation voltage of TFTs, one can either reduce the thickness of the gate dielectric layer or use the high dielectric constant (high-k) gate dielectric. However, the thickness reduction of the traditional dielectric layer (SiO₂ or SiNₓ) will inevitably result in the increase of gate leakage current due to direct tunneling. Hence, to solve this problem, high-k oxide materials such as HfO₂, ZrO₂, TiO₂ and Ta₂O₅ which can simultaneously enable low tunneling leakage current through the use of thicker films, as well as low-voltage operation have been studied.

However, most of high-k oxides have a tendency to crystallize at a relative low process temperature (400 °C) and produce grain boundaries 4-5. It would lead to electrical leakage current and increase the gate leakage current of TFTs which may lead to high off-state current, low on/off current ratios and increased power consumption. Moreover, the grain boundary of crystalline structure in the high-k dielectric would affect the film uniformity and induce variations in device to device performance. Also, the high-k dielectrics generally have a lower optical energy bandgap (Eg) and smaller band offsets relatively to the semiconductor than conventional SiO₂/SiNₓ, decreasing the device breakdown voltage. Eventually, all of these could result in an inferior dielectric reliability. Thus, it is necessary to exploit different amorphous high-k and high Eg dielectric oxides to meet the future demands of flat plate display industry.

To develop amorphous high-k dielectric, some research groups have investigated different multicomponent dielectrics based on a mixture of high-k dielectrics (ZrO₂, HfO₂, TiO₂) and different dopants, such as Al, La and Si, to increase the crystalline temperature. Among them, silicon oxide has a wide bandgap, small ion radius and high Si-O band energy. Consequently, the crystalline phase of hafnium silicate (HfSiOx) films was suppressed to 800 °C. Meanwhile, the energy bandgap of HfO₂ was enlarged and the breakdown voltage was increased owing to the silicon doping. As the previous reported, HfSiOx dielectrics have advantages such as high dielectric constant than SiO₂, a larger band gap than HfO₂ and much fewer and weaker traps than HfO₂ which would result in good thermal stability. Thus, it is believed to...
be a good dielectric candidate in direct contact with Si and can meet requirements for high resolution and low consumption AMFDP display technology. Simultaneously, few groups have demonstrated TFTs based on HfSiOx dielectrics. S. Lee et al. reported pentacene thin film transistors with hafnium silicate fabricated through atomic layer deposition and D. Cho et al. fabricated IZO-based TFTs with HfSiOx gate insulators deposited by co-sputtering.

However, to date, most of HfSiOx dielectrics were fabricated through expensive vacuum-based deposition process such as atomic layer deposition, sputtering and electron beam evaporation, which suffered from high manufacturing costs and limitation to large area deposition capabilities. To develop HfSiOx films in low cost, using simple methods such as dip coating, inkjet printing and spin coating was promising. Furthermore, current researches of HfSiOx materials were almost only focused on the films or powders properties such as surface and structure, crystallization behaviors, insulating properties and effects of Si concentration and studied in the range of high annealing temperature (> 600 °C) which are incompatible with transparent electronic technology based on glasses.

Hence, to further improve transparent TFTs devices performance, it is important to develop solution processable HfSiOx dielectrics and verify their characteristics at relative low annealing temperatures (< 600 °C). In this work, the effects of Si incorporation and annealing conditions on HfSiOx film properties were investigated systemically, including the thermal behavior of HfSiOx solutions, crystallization optical and insulating properties, chemical and structural evolution of HfSiOx films. Based on the investigation on HfSiOx dielectrics, the fabricated processes of solution processed HfInZnO (HIZO) thin film transistors were optimized and improved device performance were obtained. Simultaneously, considering that the earlier studies by Hoffman and co-workers demonstrated that the sputtered ZnSnO (ZTO) TFTs could achieve high mobility (~30 cm²/V-s) for the TFTs at the annealing temperatures ranged from 400 °C to 600 °C and most of the recent reports on solution processed ZTO TFTs were almost based on SiO₂ dielectrics, we also applied HfSiOx dielectrics on ZTO TFTs to verify the properties of HfSiOx dielectrics and further improved the TFTs performance.

