Journal of Materials Chemistry C

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

Self-assembly of tetra(aniline) nanowires in acidic aqueous media with ultrasonic irradiation

Wei Lyu^{a,b}, Jiangtao Feng^a, Wei Yan^{a,b}*, and Charl FJ Faul^c*

^aDepartment of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China

^bState Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi' an, 710049, P. R. China

^cSchool of Chemistry, University of Bristol, BS8 1TS, Bristol, UK.

*Corresponding Author. Tel. +86-029-82664731; Fax. +86-029-82664731; E-mail. yanwei@xjtu.edu.cn (W. Yan), charl.faul@bristol.ac.uk (Charl FJ Faul)

Abstract: An environmental-friendly method is developed to explore the self-assembly of Ph/NH₂-capped tetra(aniline), TANI, nanowires in acidic aqueous media with ultrasonic irradiation. Ultrasonic irradiation is demonstrated to be an effective way to reach self-assembled thermodynamic equilibrium for nanostructure formation in only 2 minutes. Further assembly, i.e., the formation of thicker TANI nanowires in acidic solution left undisturbed for 96 h without the addition of any organic solvent, is also investigated. The self-assembly behaviour of TANI is studied using FT-IR, Raman, UV-Vis spectra, thermogravimetric analysis, X-ray diffraction, and scanning electron microscopy. Investigations suggest that extra hydrogen bonding associated with the protonation, electrostatic interactions and π - π stacking interaction are important for the self-organization of TANI nanowires. Furthermore, the assembly behaviour of **TANI** nanowires is dependent on the properties of the dopant, including size and concentration, and reflected in the conductivity of the assembled structures. These results provide insight to understand and tune the self-assembly behaviour of nanostructured oligo(aniline)s in complex dopant-containing systems, and forms the basis for further detailed mechanistic studies.

Keywords: self-assembly; tetra(aniline); ultrasonic irradiation; nanowires

1. Introduction

Oligo(aniline)s, as a class of organic semiconductors, have attracted growing interests in recent years for their unique redox properties and relatively high conductivity,[1] good solubility and excellent processability,[2] and potential use in many applications.[3-10] Additionally, they possess well-defined chemical structures and offer opportunities for molecular engineering and designing of oligo(aniline)s-based organic (semi)conductors with defined architectures, functionalities and properties.[11-15] Among the oligo(aniline)s, phenyl/amine-capped tetra(aniline) (TANI), the shortest oligomer representing the emeraldine oxidation state, is an important model compound for poly(aniline) (PANI).[1]

Recently, a number of reports have indicated that oligo(aniline)s, as a class of π -conjugated molecules, can self-assemble into well-defined nano- and hierarchical microstructures by intermolecular interactions such as hydrogen bonds, π - π stacking, ionic interactions and hydrophobic interactions.[13, 14, 16-20] Controlled aggregation of oligo(aniline) molecules through π - π stacking interactions and hydrogen bonding in a mixture of ethanol and aqueous inorganic dopant acid led to the formation of diverse structures, including nanowires, nanoribbons, rectangular nanoplates and nanoflowers. [1, 14, 21] Short nanofibers were also obtained through π - π stacking interactions and hydrogen bonding by a similar method. [22] With the aim to uncover the self-assembly mechanism of nanostructured oligo(aniline)s in complex systems in a methodical fashion, it is necessary and desirable to carefully consider the self-assembly behaviour of oligo(aniline)s in solely inorganic acidic aqueous media (i.e., in the absence of any organic additives or solvents, and defined and described as "acidic media" in the rest of the manuscript). Once these mechanisms are clarified, the formation mechanism and geometry of more complex nanostructures, through the addition of organic solvents, can be addressed.[23, 24] Previous studies indicated that only poorly defined

structures were obtained in acidic media (formed at low concentration and left undisturbed for 4-5 days).[1] However, keeping other related studies in mind,[25] such systems with slow dynamics due to low solubility might not have reached their thermodynamic stable states and thus do not show optimized structures. We therefore decided to explore new routes to attempt to reach equilibrium within the constraints provided by acidic media.

It is well known that oscillatory pressure and intensities can be induced by the propagation of ultrasound in a liquid, resulting in the phenomenon of cavitation. During cavitation it is claimed that bubble collapse produces a temperature of roughly 5000°C, a pressure of about 1000 atm, and heating/cooling rates above 10¹⁰ K s⁻¹. It is expected that this environment could facilitate rapid and effective self-assembly of **TANI**.[26]

We therefore adopted sonication to investigate the self-assembly behaviour of **TANI** in acidic media. A possible self-assembly mechanism for **TANI** nanowires and the driving forces are postulated. The further assembly behaviour and the formation of thicker nanowires at different acid concentrations are also studied.

