This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
(3Z,3′Z)-3,3′-(Hydrazine-1,2-diylidene)bis(indolin-2-one) as a new electron-acceptor building block for donor-acceptor π-conjugated polymers for organic thin film transistors

Wei Hong, Chang Guo, Bin Sun, and Yuning Li

(3Z,3′Z)-3,3′-(Hydrazine-1,2-diylidene)bis(indolin-2-one) (HBI) containing an azine linkage is used as a novel amide-based π-conjugated electron-accepting building block for constructing donor-acceptor (D-A) π-polymer semiconductors. Copolymers of HBI and bithiophene are synthesized, which show small optical band gaps (~1.6 eV) and quite low-lying highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels (E_HOMO = -5.6 eV; E_LUMO = -4.0 eV). The spin-coated polymer thin film are highly crystalline with favoured edge-on lamellar chain packing motif, which exhibit high ambipolar charge transport performance with hole and electron mobilities up to 0.11 and 0.035 cm^2 V^{-1} s^{-1}, respectively.

Introduction

Polymer semiconductors are very promising materials to enable printed electronics that can be manufactured at low cost and used for a wide range of applications such as radio frequency identification (RFID) tags, flexible displays, solar cells, memory devices, and sensors. Among them, an emerging class of polymer semiconductors based on the combination of electron donor (D) and acceptor (A) units have demonstrated superior performances in organic photovoltaic (OPV) and organic thin film transistor (OTFT) devices. The favourable strong interchain interaction enabled by the static attraction of D and A units in these D-A polymers could shorten the π-π-stacking distance to reduce the energy barrier for charge hopping. High hole mobilities exceeding 10 cm^2 V^{-1} s^{-1} and electron mobilities over 6 cm^2 V^{-1} s^{-1} have been recently achieved by D-A type conjugated polymers. New building blocks, especially electron acceptors, have contributed greatly to the achievement of high charge carrier mobility and have been continuously explored to further boost the OTFT performance.

One particular type of electron acceptors, amide/imide structures such as naphthalene-bis(dicarboximide) (NDI), diketopyrrolopyrrole (DPP), and isoindigo (IID), have shown remarkable charge transport performance. Recently we reported a new amide-based conjugated structure, 3,3′-(ethane-1,2-diylidene)bis(indolin-2-one) (EBI, Scheme 1), which was used as an electron acceptor to form D-A polymers. The EBI-based polymers such as PEBIBT-24 (Scheme 1) were found to have short π-π stacking distances (~3.5 nm) and showed promising p-channel OTFT performance with hole mobility as high as 0.044 cm^2 V^{-1} s^{-1}.

In this study we replaced the ethane-1,2-diylidene linkage in EBI with hydrazine-1,2-diylidene through a simple chemistry to result in a new building block, (3Z,3′Z)-3,3′-(hydrazine-1,2-diylidene)bis(indolin-2-one) (HBI, Scheme 1). The azine linkage (C=N–N=C) comprising hydrazine-1,2-diylidene moiety has been used for π-conjugated polymer. However few azine-based polymers have been investigated as semiconductors. Therefore a study on the azine-containing HBI compounds may not only provide a novel building block for conjugated polymers, but also give a better understanding of...
the semiconducting properties of the azine-containing polymers. Previously, a DPP-azine polymer was found to be a high performance ambipolar semiconductor showing balanced hole and electron mobilities of ~0.4 cm²V⁻¹s⁻¹, indicating that azine is a strong electron-withdrawing moiety. It is thus expected that the HBI block would be a stronger electron acceptor than EBI. We found that polymers based on this new building block indeed possess lower energy levels and exhibited pronounced electron transport characteristics. Ambipolar charge transport with high charge carrier mobilities were observed for the OTFT devices using these new HBI-based polymers.

