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Abstract: 

 

This report describes a new approach to prepare atoms thick metal–sulfide–graphene 

nanosheets produced by subsequent annealing of crosslinked carbon–metal film 

formed at the water–hexane interface. A bipyridine dithiol (BPD) layer self-

assembled at the water–hexane hydrophilic/hydrophobic biphasic medium was used 

to encapsulate metal ions (M
+2

) (M = Co or Ni). Subsequently, the BPD-M
+2

 film was 

crosslinked using UV-light. Then the resulting carbon–metal nanosheets were 

annealed at high temperature under N2, transforming these molecular sheets into a 

homogeneous nano-crystalline metal–sulfide–graphene hybrids (MSGH). This 

approach can produce semi-transparent conducting films having marked conductivity 

dependence on the number of the nanosheets in a stack. The suggested strategy opens 

broad prospects toward the MSGH architecture using a simple process with new 

properties for new applications such as energy conversion/storage and electronics. 
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1-Introduction 

Graphene, regarded as a perfect example of a two-dimensional electron 

system, presents tremendous possibilities for engineers because of its exceptional 

electrical, magnetic, and optical properties.
1–4

 In recent years, increasing interest has 

surrounded the development of graphene. Different methods are useful for graphene 

preparation on metallic surfaces: (i) elevated temperature segregation of carbon atoms 

to the surface of a bulk metallic sample doped with carbon before treatment (ii) and 

thermal decomposition of molecules containing carbon on the surface of a transition 

metal, involving the cracking of light hydrocarbon molecules.
1, 5

 

 Different theoretical studies have been conducted to demonstrate the wide 

range of application of metal–graphene hybrids. Nevertheless, very little experimental 

work has been reported.
1 

Instability and the nonhomogeneous distribution of the metal 

nanostructure on graphene remain as obstacles hindering the development of these 2D 

materials.
1
 Engineering graphene using adsorbates such as transition metals can 

control the ground state and magnetic properties of the graphene.
6 

Several strategies 

might be used to enable the modification of the electronic structure of the graphene: 

(1) modification of the edge, the so-called nanoribbons
7
; (2) modification of the 

electronic structure by interaction with substrates
8, 9

; (3) multilayer graphene
10, 11

 ; and 

(4) deposition of metal ore molecules on top of the graphene.
12, 13

 Are there ways to 

generate stable nanocrystalline metal-doped graphene hybrids using a simple process? 

Although numerous studies have examined graphene, no report in the literature has 

described the experimental preparation of nanocrystalline doped-graphene on a 

liquid–liquid interface  

 As early as 1930, Langmuir and Blodgett assembled molecules on a water 

surface to form membranes known as Langmuir–Blodgett (LB) films.
14

 The 

Langmuir–Blodgett molecular monolayer presents similarities to biological 

membranes, where lipids self-organize via their intramolecular interaction. Air–liquid 

and liquid–liquid interfaces such as air–water and water–hexane are useful for 

ordering a monolayer of molecules via spontaneous formation.
15, 16

 The exposure of 

molecular interfaces to UV irradiation crosslinked the monolayer and polymerized the 

film.
16

 Crosslinking the LB molecular films using UV light might transform them into 

a robust nanosheet. Different experiments in which the monolayer was cross-linked 

after transfer to a solid substrate have already been reported.
17, 18

 Nanometer carbon 

membranes are useful for potential applications including fuel cells, biological 
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macromolecule separation, sensors, and optical devices.
19

 Very thin carbon sheets are 

readily produced by crosslinking the self-assembled monolayer on a metallic substrate 

and then peeling it off the substrate.
20, 21 

An important shortcoming is that the sheets 

are often damaged during peeling and transfer to other supports.
21

 

Metal sulfide is regarded as an efficient catalytic substance. The metal–

sulfide–graphene nanocomposite was proposed as a potential transparent conductive 

oxide-free counter electrode materials with high electrocatalytic activity for different 

applications.
22

 

This report presents a new method to generate nanocrystalline metal–sulfide–

graphene hybrids (MSGH) using an internal metal source based on a sequence of UV 

radiation and thermal treatment of the (5,5’-Bis (mercaptomethyl)-2,2’-bipyridine)-

