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Emission tunable Ag2S-PEG-Folic acid QDOTs synthesized in a single step in water are 

effective theranostic nanoparticles.  
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One step emission tunable synthesis of PEG coated Ag2S NIR 
quantum dots and the development of receptor targeted drug 
delivery vehicles thereof   
D. Asik,a M. B. Yagci,b F. Demir Dumana and H. Yagci Acar a,b,c 

PEGylation of quantum dots (QD) to decrease their toxicity, increase blood circulation time, reduce non-specific uptake 
and also to solubilize and stabilize hydrophobic QDs in aqueous medium is a widely used approach and many different 
methods were developed to achieve this. QDs that are luminescent in the near-infrared region (NIR) has emerged recently 
as the more appropriate materials for bio-imaging studies. In this work, we describe s single step emission tunable 
aqueous synthesis of PEGylated Ag2S NIRQDs.  They are highly cytocompatible, not only due to PEG coating but also due to 
intrinsic biocompatibility of Ag2S, in a single step aqueous preparation method using thiolated PEGs as the only coating 
material. Tuning emission wavelength within the medical window (775-930 nm) with quantum yield between 2-65 % is 
achieved by changing the reaction variables such as PEG molecular weight, pH and precursor ratios. Ag2S-PEG NIRQDs 
prepared from 5kDa MPEG-SH at acidic pH provided a dramatic enhancement in the luminescence intensity.  These 
NIRQDs were also designed with surface functional groups to attach folic acid and loaded with Doxorubicin (DOX) which 
dramatically enhanced uptake and efficacy of DOX (50% cell death with 15 nM DOX) in FA-receptor overexpressed cancer 
cell lines (HeLa). They also showed strong cytoplasmic NIR signal in the in vitro studies, demonstrating a great theranostic 
potential.   

Introduction 
Cancer is one of the most serious diseases at the present time. 
Even though there are many private and public research 
institutions heavily working on early diagnosis of cancer and 
development of vaccine and therapeutic agents, cancer is still 
one of the most deadly diseases in the world. Multifactorial 
and multifarious nature of cancer makes the fight against 
cancer difficult. Early diagnosis, effective and selective delivery 
of chemotherapeutic drugs to the tumor site are all imperative 
for successful cancer therapy.  

Nanoparticles are usually capable of doing couple of tasks 
at the same time, such as drug delivery in addition to imaging, 
therefore has great potential in diagnosis and therapy.1-5 
Quantum dots are being investigated for imaging and labelling 
as well as for drug and gene delivery.3, 6-9 Unique properties 
including size tunable emission, absorption in a broad but 
emission in a narrow window coupled with long luminescence 

lifetime make semiconductor quantum dots (QDs) as preferred 
materials for optical imaging and labeling.3, 10-13 QDs are 
synthesized from group II-VI, III-V and IV-VI atoms. Group II-VI 
quantum dots such as CdS, CdSe, CdTe, ZnSe are excited in UV 
and luminesce in the visible range (400-700 nm).14 These are 
the most studied quantum dots. Even though these quantum 
dots luminesce strongly with a very sharp emission peak, there 
are significant drawbacks in their practical use in medicine. 
Most significant problems are the potential damage due to 
UV-irradiation, the autofluorescence of the living tissue in the 
visible region, absorption of visible light by biological 
components such as hemoglobin and water, and the limited 
penetration depth of the visible light.15, 16 In recent years, 
emission in the near infrared (NIR), especially, 700-900 nm is 
suggest as the more appropriate window for biological 
applications.15, 17 Another important issue is the cytotoxicity of 
QDs, especially for the in vivo use. For example, there are 
CdHgTe/CdS,18 CdSeTe/CdS,19 and PbS20 NIR quantum dots 
with emission in the desired medical window but they are 
composed of heavy metals such as Cd and Pb which are 
considered as toxic.21-25 The most widely used method to 
decrease toxicity of Cd-based quantum dots, is the over 
coating with biocompatible polymers, usually polyethylene 
glycol (PEG).11, 12 PEG is often attached to the end groups of 
the primary coating of the QD through ester or amide 
linkages.26-28 Alternatives such as InAs/InP/ZnSe29, 
CuInS2/ZnS30, 31 are being developed but there is no wide 
selection of heavy-metal free NIR emitting QDs. 
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paraformaldehyde was purchased from Chemcruz. 4,6-
Diamidino-2-phenylindole dihydrochloride (DAPI) was 
purchased from Sigma Aldrich. Phosphate buffered saline 
(PBS) tablet was purchased from Sigma and fetal bovine serum 
(FBS) was purchased from Capricorn. LDS 798 near-IR laser dye 
(Quantum yield reported as 14% in DMSO by the producer) 
was purchased from Exciton Inc. Milli-Q water (18 mOhm) was 
used as a solvent. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) was purchased from AppliChem. 
 