2. Experimental

2.1 Precursor Solution Preparation.

The HfSiOx solution was prepared by dissolving hafnium dichloride oxide octa-hydrate (HfCl₂·8H₂O) and tetraethyl orthosilicate (Si(OC₂H₅)₄) into 2-methoxyethanol (2-MOE) successively. 2-MOE was commonly used as the solvent since it can act as a bridging ligand and thus stabilize intermediate high-molecular weight oligomers. The molar composition ratio of the HfSiOx precursor solution was Hf:Si = 2:1. The HfO₂ solution was prepared by dissolving HfCl₄·8H₂O into 2-MOE. We used hafnium chloride (HfCl₄), zinc acetate dihydrate (Zn(CH₃COO)₂·2H₂O) and indium nitrate hydrate (In(NO₃)₃·xH₂O) as the metal precursors of hafnium zinc and indium, respectively. The molar ratio of Hf:In:Zn = 0.2:3:2. For Zinc Tin oxides (ZTO) precursor solution, Zn(CH₃COO)₂·2H₂O and SnCl₂·2H₂O were dissolved into 2-MOE, and their molar ratio was Zn:Sn=7:3. The monoethanolamine (MEA) was added as a sol stabilizer after the precursors of HIZO and ZTO were mixed with 2-MOE. The concentration of all the above precursor solutions was 0.3 M and all the solutions were finally stirred for 24 hours at room temperature to form homogeneous colloids.

2.2 Film Preparation.

The HfSiOx solutions were filtered through a 0.22 µm polytetrafluoroethylene (PTFE) syringe filter and then spin-coated on Corning EXG glass substrates with the thickness of 0.7 mm and size of 200 mm × 200 mm or quartz substrate (for measuring Eg of films specifically) at 3000 rpm for 50s. The spin-coated HfSiOx films were prebaked at 120 °C for 15 min to remove the solvent and then annealed at 300 °C for 30 min in an ambient atmosphere. The spin-coating process was repeated four times to achieve the desired thickness which was about 105 nm after the annealing treatment at 500 °C. For HIZO or ZTO films, the corresponding precursor solutions were filtered through a 0.22 µm PTFE syringe filter firstly and then spin-coated on Corning EXG glasses in the rotating speed of 3000 rpm. However, the prebaking and annealing temperature for HIZO and ZTO films were 150 and 300 °C, respectively. The spin-coating process was repeated twice to achieve the desired thickness which was about 35 nm after the annealing treatment at 500 °C.

2.3 Device Fabrication.

To examine the electrical properties of HfSiOx dielectric, we fabricated metal-insulator-metal structures. First, the HfSiOx films were spin-coated on ITO substrates. Then, the HfSiOx films were annealed at different temperatures (300, 400 and 500 °C). Finally, circle aluminum electrodes (radius = 0.5 mm) were thermally evaporating via a shadow mask.

Thin film transistors were fabricated on the glass substrates. As shown in the inset of figure 6a, ITO was used as the gate electrodes. The HfSiOx solutions were spin-coated on the prepared substrates. And then ITO was deposited by sputtering and patterned as source and drain electrodes before spin-coated HIZO precursors on the fabricated substrates. However, for ZTO TFTs, ZTO films were deposited before the fabrication of source and drain electrodes (as shown in the inset of figure S7). All the patterns were fabricated through a lithographic process.

The width and length of the channel region of the fabricated HIZO/ZTO TFTs were 50 and 10 µm, respectively.