M
+2

 layer (BPD-M
+2

, M=Ni or Co). First the BPD-M
+2

 is self-assembled at the water–

hexane interface, thereby forming a monolayer. Subsequent exposure of the 

monolayer to UV light engenders the formation of the freestanding carbon–metal–

sulfide nanosheet (CMSNS). Then annealing the CMSNS under N2 provides the 

MSGH nanocomposite. The CMSNS and the MSGH were characterized using 

various complementary techniques. The MSGH conductivity displays a metallic 

behavior that can be useful for different electronics applications. Similarly, the 

stability and the homogeneous distributions of the metal-sulfide particles on the 

carbon nanosheet are expected to open new vistas for oxygen reduction reactions, 

energy conversion/storage, and electronics technologies.
22–25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 4 of 26Journal of Materials Chemistry C

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
C

A
cc

ep
te

d
M

an
us

cr
ip

t



2-Methods 

5,5’-Bis (mercaptomethyl)-2,2’-bipyridine BPD was purchased from Aldrich 

Chemical Co. Inc. and was then used as received. The monolayer of the 5,5’-

bismercaptomethyl-2,2’-bipyridine (BPD) was prepared by mixing water that had 

been freshly degassed by N2 bubbling with a fresh solution of BPD on n-hexane. 

Well-degassed solutions by Ar have been used. After formation of the water–hexane 

deoxygenated interface, all preparation steps were performed in the absence of 

ambient light to avoid oxidation of the thiol groups. A concentrated (0.05 M) CoCl2 

or NiCl2 aqueous solution was added to the interface to form the Tris(5,5’-

bismercaptomethyl-2,2’-bipyridine)metal(II) layer (Figure 1 shows the proposed 

structure). Exposition of the film to UV (Xe polychromatic lamp, 1.82 w/cm
2
) caused 

lateral crosslinking of the BPD-M
+2

 layer, as depicted in Figure 1. 

 The BPD self-assembled monolayer (SAM) on gold was used as a reference 

system to elucidate the morphology of the BPD monolayer formed at the liquid–liquid 

interface. The BPD SAM was prepared by immersing the gold support into a freshly 

prepared 1 mM solution of n-hexane for 1 h at approximately 60 °C. We used 

solutions that had been well degassed using Ar. All preparation steps were performed 

in the absence of ambient light, following the same protocol as that used in our 

previous studies.
26

 

All XPS measurements were conducted at the MANA Foundry using a 

spectrometer (XPS Alpha 110 mm; Thermo Fisher Scientific Inc.). The XPS spectra 

in the S 2p, C 1s, N 1s, and Co 2p regions were recorded. The spectra acquisition was 

performed in normal emission geometry using Al Kα α radiation. The binding energy 

(BE) scale of each spectrum was calibrated individually to the Au 4f7/2 emission at 

83.95 eV. Wide angle thin-film X-ray diffraction (XRD) patterns were obtained with 

a Rigaku smartlab diffractometer using monochromated CuKa radiation (40 kV, 40 

mA) at a scanning rate of 0.5° min
-1

. 

A UV/Vis/NIR spectrophotometer (V-570; Jasco Corp.) was used to measure 

the UV/Vis transmission mode. 

The AFM topographical and phase images were collected using an SPM 

microscope (diMultimode; Veeco Instruments) and NanoScope software in tapping 

mode. Before measuring the thickness, the SPM was calibrated using a calibration 
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reference consisting of a silicon substrate having a regular series of pits, each 180 nm 

deep, plated with platinum. 

To measure the film thickness, the freely suspended membrane was placed on 

the silicon wafer. Its edge area was scanned. 

The membrane morphology was investigated using a scanning electron 

microscope (S-4300; Hitachi Ltd.) equipped with a W tip cold-FE electron emitter. 

Then TEM observations and EDX were performed using a TEM system (JEM-2010; 

JEOL) operated at 200 kV. 

