This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Introduction

Materials with low dielectric constant (κ value) have recently attracted much attention as solutions to resistance-capacitance delays, signal crosstalk, and power consumption in integrated circuits (ICs).1-3 Traditional materials with low dielectric constant cannot meet the requirements of IC application, and although many alternatives have been explored, novel materials with low dielectric constant, low dielectric loss (low tan δ), and other excellent properties are difficult to identify for use in future devices. The surface hydrophobicity of films is a crucial factor in reducing the environmental sensitivity of materials, hydrophobic materials can maintain an insensitive dielectric constant in different environments.4 Hence, materials must be developed with low dielectric constant and hydrophobic surfaces.

Recent studies report two promising approaches for developing low-dielectric materials.5 A common approach involves the addition of least polarizable groups (e.g., C-H, C-Si, C-F) to polymer matrices to reduce material polarizability. Another approach involves introducing nanopores into films to increase pore density. With this increase, the polarizability and κ value of materials can decrease significantly. Fluoropolymers are potential candidates for IC application because they show lower κ values and excellent hydrophobic properties.6,7 However, it is limited to reduce the dielectric constant of the materials just by introducing lower molecular polarizability fluorine element. To fabricate hydrophobic materials with low κ dielectric constants, we utilized novel fluoro-polyhedral oligomeric silsesquioxanes (POSS) in the current study. This material has low polarizability and low levels of free energy. Moreover, it can generate nanopores in materials to prepare hydrophobic materials with low dielectric constant.

POSS is a family of nanometer-sized silicon-oxygen cage structures (Si8O12). Each apex (silicon atom) is connected to organic groups.8-10 The unique cage structure of POSS can construct nanopores in polymers. The reactive POSS molecules can be incorporated into polymers to form dendrized, grafted conjugated, or main chain-shaped hybrid polymers, depending on the number of POSS functional groups.11-15 Linear hybrid polymers with POSS in the main chain are advantageous in the following ways over grafted and cross-linked POSS-containing hybrid polymers: the flexible adjustability of the chemical structure, excellent solubility, and molecular chain regularity. Masa-aki Kakimoto et al.16 who summarize synthesis of low dielectric constant polyimides containing novel difunctional POSS in the main chain and polymers exhibited the lowest dielectric constant (2.43 at 1 MHz). Lee et al.17 reported the preparation of POSS-based hybrids with network structure, the lowest dielectric constant was 2.65. More recently, Hongyao Xu et al.18 reported the synthesis of hybrids with different architectures including dumbbell-type, bead-type, and cross-linked structure via the Heck reaction between octavinyl-polyhedral oligomeric silsesquioxane (OV-POSS) and different bromo-substituted aromatic amide monomers. The POSS-based hybrids exhibited good thermal stability and low dielectric constant properties. However, this work doesn’t focus on the low dielectric constant properties and hydrophobic surfaces. Therefore, it is of interest to synthesis linear hybrid polymers with POSS in the main chain with lower dielectric constant properties, especially there has been no previous reports for the synthesis of main chain POSS at high levels.

Unique “Cage-Cage” Shaped Hydrophobic Fluoropolymer Film Derived from Novel Double-Decker Structural POSS with Low Dielectric constant

Qiyang Jiang, Weihai Zhang, Jinn Meng Hao, Yanfeng Wei, Jianxin Mu*, Zhenhua Jiang

This work focuses on the design of unique “cage-cage” shaped low dielectric constant and hydrophobic materials with nano-sized pores and least polarizable groups existing. Therefore, a novel double-decker structural fluorinated POSS was first synthesized, which then reacted with diphenol POSS to produce the linear hybrid polymers. When the merits of fluoride and nanoporous structure are combined, the dielectric constant of the hybrid material decreases significantly (2.24 at 1 MHz) along with the low surface energy (contact angle of 107° in water) of the material, as well as good solubility and thermal properties.
The key to obtaining linear hybrid polymers with POSS at high levels is the synthesis of two functionalized, highly active POSS-containing monomers. In addition, to ensure that all the polymerization monomers containing POSS groups is another important issue to ensure the content of POSS in linear hybrid polymers. Double-decker-shaped silsesquioxane (DQS) possesses two reactive hydrosilane groups and is considered a promising monomer for synthesizing linear hybrid polymers containing POSS in the main chain. Thus, double-decker structural fluorinated POSS (10F-DQS) and diphenyl POSS (2OH-DQS) are synthesized in the current study to prepare linear “cage-cage” shaped hydrophobic hybrid polymers containing high level POSS nanoporous with low dielectric constant.