Synthesis of PEG Coated Ag2S Quantum Dots   

A typical preparation method for Ag2S-PEG NIRQDs is as 
follows: Silver nitrate (0.0625 mmol AgNO3) was dissolved in 
20 mL deoxygenated deionized water in a three-neck round-
bottom flask fitted with Argon inlet/outlet. Thiolated 
polyethylene glycol (e.g. 0.1 mmol; MPEG-SH MW 2000) was 
added to this solution under vigorous mechanical stirring. pH 
of the solution was adjusted to desired value (3 or 7.5) with 
acetic acid (CH3COOH) and heated up to 90°C.  Na2S (0.0156 
mmol) was dissolved in 5 mL deoxygenated water in a 
separate round bottom flask and transferred slowly into the 
reaction solution via a cannula using Argon purge under 
vigorous mechanical stirring.  After desired amount of time 
necessary for the growth of QDs, solutions were cooled to 
room temperature.  After being washed with MilliQ water 
using Amicon-Ultra centrifugal filters (3,000 Da and 10,000 Da 
cut off for mPEG 2kDa and 5kDa, respectively), QD solutions 
were stored at 4 °C in dark.  Particle growth was followed by 
absorbance and photoluminescence measurements of the 
aliquot taken from the reaction mixtures at different time 
points. 
 For the synthesis of –COOH functional nanoparticles, a 
mixture of 70/30 mol ratio of MPEG-SH/CMPEG-SH was used 
in the formulation.  
 
Synthesis of Folic Acid Conjugated QDs (QD-FA) 

0.18×10-4 mmol EDC and 0.18×10-3 mmol NHS were dissolved 
in distilled water (pH 8.8) and then added into 15 mL quantum 
dot (QD9 in Table 1) solution which has  30 % CMPEG-SH 
(0.18×10-4  mmol CMPEG-SH) in the coating formulation and 
the mixture was stirred for 5 min at room temperature for the 
activation of carboxylic acids. Then 0.18×10-4 mmol folic acid 
(FA) was added in to this solution and stirred overnight at RT. 
FA conjugated QDs were subjected to dialysis (3K molecular 

weight cut-off cellulose dialysis membrane, CelluSep T1 
Regenerated Cellulose Tubular Membrane, Spectrum labs.) in 
distilled water over 2 days for the removal of excess chemicals 
and by-products. 
  
Preparation of Doxorubicin Loaded QDs  
For the preparation of QD-FA-DOX, 0.1 mL doxorubicin 
hydrochloride (DOX) solution (pH 5.5; 0.22 mg/mL) was mixed 
with 3 mL QD-FA quantum dots (QD9-FA at 196.5 μg/mL Ag 
concentration) at pH 6. For the preparation of QD-DOX, 0.5 mL 
DOX solution (pH 5.5; 0.22 mg/mL) was electrostatically loaded 
into 1.5 mL PEG coated Ag2S quantum dot (QD9 at 331 μg/mL 
Ag concentration). DOX loaded QDs were washed through 3K 
Amicon centrifugal filter tubes with fresh DI water to remove 
unbound DOX. 
 
Cell Culture 
Human cervical carcinoma (HeLa) and mouse fibroblast cells 
(NIH-3T3) were cultured in complete DMEM medium 
consisting of 10 % fetal bovine serum, 1 % penicillin-
streptomycin antibiotic solution and 4 mM L-glutamine. Both 
cell lines were incubated at 37 °C under 5 % CO2. Cell passage 
with fresh medium is performed once in two days. Trypsin-
EDTA was used for cell detachment process. 
Paraformaldehyde was used to fix the cells on the 6 well plates 
for microscopic images. DAPI was used for labelling the cell 
nuclei. 
  