 

 

3-Results and discussion 

In actuality, π-congregated molecules can self-assemble spontaneously 

because of the combination of different interactions such as π stacking, van der 

Waals, and H-bonding interactions.
27

 The exposure of the tris-BPD-M
+2

 film formed 

on the water–hexane interface to UV light of approximately 5 min engenders the 

formation of a crosslinked nanosheet. The nanosheet is transparent, but it exhibits a 

clear Tyndall effect because of side-incident light scattering by the carbon–metal–

sulfide nanosheet (CMSNS) formed at the water–hexane interface (see Figure 2a). It 

is noteworthy that without exposition of the SAM to UV, no nanomembrane 

formation occurs, except after long formation of a dense aggregate. Figure 2(b) 

presents a TEM image of the nanosheet deposited on a TEM grid. The CMSNS has 

large lateral dimensions of approximately 5 cm
2
. The CMSNS shows good resistivity 

to an electron beam of 200 keV. In some cases, 2D material electron beams can 

induce dramatic structural changes and radiation damage, which presents an obstacle 

to obtaining the desired information in imaging and chemical analysis in the TEM. 

 

3.1-Carbon–Cobalt Nanosheet 

Figure 3 depicts a TEM micrograph of the CMSNS edge on the TEM grid, in 

addition to elemental maps of C, Co, S, and N (denoted respectively by red, magenta, 

yellow, and green dots) of the CMSNS. The results show homogenized distributions 

of both S and Co on the nanosheet. Additionally, it is noteworthy that 49 wt% of S 

and 8.19 wt% of Co were detected in the composite. 
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The CMSNS was well cleaned in water before transfer to the SiO2 substrate. 

Thereafter, the CMSNS was characterized using X-ray photoelectron spectroscopy 

(XPS), XRD, UV–Vis, and high-resolution transmission electron microscopy 

(HRTEM). 

The C 1s, N 1s, S 2p, and Co 2p XPS spectra of the CMSNS, compared with 

the BPD self-assembled monolayer (SAM) on gold (111), are presented in Figure 4. 

The C 1s spectra of the BPD SAM and the BPD-Co nanosheet are portrayed in Figure 

4(a). The main peak at 285.5 eV of the BPD SAM is a superposition of contributions 

from two carbons: The C directly bound to the nitrogen atoms (red curve), and the C 

of the aliphatic moieties not-bound to the nitrogen in the pyridine unit (blue curve).
27

 

The C 1s of the BPD-Co nanosheet on SiO2 shows a similar composition to that of C 

1s of BPD SAM on gold. 

The N 1s XPS spectra of the BPD SAM are displayed in Figure 4(c). A single 

symmetric peak at 399 eV is assigned to the nitrogen in the pyridine rings. For N 1s 

spectra of the CMSNS (Figure 4-c), the presence of Co
+2 

on the molecular backbone 

produces a chemical shift of the main peak towards a higher binding energy by 1.2 

eV, which is a fingerprint of the binding of the bipyridine sites to the Co
+2

 moiety. 
21, 

28
 The shift described in an earlier report

21
 was more pronounced than in this study, 

probably because of the formation of the Co-tris-bipyridine complex (see Figure 1), 

where N in this case is less electropositive than the N in an Ni-bi- bipyridine system. 

The spectral deconvolution of the S 2p BPD SAM (Figure 4-b) was done by 

setting a 1.2 eV 2p1/2, 3/2 splitting and introducing two doublets: one at 162 eV 

commonly assigned to the thiolate-Au species and the other at about 163.5 eV 

corresponding to sulfur of the free thiol (SH) groups or S–S bonds. The S 2p of the 

CMSNS shows a main peak at 163.5 eV assigned to the free thiol (SH or S–S), which 

excludes the probability of formation the binding of Co to SH because of the short 

exposition to the Co solution (5 min).
 21, 26, 28–31

 

Figure 4(d) shows the Co 2 p3/2 region. The peak at 780.5 eV is assigned to 

Co
+2

. The shake-up structure (“s” in the figure) and the energy separation of 15.6 eV 

between the 2 p3/2 and 2 p1/2 peaks are consistent with divalent cobalt.
38, 39 

The BPD film thickness was evaluated based on the IC1s / IAu4f intensity ratios 

assuming a standard exponential attenuation of the photoelectron signal and using the 

attenuation lengths reported by Lamont and Wilkes.
32

 As calibration references, the 

dodecanethiol (DDT)/Au sample of known thickness were used assuming that this 
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sample has comparable packing densities to those of the BPD films. The BPD SAM is 

ca. 2.1 ± 0.3 nm, which shows good agreement with the BPD molecule height.
 21, 28

 

The nanosheet thickness determined using AFM was approximately 2.5 nm for the 

CMSNS (see Figure 5a), this thickness is the same as a molecular length, indicating 

that the molecules are oriented as nearly perpendicular to the interface and that they 

are nearly all-trans. 