2 Experimental

2.1. Synthesis

N-phenyl-1, 4-phenylenediamine was purchased from Aldrich Chemical Co. Ltd. and other chemicals were from Tianli Chemical Reagent Co. Ltd. All chemicals were used as received. The synthesis of **TANI** was performed following published literature procedures.[18, 19] In a typical procedure, ferric chloride hexahydrate (2.70 g, 10.0 mmol) in HCl solution (10 ml, 0.1 M) was rapdily added to a solution of the hydrochloride salt of N-phenyl-1, 4-phenylenediamine (dianiline salt, 2.56 g, 10.0 mmol) suspended in HCl solution (50 ml, 0.1 M). After vigorous mechanical stirring for 2 h, the product was collected by centrifugation and washed repeatedly with 0.1 M HCl until the supernatant became clear. The precipitate was purified by Soxhlet extraction with acetone for 12 h to remove any residual dianiline salt. The resulting

precipitate, labelled as Ph/NH₂-capped tetra(aniline), **TANI**, in the emeraldine salt state (**TANI**-ES), was then treated with a mixture of ammonium hydroxide solution (2 M, 50 ml) and acetone (300 ml) for 30 min. The acetone was then removed under reduced pressure. The precipitate was collected by centrifugation and dried in a vacuum oven at 50°C for 48 h to yield **TANI** in the emeraldine base state, **TANI**-EB (Yield: 49.8%). MALDI-TOF-MS: m/z calculated for $C_{24}H_{20}N_4 = 366$. Found 366.14. FTIR (KBr, cm⁻¹): 3373 (s, v_{N-H}), 3023 (m, v_{C-H}), 1593 (s, v_{C-C} of quinone rings), 1502 (s, v_{C-C} of benzenoid rings), 1301 (s, v_{C-N}), 815 (m, δ_{C-H}), 746 (m, δ_{C-H}). EA Calcd for $C_{24}H_{20}N_4$: C 83.7, N 16.3. Found: C 84.9, N 15.1%.

2.2. Preparation of nanowires

In a typical procedure, **TANI-**EB powder (4 mg) was added to 20 ml HCl aqueous solution of different concentrations (0.1 mol L⁻¹, 1 mol L⁻¹, 5 mol L⁻¹ and 7 mol L⁻¹) under ultrasonic irradiation for 2 min with the ultrasonic power and frequency set at 200 W and 59 KHz. In this study, the doped **TANI** samples are labelled as US-0.1M, US-1M, US-5M and US-7M, respectively. The mixtures were then left undisturbed for 96 h and labelled as UE-0.1M, UE-1M, UE-5M and UE-7M, respectively. Table 1 displays the elemental analysis (C, N, Cl) of all samples and the molecular formula. Fully doped **TANI-**ES is expected to show a Cl/N ratio of 0.5. The corresponding EDS spectra are shown in ESI, Figure S1.

	-				
Samples	%C	%N	%Cl	Molecular formula	Cl/N
TANI-HCl (calc) ^a	80.0	13.3	6.70	$C_{24}H_{18}N_4{\cdot}2HCl$	0.5
TANI-ES	80.1	13.4	6.50	$C_{24}H_{18}N_4{\cdot}2HCl$	0.49
US-0.1M	79.9	13.3	6.80	$C_{24}H_{18}N_4{\cdot}2HCl$	0.51
US-1M	76.7	12.8	10.5	$C_{24}H_{18}N_4 \cdot 3.3HCl$	0.82
US-5M	77.0	12.8	10.2	$C_{24}H_{18}N_4 \cdot 3.3HC1$	0.8
US-7M	80.1	13.3	6.60	C ₂₄ H ₁₈ N ₄ ·2HCl	0.5

Table 1: Elemental analysis of HCl-doped TANI samples, their molecular formula and Cl/N ratio

2.3. Preparation of the US-5M and TANI-ES modified carbon paste electrode (CPE)

The modified CPE was prepared by thorough hand-mixing of high purity graphite powder (99.98%, Sinopharm Chemical reagent Co, Ltd.), silicone oil (Sinopharm Chemical reagent Co, Ltd.) and sample (US-5M or **TANI-ES**) powder in a ratio of 60:30:10 (w/w) in an agate mortar, using a pestle to obtain a homogeneous paste in 15 min. A portion of the homogeneous paste was packed into a glass tube with Φ = 5 × 1 mm with a copper wire as the electrical contact with the external circuit.