Results and discussion

The dibrominated HBI compound 3 without N-substitution was conveniently prepared by reacting 6-bromoisatin with (Z)-6-bromo-3-hydrazoneindolin-2-one (Scheme 1) using a modified procedure for the synthesis of other HBI derivatives. Alkylation of 3 with 2-octyldecyl iodide and 2-decyltetradecyl iodide afforded the HBI monomers 4a and 4b. Stille coupling polymerization of 4a and 4b with 5,5′-bis(trimethylstannyl)bithiophene using Pd(dba)₃/P(ortho-tolyl)₃ as a catalyst produced the target polymers P1 and P2, respectively. The polymers were purified with Soxhlet extraction with acetone and hexane to remove oligomers and catalyst residues, finally dissolved with chloroform. Yields of 97 and 45% were observed for the OTFT devices using these new HBI-based polymers. Similar phenomenon was observed for other polymers.

P1 and P2 in chloroform showed the wavelength of maximum absorbance (λ_{max}) of 707 and 705 nm, respectively (Fig. 1). The slightly lower λ_{max} of P2 might be caused by stronger interaction of its larger C24 side chains with the solvent molecules to make the backbone slightly more twisted than P1 bearing C20 side chains. Similar phenomenon was observed for other polymers. As-coated P1 and P2 films exhibited slightly blue shift λ_{max} at 702 and 701 nm, respectively. All polymer films annealed at 100, 150, and 200 °C retained almost the same λ_{max} at 701 nm (ESI†) despite of their improved chain ordering (see the XRD discussion later). The blue shift in λ_{max} from solution to the solid state observed for these two polymers is probably due to the formation of H-aggregates, where the same type of chromophores are aligned in a side-by-side manner resulting in a larger band gap to outweigh the band gap narrowing effect caused by the backbone planarization. This indicates that the polymer chains may be prone to packing in the D···D / A···A fashion rather than the D···A fashion, resulting in a weaker interchain interaction than in the J-aggregates. This might explain the much improved solubility of P2 compared with its exact EBI analogue, PEBIBT-24. The optical band gaps of P1 and P2 were estimated from their onset absorption wavelengths to be E_{g}^{opt} = ~1.6 eV, which are similar to that of PEBIBT-24.

The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of P1 and P2 were determined by cyclic voltammetry (CV) using ferrocene as a standard (ESI†). Both polymers showed reversible oxidation and reduction peaks, but the oxidation peaks are much stronger, suggesting that these two polymers may favour hole transport over electron transport. In comparison, PEBIBT-24 exhibited no reduction peak, indicating that the electron withdrawing effect of the azine unit in HBI is responsible for the stable reduction peaks.

![Normalized UV-Vis absorption spectra of P1 and P2 solutions in chloroform and thin films spin-coated on glass substrates (non-annealed).](image1)

![Reflection XRD diagrams of P1 and P2 thin films (~35 nm) spin-coated on dodecyltrichlorosilane-modified SiO₂/Si substrates and annealed at different temperatures with Cu Kα radiation (λ = 1.5406 Å). Inserts are the transmission XRD diagrams of polymer flakes (non-annealed) sandwiched between two Mylar substrates.](image2)
polymers that are essentially amorphous. Their oxidative and reductive onset potentials. LUMO levels of v5.6 eV and v3.7 eV, respectively calculated from 100 °C showed a primary (001) diffraction peak at 2θ corresponding to a d-spacing distance of 1.94 nm. When the annealing temperature was increased to 150 °C, a much stronger primary peak along with a secondary diffraction peak was observed. Further increasing the annealing temperature to 200 °C caused a slight decrease in the intensity of the diffraction peaks. The 100 °C- annealed P2 film showed the primary diffraction peak at 20 = 3.88°, representing a d-spacing of 2.28 nm. The larger interlayer distance is due to the longer side chain of P2 films. P2 with C24 side chains seems less crystalline than P1 that has a shorter C20 side chain. Since no peak representing the π-π distance (20 = 20-25°) was observed, two polymers likely adopted a lamellar packing motif with an edge-on orientation, which is favoured for charge transport in OTFTs. To reveal the π-π stacking distance, transmission XRD measurement was conducted on polymer flakes. As shown in the inserts of Fig. 2, (010) peaks at 20 = 23.71° and 23.72° for P1 and P2, respectively, are observed, which correspond to a π-π stacking distance of ~0.375 nm. This π-π distance is similar to many other π-conjugated polymers, but larger observed for P1 and P2. P1 and P2 have the same HOMO and LUMO levels of -5.6 eV and -3.7 eV, respectively, calculated from their oxidative and reductive onset potentials. Their HOMO levels are lower than those of their EBI analogues (-5.4 eV) indicating the stronger electron withdrawing ability of HBI than that of EBI. The LUMO levels of P1 and P2 calculated by using the optical band gaps (Eg, opt = ~1.6 eV) and the HOMO levels are about -4.0 eV, which are also lower than that of PEBIT-B24 (~3.8 eV). The discrepancy of the LUMO levels determined by the CV and the optical band gap is probably due to the exciton binding energy of P1 and P2.