The UV–Vis measurement shown in Figure 5b exhibits characteristic metal-to-

ligand charge-transfer (MLCT) bands. The complex has an absorption maximum in 

the UV region in both oxidation states: �max(�) = 346, 250 nm for CMSNS. These 

bands are attributed to the intraligand � → �* transition.
33

 

A millimeter lateral dimension range of CMSNS was annealed under N2 at 

temperatures up to 600 °C for 20 min. A carbon hybrid layer MSGH was produced. It 

is noteworthy that a few amorphous carbon hybrid layers MSG can be generated at 

low annealing temperatures of less than 400 °C. Figure 5c displays an AFM image of 

a monolayer MSGH (600 °C) deposed on a SiO2 substrate. The layer thickness 

measured using AFM is approximately 1.3 nm, which typically corresponds to a 

monolayer of graphene.
34, 35

 The noise in the thickness evaluation on Figure 5c is 

probably related to the metal nanoparticle contribution and to defects in the annealed 

nanosheet. The chemical composition of the MSGH on SiO2 substrate is shown in 

Figure 4. High background in the S 2p spectrum of the MSGH hinders analysis of the 

spectra. That background is attributable to the influence of the Si (2s) peak located in 

the region between 150 eV and 155 eV. Spectra of the former films exhibit different 

distinct features. The main broad and distinctly asymmetric peak at 164 eV is 

probably a superposition of the contributions from the Co–thiolate species and the (S–

S) linkages or free thiol groups SH, whereas the second located at 168.00 leV is 

probably associated with the sulfur atom bonded to the oxygen.
21, 26, 29

 

The XPS N 1s spectra show a chemical shift of the main peak in the direction 

of the low binding energy 399.11 eV, which is a fingerprint of the decoupling of the 

Co
+2

 from the bipyridine sites.
21, 28

 A feature located at 401.5 eV attributes to the N-

graphene structure.
36, 37

 Actually, C1s consists of component peaks corresponding to 

different carbon species C–C and C=C (presented on the blue line in Figure 4a), C–N 

(red line), and C=O (magenta line). The Co 2 p3/2 XPS region shows a new shoulder at 

779 eV assigned to the Co
0 

metal form (Figure 4).
38, 39
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Figure 6 shows XRD patterns of the MSGH nanocomposites deposed on a 

gold substrate. The two main peaks at 2 theta 38.21 and 44.55 correspond to the Au 

(Pdf 00-001-1172), the remainder of diffraction peaks are consistent with the values 

given in the standard Pdf cards for Co (Pdf 00-001-1259), CoS2 (Pdf 00-041-1471), 

Co9S8 (Pdf 00-056-1288), and � -S (Pdf 00-020-1227). The reflection peak of 

graphitic carbon is weak, possibly because the disordered graphene structure is 

obtained. 

The MSGH structure was characterized using transmission electron 

microscopy TEM and Raman spectroscopy. Figure 7 exhibits the TEM, HRTEM, 

elemental maps, and EDX of the MSGH. The elemental maps (Figure 7c) of sulfur 

and cobalt confirmed that the bright particles in the TEM image in Figure 7a are 

cobalt and cobalt–sulfur particles, probably formed by segregation of the cobalt and 

sulfur on the top of the MSGH after annealing. Energy-dispersive X-ray (EDX) 

microanalysis revealed an important sulfur peak, which is around twice that of cobalt, 

as shown in Figure 7d. 

Figures 7a and 6b show a room temperature STEM image and HRTEM 

images of the monolayer MSGH with their selected area electron diffraction, 

including the related EELS spectra. The STEM micrograph in Figure 7a shows a 

homogeneous distribution of the metal and metal sulfide nanoparticles on the MSGH 

sheet. At high HRTEM magnification (Figure 7b), it is readily apparent that ordered 

graphene areas with lateral demotions of 10–15 nm have formed. The well-defined 

hexagonal honeycomb structure in Figure 7b and the electron diffraction pattern in 

Figure 7b confirm a hexagonal symmetry of the graphene areas. The graphene areas 

at the edges are altered with Co and Co-S domains, as shown in Figure 7b. The 

coalescence between the nanocrystals is apparent in high-resolution TEM images. The 

EELS spectrum taken of the same area shows a clear peak of Co. The XPS, XRD, 

EDX, and EELS spectroscopies of the MSGH confirm the TEM observation 

regarding the formation of CoS and Co nanostructure on the annealed nanosheet. 