The “cage-cage” shaped polymer in this study is a new example to obtain the low dielectric constant materials by introducing large amount of nanopores POSS in the main chain of polymers. When the merits of fluoride and nanoporous structure are combined, the polarizability of the hybrid material decreases significantly along with the surface energy of the material. Furthermore, the synergistic effects of fluoride and POSS on the dielectric constant and on the hydrophobic properties of polymer are studied systematically.

Experimental Section

Materials

All chemicals and solvent are of reagent grade unless otherwise indicated. Triethylamine, 1-Methyl-2-pyrolidinone (Aladdin), N,N-dimethyl-acetamide (Aladdin), and toluene were distilled over CaH$_2$ (Aladdin), N,N-dimethylacetamide (Aladdin), and toluene (20 ml) were then added to the flask. The reaction was equipped with a magnetic stirrer, a nitrogen inlet, and an anhydrous calcium chloride drying tube. This flask was purged through vacuum distillation over CaH$_2$ prior to use. Phenyltrimethoxysilane (Energy-Chemical), potassium carbonate, allylpentafluorobenzene (Aldrich), and other solvents were used without further purification.

Instruments

1H and 13C NMR spectra were performed with a Bruker Advance 300 spectrometer (300 MHz) in CDCl$_3$. 19F NMR, and 29Si NMR measurements were conducted using a Bruker 510 NMR spectrometer (500 MHz) in CDCl$_3$. 29Si MAS NMR measurements were performed with a Bruker Avance NMR spectrometer (500 MHz) equipped with a 4-mm MAS probehead. Fourier transform infrared (FTIR) spectra were obtained using a Nicolet Impact 410 FTIR spectrophotometer. An experiment was conducted with matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF-MS) using a Shimadzu/AMIMA-CFR. Gel permeation chromatography (GPC) was performed using a Waters 410 instrument with dimethylformamide as an eluent and polystyrene as the standard. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were conducted using a PerkinElmer Pryis 1 TGA analyzer and a Mettler-Toledo Instrument DSC 821"-modulated thermal analyzer with a heating rate of 10 °C/min under air and nitrogen. Dielectric constants were measured by a Hewlett-Packard 4285A precision impedance analyzer at frequencies ranging from 10^3 Hz to 10^8 Hz. Contact angles were determined with a POWEREACH/JC2002C2 contact angle meter at room temperature. The crystallization behavior of the hybrid polymer and the control PAES were examined using a Rigaku D/max-2500 X-ray diffractometer with Cu Ka radiation (λ = 0.154 nm) as the X-ray source. Topographical and lateral atomic force microscopy (AFM) images were obtained using SPA300 Discoverer scanning probe microscope. The dispersion of POSS clusters in the polymer matrix was observed using FEI Nova NanoSEM 450 microscope. The Transmission electron microscopy (TEM) images were collected on a JEM-3010 transmission electron microscope (spherical aberration constant C$_2$=0.6mm) operated at 300 kV and were recorded by a bottom-mounted CCD camera (Gatan MultiScan Camera Model 794).