Polymer thin films spin coated on SiO2/Si wafer and annealed at 100, 150, and 200 °C were characterized using X-ray diffractometry (XRD, Fig. 2). Both P1 and P2 showed distinct diffraction peaks, indicating their better crystallinity than that of the EBI-based polymers that are essentially amorphous. The P1 film annealed at 100 °C showed a primary (001) diffraction peak at 20 = 4.55°, which corresponds to a d-spacing of 1.94 nm. When the annealing temperature was increased to 150 °C, a much stronger primary peak along with a secondary diffraction peak was observed. Further increasing the annealing temperature to 200 °C caused a slight decrease in the intensity of the diffraction peaks. The 100 °C-annealed P2 film showed the primary diffraction peak at 20 = 3.88°, representing a d-spacing of 2.28 nm. The larger interlayer distance is due to the longer side chain of P2. Increasing the annealing temperature to 150 °C and then 200 °C improved the crystallinity of P2 films. P2 with C24 side chains seems less crystalline than P1 that has a shorter C20 side chain. Since no peak representing the π-π distance (20 = 20-25°) was observed, two polymers likely adopted a lamellar packing motif with an edge-on orientation, which is favoured for charge transport in OTFTs. To reveal the π-π stacking distance, transmission XRD measurement was conducted on polymer flakes. As shown in the inserts of Fig. 2, (010) peaks at 20 = 23.71° and 23.72° for P1 and P2, respectively, are observed, which correspond to a π-π stacking distance of ~0.375 nm. This π-π distance is similar to many other π-conjugated polymers, but larger.

Table 1. Summary of performance of OTFT devices using P1 and P2 as channel semiconductors.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Anneal. Temp. (°C)</th>
<th>n-type</th>
<th>p-type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg. Mobilityb (cm²V⁻¹s⁻¹)</td>
<td>Deviation</td>
<td>Mobilityb (cm²V⁻¹s⁻¹)</td>
</tr>
<tr>
<td>P1</td>
<td>100</td>
<td>6.3×10⁻⁴</td>
<td>1.7×10⁻³</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>9.0×10⁻⁴</td>
<td>1.7×10⁻³</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>6.6×10⁻⁴</td>
<td>1.9×10⁻³</td>
</tr>
<tr>
<td>P2</td>
<td>100</td>
<td>1.1×10⁻⁴</td>
<td>2.6×10⁻³</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>1.2×10⁻⁴</td>
<td>2.8×10⁻³</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>1.6×10⁻⁴</td>
<td>4.4×10⁻³</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>2.7×10⁻⁴</td>
<td>5.4×10⁻³</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>2.6×10⁻⁴</td>
<td>3.5×10⁻³</td>
</tr>
</tbody>
</table>

a) Annealing temperature. b) VDS = 100 V. c) Threshold voltage. d) VDS = -100 V.
than that of their EBI analogous PEBIBT-24 (0.353 nm). The large π-π distance observed for P1 and P2 might be due to the weaker intermolecular interaction of the H-aggregated polymer chains discussed previously.