2.4. Characterization

Samples for SEM studies were prepared by depositing 1 to 2 drops of the dispersion onto a silicon substrate. SEM images were taken with a JEOL JSM-6700 Field Emission Scanning Electron Microscope. The elemental analysis was performed on a JEOL JSM-6460 Field Emission Scanning Electron Microscope equipped with an energy dispersive spectrometer (EDS). The average diameters of nanowires were measured by Image-Pro Plus 6.0 imaging software. FT-IR spectra of the dried samples were obtained on a

^a The values for tetra(aniline) are calculated values for HCl-doped **TANI**.

Bruker, TENSOR37 infrared spectrometer with KBr pellets. Raman spectra at 632.8 nm excitation radiation were acquired on a HORIBA JOBIN YVON HR 800 spectrometer. Cyclic voltammetry (CV) was investigated on a CHI 660D electrochemical work-station with a conventional three electrode cell, using Ag/AgCl (3 M KCl) as the reference electrode and Pt foil as the counter electrode. The working electrode was the modified CPE. CV investigations were carried out in 1.0 M sulfuric acid solution (degassed for 30 minutes with high purity N₂ before use) in the range from -0.2 to 1.0 V at a scan rate of 50 mV s⁻¹. UV-Vis spectra were recorded on an Agilent 8453 instrument. Samples were shaken very gently before the UV-Vis spetra were recorded. Thermogravimetric analysis (TG) measurements were performed on a Setaram Labsys Evo TG-DSCS-TYPE DSC sensor at a heating rate of 10°C min⁻¹ from room temperature to 800°C under steady nitrogen flow. Powder X-ray diffraction (XRD) patterns of the UE samples nanostructures were taken on an X' pert MPDPro (PANalytical Co.) diffractometer using Cu Kα radiation (40 kV, 40 mA) with a scan rate of 5 deg min⁻¹. Powder X-ray diffraction (XRD) patterns of the US samples nanostructures were taken on a Rigaku Dmax-RA with a scan rate of 4 deg min⁻¹. Electronic transport properties of pressed pellets from the obtained TANI nanowires were performed using a four-probe measurement (RTS-4 four probe meter) in order to determine the conductivities of these nanostructures.

3 Results and Discussion

TANI, synthesized according to previously reported methods, possessed a granular, agglomerated morphology (Figure 1a).[1, 18, 19] However, we found that nanostructures of **TANI** can be grown by adding this granular powder to a 5 M HCl aqueous solution followed by ultrasonic irradiation for just 2 min (Figure 1b). A SEM image of the resultant sample shows that long nanowires with high aspect ratios are created during this process (Figure 1c). The nanowires typically range in diameter from 30 to 60 nm and are up to hundreds

of micrometers long. If these nanowires are then left undisturbed for 96 h, thicker nanowires with an average diameter of 73 nm are obtained (Figure 1e). Moreover, there was no obvious change in the obtained **TANI** nanowires with varying ultrasonic irradiation time and power (Figure S2).

In order to confirm that sonication is an effective route to thermodynamically stable self-assembled **TANI** nanostructures, (here in 5 M HCl aqueous solution), a control experiment of the same system without ultrasonic irradiation was left undisturbed for 7 days, in an attempt to reach equilibrium. It can be seen from Figure 1b (middle vial) and Figure 1d, a small amount of nanowires with an average diameter of 50 nm, similar to those obtained with ultrasonic irradiation for 2 min (Figure 1c), was formed. Considering the short irradiation time, ultrasonic irradiation obviously accelerated the formation of nanowires and enabled the system to reach a thermodynamic stable state much more quickly when compared with the non-sonicated system.[27]

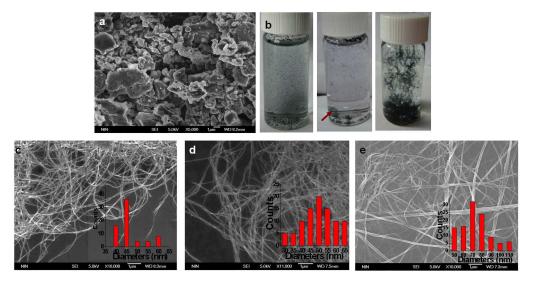
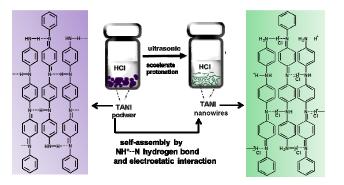
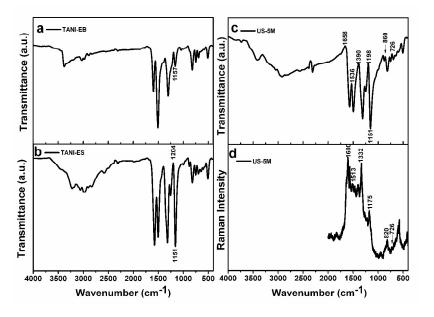