2.4 Film Characterization.

The thermal behavior of HfSiOx solutions monitored under nitrogen atmosphere using thermal gravimetric and differential scanning calorimetry (TG-DSC, SDT Q600) which was operated at temperatures ranging from room temperature to 800 °C with a scan rate of 10 °C/min. The surface topography and roughness of HfSiOx films were analyzed by atomic force
microscopy (AFM; Nanonavi SPA-400 SPM). The crystallization and structural information of HfSiOx films was obtained through grazing incidence x-ray diffraction (XRD, D/MAX-2550) with the glancing incident angle of 1°. The film thickness and refractive index were measured by spectroscopic ellipsometry. The chemical and structural properties of HfSiOx dielectrics were examined by X-ray photoelectron spectroscopy (XPS, Thermo ESCALAB 250). The carbon 1s peak at 284.6 eV was used as a reference for calibration in the XPS results. The capacitance-voltage (C-V) and capacitance-frequency (C-f) were measured by Wayne Kerr 6500B precision impedance analyzer. The dielectric leakage (I_G) and TFT electrical characteristics including transfer and output properties were performed by and Agilent 4155C semiconductor parameter analyzer.

3. Results and discussion

To examine the chemical reactions in the HfSiOx solution, TG-DSC analysis was performed under air atmosphere from room temperature to 800 °C. As shown in figure 1, an exothermic peak near ~70 °C was observed with a large weight loss below 90 °C. This was primarily caused by evaporation of the solvent and hydrolysis of HfSiOx solution. The other broad exothermic peak located at 200-400 °C was corresponding to the gradual condensation behavior, which form the metal-oxygen-metal (M-O-M) frame, decrease the impurities in the film and make dense films. After 395 °C, no significant weight loss was observed, indicating the HfSiOx oxidation behavior was almost completed. Meanwhile, no peaks indicating the crystallization of HfSiOx films were observed even the temperature was up to 800 °C. To confirm the crystallization performance and verify the effects of Si doping on HfSiOx films, we investigate the formation and crystallization of solution processed HfSiOx oxides using XRD detection at various annealing temperatures (300-900 °C).

Figure 2 showed the XRD patterns of HfSiOx films annealed at 800 °C and 900 °C. The XRD patterns of HfSiOx films annealed at 500 °C, HfSiOx films (0.79 and 0.82 nm). This fact was attributed to the combination of silicon oxide with HfO₂. The smoother surface of HfSiOx films would help to reduce the defect density and suppress the charge trapping in the interface between the channel and gate dielectric. The improved interface quality would suppress the leakage current induced by surface roughness and improve the electrical properties.

In order to confirm the optical bandgap difference between HfO₂ and HfSiOx films, UV-visible spectroscopy measurement was performed. The transmission spectra of the intrinsic HfO₂ and HfSiOx films deposited on quartz substrate were shown in figure 3. The thickness of HfO₂ films annealed at 500 °C was about 155 nm and the thickness for HfSiOx films as-coated and
annealed at 300, 400, 500 °C were about 333, 230, 200 and 187 nm, respectively. As the annealing temperature increased, the thickness of HfSiOx thin films decreased, which was due to the evaporation of solvent and the densification process of the thin films. The spectra clearly demonstrated high optical transmittance of films. The onset of the optical transitions of the HfO2 and HfSiOx films near the band edge are illustrated in the inset of figure 3. The optical bandgap (Eg) can be obtained by the absorption coefficient (α). α could be obtained by equation 1:

$$\alpha = \frac{1}{d} \ln\left(\frac{1}{T}\right)$$

where d and T represent the film thickness and transmittance, respectively. The optical bandgap can be expressed by the Tauc relation:

$$(\alpha h\nu)^2 = A(h\nu - Eg)$$

where h is Planck’s constant, and ν is the photon frequency, A is a constant, and Eg is the optical direct band gap. According the transmittance of films and equation 1 and 2, the optical bandgap can be extracted. The HfSiOx films had a wider bandgap of 6.05 eV while the bandgap of HfO2 was 5.69 eV. It indicated that the addition of Si increased the bandgap of dielectric layer. Thus, the bandgap offsets to the semiconductor was improved relatively which can increase the breakdown voltage and lower the leakage current.