Figure 8a portrays a Raman spectrum of multilayer nanosheet of the Co-

sulfide graphene on SiO2 (measured using an excitation wavelength of 532 nm). The 

single-sheet Raman spectra shows graphitization confirmed by D (1365 Cm
-1

) and G 

at Γ  (1587 Cm
-1

) peaks.
1 

Similar Raman spectra have been reported on different 

carbon nanomembrane prepared on the metal substrate and doped graphene.
20, 40

 The 
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D band is associated with the loss of lattice symmetry. Symmetry breaking can result 

from any of the following: (i) presence of vacancies and interstitials; (ii) introduction 

of interfaces at the borders of the crystalline areas; or (iii) substitution atoms that can 

also be introduced intentionally, for instance by ion implantation.
1
 In addition, the G 

band shows prominent Raman features in graphene and graphite. 

Increasing the number of sheets in a stack causes increased D and G band 

intensities, and splitting of the G peak into a doublet structure G1 and G2 (Figure 8a). 

Splitting in the G peak observed in the Raman spectra of graphene and other 

disordered sp
2
 carbon materials usually occurs because of graphite intercalation 

compounds (GICs).
40, 41

 Characteristics of the G band in the GIC are known to be 

affected by three factors: intercalate coupling, change in the lattice constant, and 

charge transfer.
41, 42

 Figure 5b shows a red shift of the G2 peak compared with the G1 

peak. A similar downward shift was observed for the n-doped multilayer graphene 

film.
42, 6

 

The electrical properties of the Co–S–Graphene nanosheet were investigated 

as a function of the number of layers in a stack. Multisheet films are formed by 

deposition of alternating layers. Figure 8b presents I–V characteristics using four 

probes arranged equidistantly in a line and contacted the nanosheets. The I–V curve 

of the single Co–S–G nanosheet remains linear, showing metallic behavior. Here, the 

sheet resistivity ρs was measured using the following formula.
43

 

ρ
s
=	

π

ln	(2)
	
V

I
	Ω/square 

 

At bias voltage of 1 V, ρs corresponds to 179 kΩsq
-1 

demonstrating the clear metallic 

characteristics of the film. The resistivity drops to 61.7 kΩsq
-1

 as the number of layers 

increases to three nanosheets, producing 100 times lower sheet resistivity than that of 

single chemically reduced graphene oxide sheets,
44

 and 10 times higher resistivity 

than that of the free graphene monolayer.
45 

The conductivity increases with the 

increase of the number of the sheets, which shows good agreement with the Raman 

experiment when the charge transfer and the concentration of the sp2 carbon 

nanostructures increase under the same conditions. This variation can be attributed to 

changes in the electronic structure of the system, where the thickness increase is 

accompanied by an important degree of electron delocalization in the system.
30
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3.2-Carbon–Nickel Nanosheet 

Additional metal ions have been tested as an internal dopant source such as 

nickel. The surface morphology of the hybrid structure carbon–nickel–sulfide 

nanosheet (C-Ni-SNS) after annealing is shown in the HRTEM image (Figure 9a), 

which exhibits the same behavior as that of the Co case. Bright nanoparticles (NPs) 

are formed uniformly over the entire surface of nanosheet flakes. The mean particle 

sizes are between 50 nm and 15 nm. Figures 9b and 9c respectively show a TEM 

micrograph and elemental maps of sulfur and nickel in the annealed CMSNS. The red 

dots in Figures 9(c) show sulfur; the green dots show nickel. The elemental maps 

show that the bright particles in Figure 9a are Ni and Ni–S NPs which is in good 

agreement with the Co-S-G results. Figure 9d shows high-resolution image lattice 

planes of Ni NP. The high crystallinity of NPs is confirmed by the electron diffraction 

pattern in Figure 9e. 

It is particularly interesting that the average diameter of the Co/CoS particles 

is approximately 5 nm. However, Ni/NiS particles have sizes in the range of 

approximately 50–15 nm. This size difference is probably attributable to different 

phenomena related to the morphology and the properties of the metal ions in the 

SAM. This phenomenon is under investigation and remains the subject of future 

studies. 