Figure 1. (a) A scanning electron microscope (SEM) image of the as-synthesized **TANI-**EB powder. (b) Micrographs show a mixture of **TANI-**EB and 5 M HCl at the beginning of the process (left vial), at the end of 7 days' standing without ultrasonic irradiation (middle vial), and the green **TANI** nanowire dispersion created under ultrasonic irradiation (right vial, US-5M). (c) A SEM image of a network of US-5M nanowires created with ultrasonic irradiation (d) A SEM image of the nanowires obtained at the end of 7 days' standing without ultrasonic irradiation. (e) A SEM image of thicker nanowires obtained 96 h after ultrasonic irradiation (UE-5M).

Figure 2. Schematic images showing potential hydrogen-bonding interactions in the formation of **TANI** nanowires.

As-synthesized **TANI-EB** (with an agglomerated morphology), undergoes a transformation into well-defined nanowires of the protonated emeraldine salt **TANI-ES** state. As neither **TANI-EB** nor **TANI-ES** is water soluble, we expect that a solid-solid phase transformation, aided by the ultrasonic irradiation, leads to the formation of the found morphologies. Reversible non-covalent interactions such as hydrogen bonding and π - π stacking have been proposed as the driving force to regulate supramolecular organization.[14, 16, 17] It was found that, when dialyzing the well-defined **TANI-ES** nanostructure with NH₃·H₂O, an agglomerated morphology is obtained again (See Figure S3). To the best of our knowledge, no work has been reported on the solid-solid phase transformations of **TANI** or poly(aniline). We are currently performing time-dependent electron microscopy studies in our laboratories to clarify the exact nature and details of this suspected "nucleation-and-growth" mechanism.

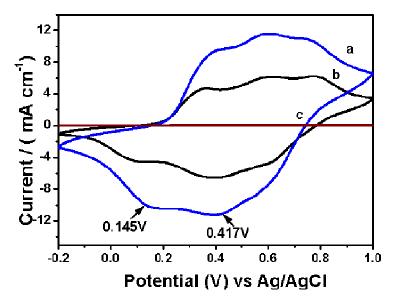

A control experiment, in which **TANI-EB** powder was added to deionized water with ultrasonic irradiation for 2 min, was also carried out; no well-defined nanostructures were obtained (Figure S4), leading us to conclude that, the self-assembly and formation of the TANI nanowires is highly dependent on the combination of the dopant acid and ultrasonic irradiation.

Colomban et al investigated the spectroscopy of the pronated forms of **PANI** and interpreted broad infrared absorption centered near 1100 cm⁻¹ and

cut by numerous negative bands (Evans holes) as NH stretching bands of a strong asymmetric interchain NH^{+...}N hydrogen bond.[28] They pointed out that the NH^{+...}N hydrogen bonds led to interchain conversions, which can generate charge carriers. In other words, NH^{+...}N hydrogen bonds associated with the protonation process, where the oxidation level is equal to 50%, always exists in the ES state. However, few reports have paid attention to such interactions.

Here, combined with the results of our control experiments, we propose that this extra hydrogen bonding associated with the protonation process is one of the important driving forces for the nanowires assembly.[1] We examined the spectroscopic data of **TANI-EB** and US-5M samples. As can be seen in Figure 3c, the broad absorption extending from 1800 to 400 cm⁻¹ in the infrared spectra of US-5M exhibits Evans holes. These narrow bands also appear at the same or very similar frequency in the Raman spectra (see Figure 3d and Table S1), indicating the existence of NH^{+...}N hydrogen bonds between molecular chains for this overdoped sample, as shown in Figure 2.

In terms of **TANI-**ES, some weak Evans holes could also be observed in the infrared spectra (Figure 3b) of this nominally fully doped sample. We note that a few short nanowires, which might be assembled by the same driving force as for US-5M, exist in the bulk of irregularly shaped **TANI-**ES structures, as seen in Figure S5. Similar to bulk conventional agglomerated **PANI**, which seems to have an intrinsically nanofibers morphology, the amorphous secondary growth that agglomerates onto the nanofibers leads to the irregularly shaped morphology.[29]


Figure 3. Pellet (KBr) FTIR spectra of (a) **TANI-**EB, (b) **TANI-**ES, (c) US-5M samples and (d) Raman spectra of US-5M.