Cell Viability  

Human cervical carcinoma (HeLa) and mouse fibroblast cells 
(NIH-3T3) were cultured at a 1x104 cells/well in 96-well plates 
in complete DMEM, as described above. The medium (200 µL) 
was replaced with fresh medium  (after 24 hours) and charged 
with nanoparticles at doses between 5-50 µg Ag/mL and 
incubated for  24 hours. For cell viability assessment, 5 mg/mL 
MTT solution in 1 M PBS was prepared. After 24 hour 
incubation with nanoparticles, the medium (containing the un-
internalized nanoparticles and dead cells, if any) in each well 
was replaced with 150 µL complete DMEM medium and 50 µL 
of MTT solution. After 4 hour incubation the medium was 
removed and 200 µL DMSO:EtOH (1:1) solution was added to 
each well to dissolve purple colour formazan product that 
indicates the number of viable cells. Formazan amount was 
quantified by its absorbance intensity at 600 nm and 630 nm 
(ELx800 Biotek Elisa reader). The absorbance value at 630 nm 

Table 1. Formulation and Properties of Ag2S-PEG QDs 

Rxn  
Code 

SH/Ag/Sa 

(mole ratio) 
Mwtb 

(g/mol) 
pH Time 

(min) 
Emission 
λmax (nm) 

QYc 
(%) 

Dd 
(nm) 

Band Gap 
(eV) 

QD1 6.4 / 4 / 1 2000 7.5 90 847 8.6 2.3 1.81 

QD2 6.4 / 2 / 1 2000 7.5 120 915 6.1 2.6 1.55 

QD3 6.4 / 6/ 1 2000 7.5 90 775 1.9 2.2 1.86 

QD4 10 / 5 / 1 2000 7.5 90 860 10.7 2.5 1.59 

QD5 5.12 / 4 / 1 2000 10 90 798 2.4 2.3 1.82 

QD6 6.4 / 4 / 1 5000 3 90 930 65.6 2.5 1.58 

QD7 6.4 / 4 / 1 5000 7.5 90 890 12.0 2.6 1.55 

QD8 6.4 / 4 / 1 2000 3 90 930 29.4 2.6 1.56 

QD9* 6.4 / 4 / 1 2000 2.8 90 925 17.3 2.6 1.55 

a0.64 mM Na2S concentration, bMolecular weight of PEG in MPEGSH, cQuantum yield calculated with respect to LDS 798 near-IR dye, dParticle sizes 
calculated by Brus equation using the absorbance onset (Figure S1 in SI).1, 2 *30 mol % of the organic coating is HS-PEG-COOH. 
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was subtracted from the absorbance value at 600 nm. Percent 
viability was determined by comparing absorbance average of 
five replicates for each dose and absorbance average of 
control cells with no nanoparticle exposures. Statistical 
analysis was performed by one-way ANOVA with Tukey's 
multiple comparison test of the Graph Pad Prism 5 software 
from GraphPad Software, Inc., USA. 
 
Cell Imaging   

Human cervical carcinoma (HeLa) cell lines were cultured at 
2x104 cells/well in 6-well plates in complete DMEM culture 
medium overnight, then the medium was replaced with fresh 
DMEM and nanoparticles at 10 µg Ag/mL dose. After 6 and 24 
hours of incubation, the medium was discarded and the cells 
were washed with PBS (1 M) three times. Then, 1 mL 
paraformaldehyde was added to each well and stored in dark 
to fix cells. Following this procedure, paraformaldehyde was 
discarded and each well was washed with 1 M PBS for three 
times. 1 mL PBS was left in each well. The fixed cell samples 
were examined under Inverted Life Science Microscope at 20× 
magnification (Olympus-Xcellence RT Life Science Microscopy). 
Three different filters that were specific for Cy3 (λexc: 513 - 556 
nm and λem: 570-615 nm), DAPI (λexc: 352-402 nm and λem: 
417-477 nm) and NIR region (λexc: 550 nm and λem: 650 nm 
long pass) were used to image the cell nuclei, QDs and DOX. 
Same experimental procedure was also performed for control 
cells with no nanoparticles. 
 