 

4-Conclusion 

In conclusion, this report presented a novel method to produce metal–sulfide 

graphene nanosheets at a liquid–liquid interface. After crosslinking of (BPD-Co
+2

) 

SAMs using UV light on the water–hexane interface, the CMSNS were transferred to 

the SiO2 substrate. Using a combination of several complementary experimental 

techniques, the chemical properties of the CMSNS nanomembrane were investigated. 

The salient benefit of this technique lies in using the encapsulated metals and the 

sulfur end group on the CMSNS backbone as an internal doping source, providing 

homogeneous metal–sulfide nanostructures that are covalently bonded to graphene 

after the nanosheet annealing process. Using an external metallic source for metal-

doped graphene such as metal sputtering provides nonhomogeneous metallic 

distribution, and also an unstable configuration of the metal on the top of the 

graphene.
1
 In the present study, the heating process of the CMSNS stimulates 

aggregation of the metallic ions. Together with the sulfur, they provide metal hybrid 
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nanostructures. Different nitrogen sites on the carbon nanosheet reinforce the metallic 

nanostructure stability. The approach is useful to prepare extremely large and 

complex metallographene heterostructures with attractive properties based on an 

extremely simple method at the liquid–liquid interface. Further studies for 

applications in various fields of these new nano-carbon materials are in progress at 

our institute, especially for electronics, and for energy conversion and storage. 
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Figure 1. Preparation of freestanding nanosheet. (a) Self-assembly monolayer of the Tris-

BPD-Co on the water–hexane interface, and the configuration proposal of Tris-BPD-Co layer 

after crosslinking using UV. (b) Freestanding carbon–metal–sulfide nanosheet from the 

water hexane interface. 
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Figure 2. Optical property and TEM image of the nanosheet (a) Tyndall light scattering 
on the CMSNS formed at the water–hexane interface, (b) TEM image of the CMSNS 

deposited on TEM grid. 
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Figure 3. TEM and Elemental map of the sheet (a) TEM image of the CMSNS edge, and 
elemental map of C (b), Co (c), S (d), and N (e) of the CMSNS. 
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Figure 4. Chemical composition of the nanosheet and the graphene hybrid materials. 
XPS C 1s, N 1s, S 2p, and Co 2p spectra of the BPD on gold, BPD-Co layer on SiO2, and the 

annealed BPD-Co layer on SiO2 at 600 °C. Some spectra are decomposed into the individual 

contributions related to different species; see the text for details. 
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Figure 5. AFM and UV-Vis properties of the sheet. (a) AFM image of the CMSNS on 

SiO2. (b) UV-vis spectra of the CMSNS deposited on a SiO2.(c) AFM image of the MSGH 

on SiO2. 
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Figure 6.  XRD patterns of CoS-graphene composites on Au substrate. 
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Figure 7. TEM of the annealed sheet. (a) STEM micrograph of the annealed CMSNS 

deposited on the TEM grid, (b) nanoscale HRTEM image of the annealed CMSNS with the 

EELS spectra and selected area electron diffraction pattern of the crystalline Co–S–graphene 

nanocomposite. (c) TEM image of the annealed CMSNS and elemental map of carbon, sulfur, 

and cobalt, (d) C, S, and Co EDX of the annealed sheet, the intense red peaks related to the 

Cu of the TEM grid.  
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Figure 8. Raman shift and fore probes IV characteristics of the annealed nanosheet. (a) 

Raman shift of the annealed CMSNS, and (b) Room temperature fore probes current versus 

voltage of the annealed CMSNS. Each curve corresponds to 1, 2, and 3 layers of G–M. (c) 

Optical microscope image of the annealed CMSNS contacted to 6 electrodes. 
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Figure 9.  TEM and elemental map of the annealed C-Ni-S-NS. (a) High-resolution TEM 

micrograph of the annealed CNiSNS deposited on the TEM grid, (b and c) TEM and 

elemental map of sulfur (red), and nickel (green) of the annealed CNiSNS, (c) High resolution 

image showing lattice planes of Ni NP, (d) selected area electron diffraction pattern of the Ni 

NP.    
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In this paper, the author developed a new method to synthesize a metal–sulfide graphene nanosheets 

(MSGH) starting from a water-hexane interface. 
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