Moreover, the electrostatic interactions introduced by the dopants can also serve as a further driving force for self-assembly.[2] In this system, it was found that the formation of nanostructures is related to the size of the dopant acid molecules (i.e. the counterion size): smaller dopants such as HNO₃ and HCl can promote the assembly and formation of nanowires, while larger dopant counterions such as SO₄²⁻, PO₄²⁻, camphorsulfonate (C₁₀H₁₅OSO₃⁻, from the commonly used **PANI** dopant camphorsulfonic acid) or 2-naphthalene sulfonate (C₁₀H₇SO₃⁻) may hinder the intermolecular stacking and thus obstruct the formation of the nanostructures (See Figure S6). These results are in agreement with the data obtained by Wang et al.[30]

3.1. Electrochemical properties of TANI nanowires

Figure 4 shows the cyclic voltammogram obtained using a US-5M-modified CPE electrode. There are two reduction peaks at 0.145 V and 0.417 V vs Ag/Ag⁺, corresponding to the transitions from the emeraldine to leucoemeraldine and pernigraniline to emeraldine states of **TANI**, respectively.[31, 32] The area under the CV curve of the US-5M-modified CPE

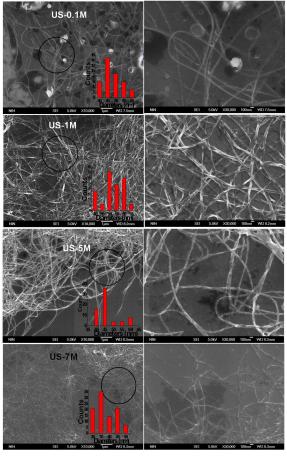

electrode is much larger than that of the as-synthesized **TANI-ES-modified** CPE electrode, which indicates that US-5M samples may have a higher supercapacitive performance than **TANI-ES.** Detailed analysis is currently being performed to clarify the exact origin of this increased capacitance.

Figure 4. Cycle voltammetry curves (scan rate: 50 mv s⁻¹) of as-synthesized **TANI**-ES-modified CPE (a), US-5M-modified CPE (b) and bare CPE electrodes (c) in 1 M H₂SO₄.

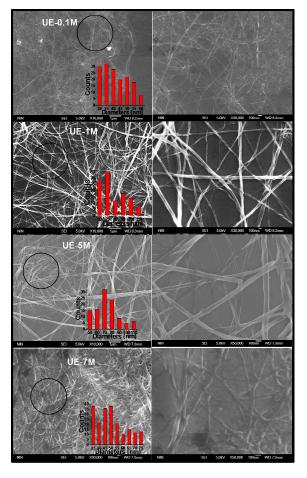
3.2. TANI nanowires assembled in different acid concentration

According to the results obtained by Wang *et al* in mixed solvent systems,[2] lower aqueous HCl concentrations (e.g. 0.1 M) lead to individual nanowires, while increasing the concentration of HCl to 1 M will result in the formation of bundles of nanowires. To compare our results and gain further understanding of our less complex system (in addition to the US-5M system discussed so far), we also studied the structure and morphology of nanowires doped with different concentrations of aqueous HCl under ultrasonic irradiation (US-0.1M, US-1M, and US-7M, with the US-5M data included for ease of direct comparison).

Figure 5. SEM images of US-0.1M, US-1M, US-5M, and US-7M samples. Histogram values were obtained from the indicated circular areas by measuring the nanowire diameters at higher magnification.

The presence of nanowires is clearly observed for all the samples (Figure 5). The images are presented in two magnifications (10000× and 30000×), where in the lower magnification it can be seen that the nanowire morphology is dominant. The average diameters of nanowires assembled from 0.1 M, 1 M, 5 M, and 7 M HCl in the higher magnification images are 49, 51, 47, and 39 nm, respectively. In particular, bundling and aggregation into thicker wires were observed for the US-1M and US-5M samples, with average bundle diameters of 130 nm and 120 nm, respectively.

The FT-IR spectra of US-0.1M, US-1M, US-5M, and US-7M samples show similar characteristics as already discussed for US-5M earlier, indicating


the existence of extra hydrogen bonding (NH^{+...}N) between neighbouring chains (Figure S7).[28] These hydrogen-bonding interactions, combined with the electrostatic interactions, might be the driving force for the self-assembly of the nanowires. As shown in the Table 1, the Cl/N ratio, which provides insight into the degree of doping, for US-1M and US-5M sample is higher than for the TANI-ES and US-0.1M samples, indicating optimal doping and thus also wire formation. Besides, with the increase in acid concentration, the excess protonic acid serves to screen charges and interactions,[33] and thus decreases the repulsive forces between molecules.[2] Therefore, for US-1M and US-5M samples, thicker nanowires were formed. When using a higher acid concentration (7 M HCl), the excess protonic acid leads to less effective protonation of the oligomer chains (as seen from the lowering of the Cl/N ratio). [34] In addition, TGA studies support the presented arguments, as US-1M and US-5M show increased stability and degradation temperatures over those with lower Cl/N ratios (Figure S8).