The thin film morphology is known to influence the charge transport performance greatly. It has been found that a morphology containing well interconnected grains with small grain boundaries is desirable for efficient charge carrier hopping between grains. The 100 °C-annealed P1 film showed well connected grains of ~100-200 nm in its atomic force microscopic (AFM) image, where each grain consists of smaller oval-shaped sub-grains (Fig. 3). Upon increasing the annealing temperature to 150 °C and 200 °C, the sub-grains have become more clearly defined, but the film morphology maintained similar. P2 films showed similar morphologies to those of P1 films, but the grains and sub-grains are much larger than those of P1. Since the XRD results showed that P2 films are less crystalline than P1, the sizes of the grains and sub-grains seem not correlated to the crystallinity of the thin films.

P1 and P2 showed a 5 % weight loss temperature (T$_{5\%}$) at ~380 °C under nitrogen as determined by thermal gravimetric analysis (TGA) (ESI†), which is much higher than that of their EBI counterpart PEBIBT-24 (T$_{5\%}$ = ~287 °C). Therefore it appears that the azine (C=Н−N=C) linkage in HBI is much more thermally stable than the 1,4-butadiene linkage (C=CH−CH=C) linkage in EBI. No obvious thermal transitions were detected by differential scanning calorimetry (DSC) in the range from -20 °C to 325 °C, indicating the high melting points of these two HBI polymers (ESI).

P1 and P2 were tested as channel semiconductors in bottom-gate bottom contact OTFT devices using conductive n$^+$-doped silicon wafer with a 300 nm thermally grown SiO$_2$ layer as a substrate and gold source and drain contacts. The surface of the SiO$_2$ dielectric layer was treated with dodecyltrichlorosilane before the polymer semiconductor was deposited by spin-coating a polymer solution (5 mg mL$^{-1}$ in CHCl$_3$) in a glove box filled with nitrogen. The devices were annealed at different temperatures and measured in the same glove box. Both polymers showed ambipolar charge transport characteristics (Table 1 and Fig. 4). The best hole/electron mobilities for P1 are 0.10/0.011 cm2V$^{-1}$s$^{-1}$, respectively, which were achieved for a 150 °C-annealed film. For P2, the best hole mobility of 0.11 cm2V$^{-1}$s$^{-1}$ was obtained for a polymer film annealed at 200 °C, while the highest electron mobility of 0.035 cm2V$^{-1}$s$^{-1}$ was achieved for a film annealed at 250 °C. The hole mobilities of P1 and P2 are 2-3 times of those of their EBI-based analogous polymers (0.028-0.044 cm2V$^{-1}$s$^{-1}$). The improvement in mobility observed for P1 and P2 with respect to their EBI analogues is considered to be primarily due to their improved crystallinity, although their π-π distance is larger than the latter. The appearance of electron transport performance of these polymers is most likely originated from the strong electron-accepting capability of the HBI building block that results in lowering LUMO levels (~−4 eV).