Synthesis of macromers

Compound 3,13-di(2-methoxy-4-propylphenol)octaphenyl DDSQ was synthesized by following a reported procedure. 23 3,13-di(1,2,3,4,5-pentfluoro-6-propylbenzene)octaphenyl DDSQ (10F-DDSQ) was synthesized by hydrosilylation reaction between 3,13-dihydrooctaphenylhexacyclodecasiloxane (dihydro-DDSQ) and allylpentafluorobenzene that was catalyzed by Karstedt’s catalyst, as shown in Scheme 1. As in a typical procedure, a 100-ml two-necked, round-bottomed flask was equipped with a magnetic stirrer, a nitrogen inlet, and an anhydrous calcium chloride drying tube. This flask was heated to 170 °C for 12 h at 105 °C with stirring to ensure that the hydrosilylation process was completed. The solvent and excess allylpentafluorobenzene were removed under reduced pressure to yield almost-colorless solids (2.85 g, yield: 91%). 1H-NMR (300 MHz, CDCl$_3$, δ): 7.1 to 7.4 (m, 40H), 2.61 (t, J = 7.2 Hz, 4H, SiCH$_2$CH$_2$-), 1.67 (t, J = 7.5 Hz, 4H, SiCH$_2$CH$_2$-), 0.75 (t, J = 8.1 Hz, 4H, SiCH$_3$), and 0.30 (s, 6H, Si-CH$_3$); 13C-NMR (300 MHz, CDCl$_3$, δ): 15.63, 22.13, 24.73, 112.32, 128.04, 129.94, 130.95, and 133.18; 29F-NMR (500 MHz, CDCl$_3$, δ): -144.17, -156.15 and -163.01; MALDI-TOF-MS m/z (%): 1571.70 (29) [M$^+$], 1593.87 (100) [M$^+$Na$^+$].

Synthesis of Polymer

As in a typical experiment (Scheme 1), 2OH-DDSQ (1.48 g, 1 mmol), K$_2$CO$_3$ (0.17 g, 1 mmol), NMP (9.2 ml), and toluene (4.6 ml) were added to a 25-ml three-necked flask equipped with a mechanical stirrer, a nitrogen inlet, and a Dean-Stark trap with a condenser. The reaction mixture was heated to 170 °C to 180 °C, and this temperature was maintained for 12 h to ensure complete dehydration. Then, the benzene was refluxed into the Dean-Stark trap. Upon removing the benzene, the reaction
The reason why the polymer exhibited excellent dielectric properties can be explained by the equations below. On the one hand, POSS contains a well-defined, nanoscale inorganic core that generates a large quantity of nanopores in materials (Fig. 3). The SEM of thin-film sections revealed a homogeneous distribution of POSS in the polymer, and depicted a continuous phase which incorporates these nanosized POSS at a molecular level. Porous films are usually regarded as hybrid materials that are composed of a solid phase and holes; this phase shares a dielectric constant \(\kappa \) with dense materials.

Moreover, the dielectric constant \(\kappa \) of porous films is determined on the basis of porosity. \(\kappa = 1 \) when the holes are filled with air, as calculated using Equation (2).

\[
\frac{\kappa - 1}{\kappa + 2} = 4 \pi \left(\alpha_e + \alpha_d + \frac{\mu^2}{3\kappa_f} \right)
\]

This equation indicates that the dielectric constant of polymer decreases as the porosity of films increases.

On the other hand, this finding can be explained by the Debye equation (Equation (3)), where \(\kappa \) is the dielectric constant, \(N \) is the number density of dipoles, \(\alpha_e \) is electric polarization, \(\alpha_d \) is distortion polarization, \(\mu \) is the orientation polarization related to the dipole moment, \(\kappa_f \) is the Boltzmann constant, and \(T \) is temperature. For polymer, the incorporation of C-F bonds made the molecule difficult to be polarized, resulting in the reduction of \(\alpha_e \). Moreover, the introduction of the bulky and vacant cage-like structure of the POSS macromers resulted in the polymer chains unable to undergo chain entanglements in the main chains of the copolymers, thereby diminishing \(N \). The \(\mu \) value of amorphous structure is generally small given the low anisotropy. Thus, the reduction of \(N, \mu \), and \(\alpha_e \) results in low dielectric constants for polymers.

\[
\frac{\kappa - 1}{\kappa + 2} = 4 \pi \left(\alpha_e + \alpha_d + \frac{\mu^2}{3\kappa_f} \right)
\]

Moreover, the interlayer distance of the polymers shown in Fig. 4 may be related to the X-ray diffraction (XRD) peak at \(2\theta = 7.3^\circ \) (\(d = 1.21 \text{ nm} \)), as shown in Fig. 5. A significant interlayer distance may lower polymer density. This decrease may contribute to a low dielectric constant.