Characterization   

Dried samples were used for the XRD and XPS analysis. D8 
Advance Bruker instrument with Cu K-alpha radiation 
(λ=1.5406 Å) was used for XRD.  Powdered samples placed on 
the glass with a double sided sticky type and 2θ angles 
between 10o-80o was recorded. Powdered samples were 
placed on an aluminium type for the XPS analysis performed 
with Thermo Scientific K-Alpha XPS with Al K-alpha 
monochromatic radiation (1486.3 eV). Pass energy of 50.0 eV 
and 400 mm spot size was used for the analysis. Take-off angle 
(surface normal with respect to analysis detector) was 90°.  All 
spectra were corrected according to C1s=284.5 eV. 

FTIR spectrum was recorded on a Thermo Scientific Nicolet 
iS10 instrument (ATR-FTIR) in the wavenumber range of 400-
4000 cm-1 for functional group analysis. 

Shimadzu 3101 PC UV-Vis-NIR spectrophotometer was 
used for the absorbance measurements in the 300–700 nm 
range. Crystal size of Ag2S crystals were calculated from the 
absorbance onset using Brus equation (Eqn. 1).41, 42  
 

       
       Eqn. 1 
 

 
Where ΔE=Ebulk-Esample, me (0.286 m0) and mh (1.096) are the 
effective electron and hole masses for Ag2S, respectively, ε 
(5.95) is the dielectric constant of Ag2S and R is the radius of 
the nanocrystal.   

Photoluminescence spectra was recorded on a home-made 
instrument with gold reflector, 0.5 m Czerny-Turner 
monochromator and silicon detector that is sensitive over the 
wavelength range of 400-1100 nm.  A continuous-wave, 
frequency doubled Nd:vanadate laser operating at 532 nm was 
used as the excitation source. The luminescence signal was 
filtered using a 590 nm long pass filter. Si detector with 
femtowatt sensitivity (Thorlabs PDF10A, 1.4 × 10−15 W Hz−1/2) 
was used. For these measurements slid width was set to 0.2 
nm. Quantum yield (QY) of nanoparticles were calculated 
based on the procedures detailed in the literature.43, 44 Briefly, 
samples of aqueous QD solutions and LDS 798 NIR dye in 
methanol (QY reported as 14 % by the producer) were 
prepared at three different concentrations providing similar 
absorbance values at the excitation wavelength of 532 nm, 
keeping the absorbance at and below 0.1. Integrated areas 
under the emission curve for each were plotted against the 
absorbance and QY (φ) of the QDs was calculated from the 
gradients of these plots, using the refractive index of the water 
and MeOH based on equation 2.                            
 
Eqn. 2 
 

TEM analysis was done at UNAM, Ankara. A dilute solution 
of QDs were 
dropped on a 

carbon coated Cu-grid and evaporated.  FEI Tecnai G2 F30 TEM 
operated at 200 kV was used for the high resolution images.  
EDX was done at 15° tilt angle. 

Hydrodynamic size and zeta potential measurements of the 
aqueous colloidal Ag2S-PEG QDs were performed by Malvern 
zetasizer nano ZS.  

Ag+ content of the quantum dot solutions were 
determined by Spectro Genesis FEE Inductively Coupled 
Plasma Optical Emission Spectrometer (ICP OES) based on 
reference curve that was created by standard solutions. For 
the ICP analysis, QD solutions were treated with a nitric 
acid/sulfuric acid mixture and diluted with DI water. 

Results and Discussion 
Synthesis and Characterization of Ag2S NIRQDS 

Development of emission tunable synthesis of functional 
PEGylated, heavy-metal free quantum dots (Ag2S) with near 
infrared emission is aimed for theranostic use of quantum 
dots. In a simple, one-step, economic, and safe synthetic 
method, Ag2S quantum dots were prepared from Ag+ and S2- 
salts in water in the presence of MPEG-SH (Scheme 1). Particle 
size and hence the emission was tuned with combination of 
reaction time, stoichiometry, pH and the molecular weight of 
the polymer (Table 1).  Colloidally stable QDs with emissions 
centred between 775-930 nm with about 65-70 nm difference 
in the peak maxima are obtained.   For a given formulation, 
peak maximum of the emission did not change significantly 
with the reaction time but the intensity did (Figure S2 in 
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Supporting Information, SI).  This is rather typical for Ag2S 
synthesized with Na2S.32, 33 