X-ray diffraction (XRD) patterns of US-0.1M, US-1M, US-5M and US-7M samples exhibit the expected and characteristic peaks, with the peak at ~20° 2θ ascribed to the periodicity parallel to the polymer chain and the peak at ~25 ° 2θ attributed to the periodicity perpendicular to the polymer chain (Figure S9).[35]

3.3. Further self-assembly of TANI nanowires under quiescent conditions in acidic aqueous media

After ultrasonic irradiation, the samples were left undisturbed for 96 h. During this time, the nanowires further assembled into thicker structures to yield samples UE-01, UE-1M, UE-5M and UE-7M.

The self-assembled structures doped with different acid concentrations obtained under different conditions were compared, with SEM images obtained under quiescent conditions shown in Figure 6. A general increase in the diameter is observed for the wires formed under quiescent conditions, as summarized in Table 2.

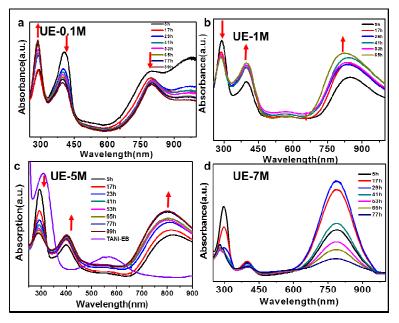
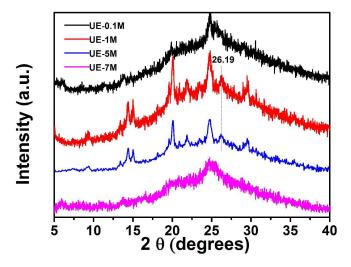

Figure 6. SEM images of UE-0.1M, UE-1M, UE-5M, and UE-7M samples. Histogram values were obtained from the indicated circular areas by measuring the nanowire diameters at higher magnification.

Table 2. The average diameters and conductivity values of different nanostructured **TANI**s doped with different HCl concentrations.

	HCl with different concentration										
samples	0.1 M		1 M		5 M		7M				
	US-0.1M	UE-0.1M	US-1M	UE-1M	US-5M	UE-5M	US-7M	UE-7M			
D(nm)	49	42	51	78	47	73	39	50			
$\sigma(\text{mS cm}^{-1})^a$	19.4	25	49.6	103	43.6	98.1	30.6	39.93			


^aMeasured in ambient air at 25°C. The conductivity value of **TANI-**ES is 20.15 mS cm⁻¹.

We used time-dependent UV-Vis spectroscopy to obtain further insight into this assembly process. UV-Vis spectra were collected 5 h into the process and then every 12 h until no further changes were detected in the relative peak ratios (Figure 7). Two main bands located at 317 nm and 591 nm in the UV-Vis spectra of as-synthesized TANI-EB (Figure 8c) are ascribed to π - π * transitions of the benzene ring and the benzenoid to quinoid $(\pi_B-\pi_O)$ excitonic transition. For the UE-5M nanowires, peaks at 290 nm, 420 nm and around 800 nm correspond to the typical π - π * transition, the polaron \to π * and π \to polaron band transitions, respectively,[1] indicating that the nanowires are in their doped and conductive emeraldine salt form. With the assembly process progressing, the ratio of the 420 nm peak to the 290 nm peak increases and the broad peak around 800 nm also increases in intensity compared to the peak at 290 nm. The changes in relative intensity of these peaks show that TANI molecules further assemble into the well-defined nanostructures through π - π stacking interactions.[1] The further assembly behaviour of TANI here in acidic media is similar to that observed in a binary solvent system in earlier published results.[1] The relative change of peaks located at 420 nm, 290 nm and the broad peak around 800 nm of the UE-1M sample is similar to that of the UE-5M sample. Moreover, the nanowires formed at high dopant concentration (7M) tend to aggregate, with some dissolution of wires also observed with the passage of time. These changes are reflected as the emergence of two different bands at 300 nm after 29 h in the UV-Vis spectra of UE-7M sample shown in Figure 7. It is noteworthy that the UV-Vis spectra of the doped low concentration sample, UE-0.1M, show additional absorbances beyond 1000 nm. With increasing dopant concentration, a clear progression can be seen up to the UE-7M sample, with no evidence of absorption at all in this higher wavelength region. This behaviour is similar to that observed by Kulszewicz-Bajer et al in their detailed studies of lower aniline oligomers. [36,

Figure 7. UV-Vis spectra obtained at the given time intervals during the course of assembly of UE-0.1M (a), UE-1M (b), UE-5M (c) and UE-7M (d) samples.