In summary, the synergistic effect of POSS and fluorine may generate a low dielectric constant. The low dielectric property of polymer remains stable for over 14 days in a clean room under ambient conditions (23 \(^\circ\)C, humidity level of 50%), as illustrated in Fig. 6. The value of this property increases only slightly by 0.09 or 4%. The stable dielectric constant of the film can be attributed to the steady hydrophobic property.

Thermal Properties of polymer

Thermal properties are excellent because of the \(\text{Si}_{10}\text{O}_{14} \) cage structure. The thermal stability of the hybrid materials is evaluated through TGA. In fact, the TGA curve is exhibited in Fig. 7. The polymer lost 5% weight at 428 \(^\circ\)C. The polymer degradation process involves two steps: the first begins with the degradation of the active alkyl chain, and the second starts with the degradation of frameworks, such as aromatic rings and POSS cages. The hybrid material experienced high residual...
degradation at 42%. The degradation residue yields are ascribed to the silica formation from POSS moieties during thermal decomposition. DSC is conducted to measure the T_g value of the hybrid material. This value is 163 °C of the polymer and is affected by two opposite tendencies. The nanoreinforcement of POSS cages in the main chains significantly enhances the rigidity of the main chains, thereby restricting the motion of polymer chains. This restriction enhances T_g. On the contrary, the bulky, vacant, cage-like Si-O-Si structure of POSS macromers increases the free volume of the chains. As a result, the polymer chains cannot be packed densely in glassy state. As a consequence, the T_g of the polymer decreases. In the present case, the nanoreinforcement of DDSQ in the main chains dominates the effect on glass transition temperature.

The solubility of the hybrid polymer

The solubility of the polymer is investigated as well. The result shows that the polymer can be dissolved effectively in various common organic solvents, such as DMAc, chloroform, tetrahydrofuran, and 1-Methyl-2-pyrrolidinone (NMP) at room temperature.

Conclusions

In conclusion, to the best of our knowledge, unique “cage-cage” shaped hydrophobic fluoropolymer films with low dielectric constant derived from novel double-decker structural fluorinated POSS and diphenol POSS was prepared successfully via nucleophilic aromatic substitution. The novel double-decker structural POSS-containing monomers pave a promising method for synthesizing linear hybrid polymers with POSS in the main chain at high levels. The novel “cage-cage” shaped polymers can also facilitate the production of hydrophobic, high-performance materials with low dielectric constant. Such material has a low $κ$ value of 2.24 at 1 MHz and a high contact angle of 107° in water, as well as good solubility and excellent thermal properties. Given its unique structure, this type of polymer is a good candidate for polymeric material against advanced materials with low dielectric constant, highly-used temperature composites, or surface-modified supports.

Acknowledgements

The authors gratefully acknowledge the financial support from the International Science and Technology Cooperation program of China (2012DFR50300).

Notes and references

Scheme 1 Synthetic route to 10F-DDSQ and Polymer.

Fig. 1 AFM image of the film on glass.

Fig. 2 Frequency dependence of the dielectric constants of the synthesized polymer.

Fig. 3 SEM and TEM images of polymer.
Fig. 4 Postulated solid structure of the synthesized polymer. The average interlayer distance was 1.21 nm, as calculated from XRD data.

Fig. 5 XRD patterns of the synthesized polymer in powder.

Fig. 6 Dielectric constant of the film as a function of storage time in a clean room under ambient conditions.

Fig. 7. TGA curve of the synthesized polymer in air with a heating rate of 10 °C/min.
Novel double-decker structural fluorinated POSS and diphenol POSS were first synthesized for preparing a unique "cage-cage"-shaped hydrophobic fluoropolymer film with an ultra-low dielectric constant.