As seen in Figure 1a, keeping everything else the same, as 
Ag/S ratio increases (QD1, QD2 and QD3), particles are 
captured at a smaller size. Yet, smallest particle (QD3: 
Ag/S=6/1) with emission maximum at 775 nm showed 
significantly lower emission intensity.  Smaller particles are 
affected more by the surface defects. In QD3 there is less 
MPEG-SH per Ag+ (SH/Ag=1.06) compared to other two, which 
may cause a less effective surface coating and hence surface 
defects.  QD1 and QD2 had SH/Ag ratio of 1.6 and 3.2 and 
about the same emission intensity. Based on this data, a fine 
tuning of the emission wavelength with strong emission 
intensity was achieved with a new formulation of Ag/S ratio of 
5 and HS/Ag ratio of 2 (QD4), producing particles with 
emission maxima at 860 nm with 10 % QY, which is better than 
QD1 and QD2. Emission maxima around 850-860 nm are highly 
desirable for optical imaging studies, since routine confocal or 
fluorescent microscopes loose efficiency at longer 
wavelengths.  

Reaction pH showed a dramatic impact on particle 
properties. Reducing the reaction pH to 3 from 7.5 caused a 
red shift of the emission maximum due to larger crystal size 
along with a dramatic increase in the quantum yield. For QDs 
prepared with PEG2000, luminescence maximum shifted from 
847 to 930 nm and QY increased from 8.6 to 29.4 (QD1 and 
QD8) (Table 1). Same type of behaviour was observed when 
PEG5000 was used as a coating (QD6 and QD7):  Emission 
showed 40 nm red shift with about 3.5 times increase in QY to 
65.6 % (Figure 1b, Table 1). Larger crystal size may be due to 
better solubility of Ag2S in acidic medium, making the critical 
stable particle size larger compared to reactions performed at 
neutral pH. Enhancement of luminescence intensity under 
acidic reaction conditions may be at least partially due to 
formation of different Ag-SR complex at acidic pH and more 
Ag-coordination with RSH since its deprotonation will be 
reduced as well. 

Molecular weight of PEG showed a significant impact on 
particle properties, especially on the luminescence intensity.  
This may be due to the differences in polymer conformation 
on the particle surface. As seen in Table 1 and Figure 1c and 1d 

Fig. 1 Absorbance calibrated photoluminescence spectra of Ag2S-PEG QDs. *Due to limitation in the detection range (600-1050 nm) of the detector, emission 
spectra are plotted by curve fitting formula of OriginPro 9.0 software (Detailed in Figure S3 in the SI). 
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The small S 2p signal at 166.78 eV corresponds to an oxidized 
sulfur (SO3

2-, SO4
2-) which may be due to the aging of the 

sample.46  
TEM images of these QDs showed non-aggregated 

nanoparticles with diameter between 1.7 to 2.5 nm (Figure 3). 
This is somewhat close to the calculated diameter of 2.6 nm by 
the Brus equation (Table 1). Discrepancy between the 
calculated and observed sizes has been reported previously.13 
Energy dispersive X-ray spectroscopy (EDS) confirms the 
presence of Ag, S and O (coming from PEG) (Figure S4 in the 
SI).  
Hydrodynamic sizes of Ag2S-PEG QDs in water are measured by 
Dynamic Light Scattering (DLS) and are mostly below 50 nm 
indicating ultrasmall sizes (Table S1 in the SI).  If number 
average values are considered, they are at and below 12 nm. 
QD6 and QD7 coated with PEG5000 are the larger ones due to 
thicker polymeric shell.  PEG5000 also caused broader size 
distribution, may be due to faster growth of the larger crystals.  
Zeta potential of these QDs is slightly negative, which is typical 
for PEGylated surfaces.47 
 