The transmittance of HfSiOx films annealed at different temperatures was also shown in figure 3. Slight blue shifts in the transmittance of HfSiOx films annealed at 300 to 500 °C were observed. We can calculate the Eg from the equation 1 and 2 and the calculated Eg were listed in table 1. Obviously, the values of Eg were increased with annealing temperatures. At low annealing temperatures, the undecomposed residual solvent including the hydrogen groups and Cl ions or an imperfect M-O-M acting as scatter centers may result in the decrease of film transmittance.

To further verify the Si incorporation effects and the densification behavior of HfSiOx films, spectroscopic ellipsometry measurements were performed. The index of refraction (n) values were summarized in table 1.

For comparison, at 550 nm, the index of refraction (n) values of bulk SiO2 and HfO2 are 1.54 and 2.1, respectively. In this research, the “n” values we measured for HfO2 and HfSiOx films annealed at 500 °C were 1.748 and 1.872, respectively. According to the Lorentz-Lorenz relation, the refractive index can be related to the evolution of packing density and polarization. Since the Si-O bonds were less polar than the corresponding Hf-O bands, the addition of Si would lead to a decrease of the film polarization, and then lowering the refractive index of HfSiOx films. The “n” for HfO2 films were lower than that of bulk, crystalline HfO2 which may related with the less dense films solution processed. In addition, “n” values of HfSiOx films annealed at 300, 400 and 500 °C were 1.698, 1.743 and 1.748 respectively, which is comparable to vacuum-deposited counterparts. The refractive index was increased with the annealing temperature indicating the effect of temperature on enhancing the refractive index and representing a denser HfSiOx film as the annealing temperature increases. However, the increase was slightly when the annealing temperature increased from 400 °C to 500 °C, indicating that the oxidization behavior of HfSiOx films was almost complete. And further improvement or changes may be possible only if the film is fully crystallized or if a structural transformation occurs.

Table 1 Summary of the characteristics of HfSiOx and HfO2 dielectrics annealed at different temperatures.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Eg (eV)</th>
<th>n</th>
<th>e</th>
<th>Breakdown Voltage (MV/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 (HfSiOx)</td>
<td>5.93</td>
<td>1.698</td>
<td>10.1</td>
<td>-</td>
</tr>
<tr>
<td>400 (HfSiOx)</td>
<td>6.03</td>
<td>1.743</td>
<td>10.6</td>
<td>1.2</td>
</tr>
<tr>
<td>500 (HfSiOx)</td>
<td>6.05</td>
<td>1.748</td>
<td>10.8</td>
<td>2.9</td>
</tr>
<tr>
<td>500 (HfO2)</td>
<td>5.69</td>
<td>1.872</td>
<td>13.1</td>
<td>2.4</td>
</tr>
</tbody>
</table>

The chemical compositions of the HfSiOx dielectrics were characterized by XPS and the results were shown in figure 4. Figure 4a showed the Hf 4f XPS spectra of HfO2 and HfSiOx films annealed at 500 °C. The Hf 4f5/2 peak of HfO2 films was located at 18.43 eV with a fully oxidized state of Hf4+ and spin-orbit splitting of 1.6 eV from the Hf 4f7/2 component (figure 4a). The Hf 4f7/2 and Hf 4f5/2 peaks in Hf 4f XPS spectra of HfSiOx films were located at 17.29 and 18.69 eV respectively. The binding energy in Hf 4f XPS spectra shifted to higher values when Si was added into HfO2 oxides. Meanwhile, the O 1s XPS spectra for HfSiOx films also shifted to the higher binding compared with that for HfO2 films. These effects may be resulted from the difference in electronegativities of Hf and Si (1.9 and 1.3 eV, respectively).

As shown in figure 4c, when the annealing temperature increased, both Hf 4f7/2 and Hf 4f5/2 peaks shifted from 17.46 eV and 18.90 eV to 17.29 eV and 18.69 eV, respectively. These results may be related to the progressive oxidization to HfSiOx, which was also described in figure 1 (TGA).
a higher degree of forming Hf-Si bonds, and atoms had sufficient activation energy to reduce the Hf-O bond length. These increased Hf-Si bonds length caused the decrease in binding energy. Moreover, a new peak in the Hf 4f XPS spectra associated with the Hf-Si bonds located at 15.7 eV was observed for HfSiOx films annealed at 400 and 500 °C. As the temperature increased to 400 °C, a new peak occurred in the Si 2p XPS spectra. It located at 98.9 eV and may be related with Hf-Si bond 43. This result also confirmed the Hf-Si bond exists.