Experimental

Materials and Instrumentation

![Image](https://example.com/image.png)
Reagents and solvents were purchased from commercial sources and used as received without further purification. NMR data were recorded on a Bruker DPX 300 MHz spectrometer and referenced to tetramethylsilane (TMS, 0 ppm). UV-Vis spectra were recorded using a Thermo Scientific Genesys 10 UV instrument. A Digi-Ivy DY2111 potentiostat was used to measure cyclic voltammetry (CV) in 0.1 M tetrabutylammonium hexafluorophosphate in anhydrous acetonitrile at a scan rate of 50 mV s⁻¹ under nitrogen protection. An Ag/AgCl reference electrode, a Pt wire counter electrode, and a Pt disk working electrode were used. Ferrocene (Fc) (with a HOMO energy level of ~4.8 eV) 36, 37 was used as a reference. Differential scanning calorimetry (DSC) measurements were conducted on a TA Instruments DSC Q2000 at a scan rate of 10 °C min⁻¹ under nitrogen protection. Thermal gravimetric analysis (TGA) was conducted on a TA Instruments TGA Q500 at a heating rate of 10 °C min⁻¹ under nitrogen protection. An Agilent 1200 series GPC (gel-permeation chromatography) system was used to determine the molecular weight of the polymers using chlorobenzene as an eluent with poly styrene as standards at a column temperature of 50 °C. Reflection X-ray diffraction (XRD) diagrams of polymer thin films spin-coated on dodecyltrichlorosilane-modified SiOₓ/Si substrates and annealed at 100, 150, or 200 °C for 15 min in nitrogen were obtained with a Bruker D8 Advance powder diffractometer with Cu Kα radiation (λ = 1.5406 Å). Transmission XRD diagrams of polymer flake samples were performed on a Bruker Smart 600 0 CCD 3-circle D8 diffractometer with a Cu RA (Rigaku) X-ray source (λ = 0.15406 nm). Atomic force microscopy (AFM) images of polymer thin films spin-coated on dodecyltrichlorosilane-modified SiOₓ/Si substrates and annealed at 100, 150, or 200 °C for 15 min in nitrogen were obtained using a Dimension 3000 Scanning Probe Microscope.

(3Z,3’Z)-3,3’-(Hydrazine-1,2-diylidene)bis(6-bromoindolin-2-one) (3)

The synthetic scheme for compound 3 is shown in Scheme 1. The procedure is similar to the ones described for the synthesis of other HBI compounds in the references, 29, 30 but with some modifications.

Under argon protection, hydrazine hydrate (98%, 2 mL) was added to a solution of 6-bromoisatin (1) (4.265 g, 18.87 mmol) in ethanol (100 mL), a yellow precipitate was formed quickly. The mixture was stirred at 50 °C for 16 h. The precipitate was filtered, washed with ethanol and dried to give (Z)-6-bromo-3-hydrazonordinolin-2-one (2) as yellow powder (3.10 g, 68.4%), which is used in the next step without further purification. A mixture of (Z)-6-bromo-3-hydrazonordinolin-2-one (2) (3.001 g, 12.5 mmol) and 6-bromoisatin (1) (2.825 g, 12.5 mmol) was refluxed in ethanol (150 mL) in the presence of a few drops of acetic acid. After refluxing for 4 h, the reaction mixture was cooled, and filtered. The solid was washed with ethanol, dried to give the reddish brown compound 3 (5.3 g, 94.6%), which was used in the next step without further purification. 1H-NMR (DMSO-d₆, 300 MHz, ppm): δ 11.11 (s, 2H, NH), 7.43 (d, 2H, aromatic), 7.25 (d, 2H, aromatic), 7.09 (s, 2H, aromatic).

(3Z,3’Z)-3,3’-(Hydrazine-1,2-diylidene)bis(6-bromo-1-(2-octylidodecyl)indolin-2-one) (4a)