The X-ray data for the UE sample series showed that the peak at $2\theta \approx \text{ca}$. 10° is present for the UE-1M and UE-5M samples, indicating an increase of crystalline domain length (Figure 8).[38] Furthermore, peaks at $2\theta \approx 26^{\circ}$ for the different samples are attributed to classical π - π stacking between aromatic rings, and were observed in UE-1M and UE-5M samples (note that these reflections were absent or very ill-defined in the XRD data obtained after sonication). These data demonstrate that π - π stacking interaction contribute to the formation of well-defined nanostructures.[1] This stacking arrangement is also supported by the analysis of the UV-Vis spectra in Figure 7.

Figure 8. X-ray diffraction patterns of different UE-0.1M, UE-1M, UE-5M, and UE-7M samples. Peaks attributed to π -stacking are indicated by the dotted line.

3.4. Electronic transport properties of the obtained doped TANI nanowires

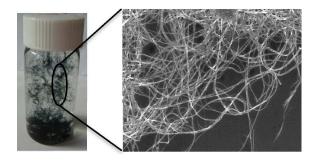
The conductivities of pressed pellets from the obtained **TANI** nanowires were determined by standard four-probe measurements. Previous studies on the conductivity of doped **TANI** measured on pressed pellets yielded conductivity values within the range of 10^{-5} to 10 mS cm⁻¹.[8, 12, 39] As shown in Table 2, as-synthesized **TANI**-ES has a conductivity of 20.15 mS cm⁻¹, while US-1M and US-5M nanowires have conductivities of 49.6 and 43.6 mS cm⁻¹, respectively. Moreover, the conductivities of UE-1M and UE-5M (i.e., samples with well-defined nanowires) were 103 and 98.1 mS cm⁻¹, respectively, which is approximately 5-fold higher than that of as-synthesized **TANI**-ES. These measurements of conductivity (and thus functionality) indicate the advantage of self-assembled nanowires with well-defined π -stacked nanostructures for potential application.

4. Conclusion

We have shown here that the assembly of oligo(aniline)s in acidic aqueous media under ultrasonic irradiation yields well-defined nanowires under a range of acid concentrations. We deduce that the extra hydrogen bonding and electrostatic interaction associated with the protonation process drive the self-assembly of the nanowires, which is further influenced by intermolecular stacking. Careful choice of favourable routes to reach thermodynamically stable systems, which include ultrasonic irradiation, assembly time and acid concentration (and thus degree of doping), are important factors for promoting and controlling the assembly behaviour of oligo(aniline)s in acidic media. Additional control over functionality was also demonstrated, as reflected by significant enhancements in conductivity. These insights provide design rules for the rapid formation of anisotropic structures based on functional moieties whilst yielding enhanced conductivity. Further work in our laboratories, in addition to mechanistic studies, focus on exploring anisotropic functionality of such assembled nanowire systems for applications in energy storage and sensing.

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (Grant No.21307098), the Fundamental Research Founds for the Central Universities of China, and China Postdoctoral Science Foundation (2013 M532053). CFJF acknowledges the University of Bristol for support.


References

- [1] Y. Wang, H.D. Tran, L. Liao, X. Duan and R.B. Kaner, J. Am. Chem. Soc., 132 2010, 132, 10365.
- [2] Y. Wang, J. Liu, H.D. Tran, M. Mecklenburg, X.N. Guan, A.Z. Stieg, B.C. Regan, D.C. Martin and R.B. Kaner, J. Am. Chem. Soc., 2012, 134, 9251.
- [3] J. Feng and A.G. MacDiarmid, Synth. Met., 1999, 102, 1304.
- [4] Y. Wang, H.D. Tran and R.B. Kaner, Macromol. Rapid. Commun., 2011, 32, 35.
- [5] Z. Shao, P. Rannou, S. Sadki, N. Fey, D.M. Lindsay and C. F. J. Faul, Chem. Eur.