And the details of oxidation behavior for HfSiOx films annealed at different temperatures were confirmed by O 1s peaks. The O 1s peaks in the HfSiOx films can be deconvoluted into two peaks corresponding to the OH groups at 532.1 eV (Peak 1), and the fully oxidized state (Peak 2). The area ratio of the peaks was used to estimate the relative quantities of the oxygen lattice and hydroxyl groups. Obviously, the relative areas of the hydroxyl-group-related peak were reduced monotonically with increasing annealing temperature, as shown in Figure 4e and Figure S3. In contrast, the relative area of the oxygen lattice peak was increased with the increase of annealing temperature. Simultaneously, the peak 2 for oxygen lattice shifted from 531 eV to 530.5 eV. In general, these phenomena were attributed to dehydrogenation of HfSiOx films. However, in HfSiOx films research, it may also be related with the generation of HfHSi bonds, which would lead to a relative increase of the ratio of Hf-O/Si-O bonds. This was in accordance with the analysis of Si 2p and Hf 4f XPS spectra.

The reduction of concentration of Cl ions after annealing is also observed in the Cl 2p spectra. In figure 4f, only the 300 °C annealed HfSiOx films Cl 2p XPS spectra showed a broad peak located at 198.8 eV, indicating it contained the largest concentrations of chlorine and hydroxyl groups. The incomplete decomposition of organic ligands and metal salts due to low annealing temperature is believed to cause the excessive existence of Cl ions and hydroxyl groups (M–OH). As the annealing temperature was increased, such impurities were reduced substantially with the enhanced decomposition and evaporation. Meanwhile, the M–OH were converted to oxides. Thus, the HfSiOx films became denser and the insulation improved with increasing annealing temperature.

The insulating properties of HfSiOx dielectrics fabricated at different annealing temperatures were examined by fabricating metal-insulator-metal (MIM) structure. The HfSiOx dielectric films were deposited on the ITO/Glass substrate and a circular Al (radius = 0.5 mm) was thermal evaporated as the top electrodes. In the MIM structure, the thickness of HfO2 films annealed at 500 °C was about 100 nm. And the thickness of HfSiOx films annealed at 300, 400 and 500 °C were about 130, 110 and 105 nm respectively. The gate leakage current density (Jg) versus the applied electric field (E) of the HfSiOx dielectric was shown in figure 5a. In order to compare the Jg values of HfSiOx and HfO2 films with different annealing temperatures, they were plotted as a function of the thickness normalized electric field.

Figure 5a showed the Jg values for HfSiOx and HfO2 films, from which it can be seen that, both the HfO2 and HfSiOx films exhibited low leakage current density, however, the HfO2 films were broken down at an electric field of 2.4 MV/cm which was lower than that at which the HfSiOx films broken down (2.9 MV/cm). It was caused by the crystallization structure of HfO2 films annealed at 500 °C. Leakage current density of HfSiOx films was increased with decreasing annealing temperature, likely related to defects associated with incomplete condensation. Residual impurities such as Cl or C ions related organics and hydrogen groups provided the leakage current paths and resulted in the high leakage current densities.
of HfSiOx annealed at low temperature (above 10^5 A/cm2 at 1 MV/cm) 36. When annealing temperature increased to 500 °C, HfSiOx dielectric films showed a low leakage current density (about 10^7 at 1MV/cm) and high breakdown voltage (2.9 MV/cm). These results indicated that HfSiOx films annealed at 500 °C were suitable to be a dielectric in thin film transistors 46.