To a mixture of compound 3 (0.896 g, 2 mmol, 1 equiv.), K₂CO₃ (1.106 g, 8 mmol, 4 equiv.) and anhydrous N,N-dimethylformamide (DMF) (20 mL) in a 50 mL two-necked round bottom flask, 2-octylidodecyl iodide (3.267 g, 8 mmol, 4 equiv.) was added at room temperature. The reaction mixture was heated with stirring at 50 °C under argon. After 60 h, DMF was evaporated under reduced pressure, and the residue was washed with water, extracted with dichloromethane (DCM), dried over Na₂SO₄, and filtered. The solvent in the filtrate was evaporated under vacuum to give a brown crude product, which was further purified through column chromatography (silica gel, dichloromethane:hexane:3:1) to give the compound 4a as a brown solid (0.846 g, 41.9%). 1H-NMR (CDCl₃, 300 MHz, ppm): δ 9.08 (d, 2H, aromatic, J = 8.7 Hz), 7.16 (dd, 2H, aromatic, J₁ = 8.7 Hz, J₂ = 1.8 Hz), 6.90 (d, 2H, aromatic, J = 1.8 Hz), 3.63 (s, 2H, N-CH₂, J = 7.5 Hz), 1.97-1.80 (m, 2H, CH), 1.50-1.10 (m, 6H, CH₂), 0.95-0.75 (m, 12H, CH₃). 13C-NMR (CDCl₃, 75 MHz, ppm): 168.19, 146.30, 132.65, 131.16, 126.79, 125.21, 120.49, 111.64, 44.81, 36.21, 32.07, 32.02, 31.62, 30.13, 29.79, 29.77, 29.75, 29.69, 29.50, 29.44, 26.50, 22.85, 22.82, 14.28, 14.27. HRMS (ESI, M + H⁺): Found: 979.5326, Calcd.: 979.5291.

(3Z,3’Z)-3,3’-(Hydrazine-1,2-diylidene)bis(6-bromo-1-(2-decyldodecyl)indolin-2-one) (4b)

4b was synthesized and purified similarly using the procedure described for 4a from compound 1 (0.896 g, 2 mmol, 1 equiv.) and 2-decyldodecyl iodide (3.176 g, 8 mmol, 4 equiv.). 4b was obtained as deep reddish brown solid (0.810 g, 36.1% yield). 1H-NMR (CDCl₃, 300 MHz, ppm): δ 9.07 (d, 2H, aromatic, J = 8.7 Hz), 7.17 (dd, 2H, aromatic, J₁ = 8.7 Hz, J₂ = 1.8 Hz), 6.90 (d, 2H, aromatic, J = 1.8 Hz), 3.62 (d, 2H, N-CH₂, J = 7.2 Hz), 1.97-1.80 (m, 2H, CH), 1.50-1.10 (m, 80H, CH₃), 0.95-0.75 (m, 12H, CH₃). 13C-NMR (CDCl₃, 75 MHz, ppm): 168.12, 146.30, 132.74, 131.16, 126.82, 125.26, 120.53, 111.70, 44.83, 36.32, 32.08, 31.62, 30.14, 29.79, 29.52, 26.50, 22.85, 14.29. HRMS (ESI, M + H⁺): Found: 1091.6575, Calcd.:1091.6543.

Polymer P1

To a 25 mL dry Schlenk flask were added compound 4a (225.6 mg, 0.2236 mmol), 5,5’-bis(trimethylylsilyl)bisphosphine (110.0 mg, 0.2236 mmol) and tri(o-toly)phosphine (5.4 mg, 8 mol %, 17.6 µmol). After degassing and refilling argon 3 times, tri(dibenzylideneacetone)-dipalladium (4.0 mg, 2 mol %, 4.4 µmol) and dry chlorobenzene (5 mL) were added under an argon atmosphere. The reaction mixture was stirred at 130 °C for 72 h. The reaction mixture was then cooled to room temperature and poured into a stirring methanol (60 mL) and stirred for 2 h. The precipitate was collected by filtration, and subjected to consecutive Soxhlet extraction with acetone, hexane and chloroform. Evaporating the solvent from the chloroform extraction gave P1 as a deep blue solid (220.0 mg, 97.1%). GPC (with chlorobenzene as an eluent and measured at 50 °C): the number average molecular weight (M_n) = 40,020; the weight average molecular weight (M_w) = 89,209; polydispersity index (PDI) = 2.23. λ_{max} (−5×10⁻² M in chloroform): 706 nm.