- J., 2011, 17, 12512.
- [6] Z. Yang, X. Wang, Y. Yang, Y. Liao, Y. Wei and X. Xie, Langmuir, 2010, 26, 9386.
- [7] H. Kim, S.M. Jeong and J.W. Park, J. Am. Chem. Soc., 2011, 133, 5206.
- [8] S.P. Surwade, S.R. Agnihotra, V. Dua, N. Manohar, S. Jain, S. Ammu and S.K. Manohar, J. Am. Chem. Soc., 2009, 131, 12528.
- [9] H. Cui, Y. Liu, Y. Cheng, Z. Zhang, P. Zhang, X. Chen and Y. Wei, Biomacromolecules, 2014, 15, 1115.
- [10]H. Cui, J. Shao, Y. Wang, P. Zhang, X. Chen and Y. Wei, Biomacromolecules, 2013, 14, 1904.
- [11] C. U. Udeh, N. Fey and C. F. J. Faul, J. Mater. Chem., 2011, 21, 18137.
- [12] Z. We and C. F. J. Faul, Macromol. Rapid Commun., 2008, 29, 280.
- [13] Z. Shao, Z. Yu, J. Hu, S. Chandrasekaran, D.M. Lindsay, Z. Wei and C. F. J. Faul, J. Mater. Chem., 2012, 22, 16230.
- [14] Y. Zhao, E. Tomšík, J. Wang, Z. Morávková, A. Zhigunov, J. Stejskal, M. Trchová, Chem. Asian J., 8 (2013) 129-137.
- [15] J. O. Thomas, H. D. Andrade, B.M. Mills, N. A. Fox, H.J.K. Hoerber and C. F. J. Faul, Small, 2015, 11, 3430.
- [16] H. Huang, W. Li, H. Wang, X. Zeng, Q. Wang and Y. Yang, ACS Appl. Mater. Interfaces, 2014, 6, 1595.
- [17] Y. Zhao, J. Stejskal and J. Wang, Nanoscale, 2013, 5, 2620.
- [18] W. Lv, J. Feng, W. Yan and C. F. J. Faul, J. Mater. Chem. B, 2014, 2, 4720.
- [19] W. Lv, J. Feng and W. Yan, RSC. Adv., 2015, 5, 27862.
- [20] C. F. J. Faul, Acc. Chem. Res., 2014, 47, 3428.
- [21] O. A. Bell, J. S. Haataja, F. Broemmel, N. Fey, A. Seddon, R. R. Richardson, I.
- Ikkala, X. Zhang and C. F. J. Faul, J. Am. Chem. Soc., 2015, 137, accepted.
- [22] Y. Li, W. He, J. Feng and X. Jing, Colloid. Polym. Sci., 2012, 290, 817.
- [23] C. Park, H.J. Song and H.C. Choi, Chem. Commun., 2009, 4803.
- [24] M. Sathish, K. i. Miyazawa, J. P. Hill and K. Ariga, J. Am. Chem. Soc., 2009, 131, 6372.

- [25] Y. Tao, Y. Shen, L. Yang, B. Han, F. Huang, S. Li, Z. Chu and A. Xie, Nanoscale, 2012, 4, 3729.
- [26] K.S. Suslick, T. Hyeon and M. Fang, Chem. Mater., 1996, 8, 2172.
- [27] X. Lu, H. Mao, D. Chao, W. Zhang and Y. Wei, Macromol. Chem. Phys., 2006, 207, 2142.
- [28] P. Colomban, A. Gruger, A. Novak and A. Régis, J. Mol. Struct., 1994, 317, 261.
- [29] C. Laslau, Z. Zujovic and J. Travas-Sejdic, Prog. Polym. Sci., 2010, 35, 1403.
- [30] Y. Wang, H.D. Tran and R.B. Kaner, J. Phys. Chem. C., 2009, 113, 10346.
- [31] S. Wang, D. Chao, E.B. Berda, X. Jia, R. Yang, X. Wang, T. Jiang and C. Wang, RSC. Adv., 2013, 3, 4059.
- [32]D. Chao, S. Wang, R. Yang, E. Berda and C. Wang, Colloid. Polym. Sci., 201, 291, 2631.
- [33] A. G. MacDiarmid and A. J. Epstein, Synth. Met., 1994, 65, 103.
- [34] G. M. do Nascimento, P.Y.G. Kobata and M. L. A. Temperini, J. Phys. Chem. B, 2008, 112, 11551.
- [35] Q. Tang, J. Wu, X. Sun, Q. Li and J. Lin, Langmuir, 2009, 25, 5253.
- [36] I. Kulszewicz-Bajer, I. Rozalska and M. Kurylek, New. J. Chem., 2004, 28, 66.
- [37] I. Rozalska, P. Kulyk and I. Kulszewicz-Bajer, New. J. Chem., 2004, 28, 1235.
- [38] J. P. Pouget, M. E. Jozefowicz, A. J. Epstein, X. Tang and A. G. MacDiarmid, Macromolecules, 1991, 24, 779.
- [39] C. U. Udeh, P. Rannou, B. P. Brown, J. O. Thomas and C.F.J. Faul, J. Mater. Chem. C, 2013, 1, 6428.

TOC

An environmental-friendly method is developed to explore the self-assembly of Ph/NH_2 -capped tetra(aniline) nanowires in acidic aqueous medium with ultrasonic irradiation.