Capacitance-frequency (C-f) measurements were conducted on the same MIM structures employing the HfSiOx dielectric films annealed at different temperatures. As shown in figure S4, HfSiOx films annealed at 300 °C exhibited relatively unstable frequency-dependent characteristics, and their dielectric constants decrease obviously at high frequencies suggesting the poor insulating properties 47. It was contribute to the residual organics and incomplete oxide lattice formation which was in consistence with poor leakage current and the XPS results. The HfSiOx dielectrics annealed at 300, 400 and 500 °C had capacitances of 69, 85, 91 nF/cm2 at 100 kHz (as shown in figure 5b), corresponding to dielectric constants of 10.1, 10.6 and 10.8, respectively. The high value of capacitance of low temperature annealed HfSiOx films in the case of low frequency is attributed to the existence of hydroxyl groups. The dielectric constant of HfSiOx films annealed at 500 °C was about 10.8 which was in accordance with the previous reported HfSiOx films fabricated by ALD 17.

To verify the HfSiOx films annealed at 500 °C as a gate dielectric, HIZO TFTs with bottom-gate-bottom-contact
structures and HfSiOx dielectric were fabricated. For comparison, TFTs with 300 and 400 annealing temperatures are also shown in figure 6a. The performances of all devices were summarized in table 2. The threshold voltage (V_T) was defined as the gate voltage (V_{GS}) that induces a drain current of $L/W \times 10$ nA at $V_{DS} = 5$ V. The mobility was calculated through the equation as follows:

$$I_{ds} = \frac{W}{2L}(V_{GS} - V_T)^2$$

In this equation, the $W/L = 5$, and the capacitance was measured at 100 kHz which was shown in figure 5b. The saturation mobility (μ_{sat}) was calculated in the region of $V_{DS} > V_{GS} - V_T$.

TFTs annealed at 300 °C exhibited a saturation mobility of 0.78 cm2/V·s, a V_T of 2.28 V, a subthreshold swing (SS) of 0.97 V/dec, an on-off current ratio (I_{on}/I_{off}) of 5.13×10^5. The HfSiOx dielectric TFTs annealed at 500 °C showed a better performance for increased saturation mobility and lower subthreshold swing as shown in table 2. These temperature-dependence behaviors were related with the reduced impurities and hydrogen groups. As the annealing temperature increased, the hydroxyl groups were converted into oxide lattices. This fact has been confirmed by the results of XPS. Simultaneously, the hydroxyl groups were attributed to the amorphous phase of HfSiOx films, while the crystal phase was created by the high annealing temperature.

Figure 6 showed the transfer characteristics of ZTO TFTs annealed at 100 °C. The ZTO TFTs showed a low threshold voltage of -0.53 V, a high saturation mobility of 153 cm2/V·s, a subthreshold swing of 0.17 V/dec, an on-off current ratio of 3.40×10^5. The small S.S values indicated that the TFTs have an excellent interface between dielectrics and semiconductors.

Both the results of HIZO and ZTO TFTs prove that the solution processed HfSiOx dielectrics is an excellent dielectric candidate used in TFTs.

Conclusions

This research investigated the solution processed HfSiOx films and ZTO channel layers, the saturation mobility is still need to be improved. The earlier studies by demonstrated that the sputtered ZTO TFTs could achieve high mobility (~30 cm2/V·s) for the TFTs. Thus, to further improve the TFTs mobility and verify the application of HfSiOx solution processed dielectrics. TFTs with HfSiOx dielectrics and ZTO channel layers were fabricated. Figure S7 showed the transfer characteristics of ZTO TFTs annealed at 500 °C. The ZTO TFTs showed a low threshold voltage of -0.53 V, a high saturation mobility of 153 cm2/V·s, a subthreshold swing of 0.17 V/dec, an on-off current ratio of 3.40×10^5. The small S.S values indicated that the TFTs have an excellent interface between dielectrics and semiconductors.

Both the results of HIZO and ZTO TFTs prove that the solution processed HfSiOx dielectrics is an excellent dielectric candidate used in TFTs.

Acknowledgement

This work was supported by Shanghai science and technology commission under grant No13520500200 and 14XD1401800.

Notes and references