Polymer P2

P2 was synthesized and purified similarly using the procedure described for P1 from compound 4b (257.0 mg, 0.2292 mmol), and 5,5’-bis(trimethylylsilyl)bisphosphine (112.7 mg, 0.229 mmol). The resulted crude product was purified by consecutive Soxhlet extraction with acetone, hexane and chloroform. Lower
molecular weight portion was obtained from the hexane extraction (139 mg, 54.0%). The higher molecular weight P2 was obtained from chloroform extraction as deep-blue films (115 mg, 44.6% yield). GPC (with chlorobenzene as an eluent and measured at 50 °C): $M_n = 49,789$; $M_w = 87,743$; PDI = 1.76. λ_{max} (~10^{-3} M in chloroform): 706 nm.

OTFT Fabrication and characterization

A bottom-gate bottom-contact OTFT structure was adopted. A heavily n$^+$-doped Si wafer with a thermally SiO$_2$ layer (~300 nm) (with a capacitance of ~11.6 nF cm$^{-2}$) was used as the substrate. The gold source and drain electrode pairs were patterned on the SiO$_2$/Si substrate by thermal evaporation using a routine lithography procedure. The substrate was washed with acetone and isopropanol, cleaned with O$_2$ plasma, and then dipped in a dodecyltrichlorosilane (DTDS) solution in toluene (10 mg mL$^{-1}$) at 60 °C for 20 min to form a DTDS monolayer on the SiO$_2$ surface. After washing with toluene and drying under a nitrogen flow, a polymer (P1 or P2) solution in chloroform (5 mg mL$^{-1}$) was spin-coated on the substrate at 3000 rpm for 60 s to form a polymer film (~35 nm), which was annealed at 150 °C or 200 °C on a hotplate for 15 min in a glove box filled with nitrogen. The OTFT devices were characterized in the routine glove box using an Agilent B2912A Precision Source/Measure Unit. The charge carrier mobility in the saturated regime, μ_{sAT}, is calculated using the equation: $I_{DS} = C_i \mu_{\text{sat}} (W/2L) (V_G-V_T)^{1/2}$, whereas I_{DS} is the drain current, C_i is the capacitance per unit area of the gate dielectric, W and L are the semiconductor channel width and length, respectively, V_G is the gate voltage, and V_T is the threshold voltage, which is the V_G axis intercept of the linear extrapolation of the $(I_{DS})^{1/2}$ - V_G curve in the saturation regime at $I_{DS} = 0$. All the devices have a channel length (L) of 30 µm and a channel width (W) of 1000 µm.

Conclusions

We reported the use of a novel electron-accepting building block, (3Z,3'Z)-3,3'-hydrazine-1,2-diylidene)bis(indolin-2-one) (HBI), for constructing donor-acceptor copolymers with a thiophene donor. The resulting polymers exhibited ambipolar charge transport performance in OTFTs with high electron and hole mobilities up to 0.11 cm2V$^{-1}$s$^{-1}$ and 0.035 cm2V$^{-1}$s$^{-1}$, respectively. The much improved hole mobility is considered to be due to the higher crystallinity of these HBI-based polymers as compared with their analogous 3,3'-ethane-1,2-diylidene)bis(indolin-2-one) (EBI)-based polymers. The observed electron transport performance of these polymers is attributed to the strong electron accepting effect of the HBI building block. The HBI-based polymers also exhibited much superior thermal stability. This study shows that HBI is a very promising electron acceptor building block for polymer semiconductors for OTFTs, OPVs, and other organic electronics. It is also demonstrated again that azine is a very useful conjugated backbone linkage for high performance polymer semiconductors, which can be easily synthesized with established chemistries and are thermally stable.

Acknowledgements

The authors thank the Natural Sciences and Engineering Research Council (NSERC) of Canada for the financial support (Discovery Grants #402566-2011) of this work. The authors also thank Dr. Changsheng Wang of Merck Chemicals Ltd. for measuring molecular weights of polymers using GPC.

Notes and references

Graphical abstract

(3Z,3'Z)-3,3'-(Hydrazine-1,2-diylidene)bis(indolin-2-one) (HBI) is found to be a promising novel building block for polymer semiconductors.