Cytotoxicity Evaluation of Ag2S-PEG NIRQDs  

The cytotoxicity of two different Ag2S-PEG NIRQDs to human 
cervical cancer cells (HeLa) and mouse fibroblast cells 
(NIH/3T3) were determined by the MTT assay which depends 
on the mitochondrial activity. QD3 which has an emission 
maximum at 775 nm (smallest particle) with PEG2000 coating 
and QD7 with emission maximum at 890 nm (longest 
wavelength that can be detected with the confocal 
microscope) with PEG5000 coating were used for the 
cytotoxicity evaluation as representative QDs.  Cytotoxicity of 
AgNO3 was also evaluated for comparison. Dose of the QDs 
were calculated based on their Ag content measured by ICP-
OES.  Between 5-25 μg/mL Ag dose, no significant cytotoxicity 
was observed in either cell lines (corresponding to 1.7 mg 
QD/mL QD3 and 3.8 mg QD/mL QD7 concentration) (Figure 
4A). However, at 25 µg/mL Ag dose, AgNO3 is already very 
toxic. This indicates that silver ion does not leach out of the 
nanoparticle, at least in any significant dose.  This is an 
expected result due to very low solubility of Ag2S.  Both QDs 
induced a significant drop in viability of NIH/3T3 cells but only 
at 50 µg/mL Ag (corresponding to 3.4 mg QD/mL QD3 and of 
7.6 mg QD/mL QD7 concentration). Only the larger QD7 
showed significant toxicity in HeLa cells at 50 µg/mL Ag.  These 
indicate that QDs are more toxic to NIH/3T3 cells and smaller 
QDs are better tolerated by HeLa cells.  Yet, in literature, the 
maximum Ag2S (PEGylated) concentration used for the 
cytotoxicity assays is about 100 µg/mL.33 Considering that 
Ag2S-PEG QDs did not cause any drop in viability even in mg 
doses, these particles can be considered quite biocompatible. 
Especially, being non-toxic to healthy cell lines is an asset.  It is 
highly desirable to use these QDs as a fluorescent probe and a 
drug carrier that is directed to cancer cells. 

Receptor Targeted DOX Delivery with Ag2S-PEG NIRQDs.  
Cancer drugs kill both healthy and cancerous cells. To reduce 
deadly effects of these drugs, targeted drugs are required. Due 

to overexpression of folate receptors on the surfaces of many 
types of human cancer cells compared to healthy cells, folic 
acid (FA) is chosen as the targeting ligand in this study.48, 49 
Folic acid (FA) has a strong binding affinity to folate receptors. 
In order to bind FA to the Ag2S-PEG QDs, a new nanoparticle 
(QD9) with surface –COOH groups was prepared using CM-
PEG-SH as 30 mol % of the coating material.  FA was 
conjugated to the QD surface via amide bond using the 
standard EDC-NHS chemistry (Scheme 1). Quantification of FA 
conjugation is usually done based on the absorbance of FA at 
295 nm but, due to strong absorbance of Ag2S at this 
wavelength, luminescence peak of FA at 450 nm was used in 
this study (Figure S5 in the SI). The FA amount was calculated 
as 3.99×10-9 mol/mL of QD solution with conjugation efficiency 
of 61 %.  

Doxorubicin (DOX) is one of the most widely used cancer 
chemotherapeutic drugs with antigenic activity.50, 51 DOX was 
electrostatically bound to both QD and QD-FA with 1.7 and 4.2 
% loading efficiency. DOX amount loaded to QDs were 
calculated from the emission peak of DOX at 595 nm using a 
calibration curve created for DOX (Figure S6 in the SI). Ag2S-
PEG (QD-DOX) and Ag2S-PEG-FA (QD-FA-DOX) nanoparticles 
have 320 nM and 160 nM DOX, respectively. DOX loading did 
not change the stability or the hydrodynamic size of the 
particles significantly, most probably due to not so high 
loading (Table S2 in the SI).  

 

Fig. 4 (A) In vitro viability of NIH/3T3 and HeLa cells incubated 24h with 
QD3, QD7 and AgNO3 at different doses based on Ag+ ion concentration 
(5, 10, 25 and 50 µg Ag/mL). Five controls represent the untreated 
control cells in each plate. (B) In vitro viability of HeLa cells incubated 24h 
with QD-FA-DOX at 5 µg Ag/mL (0.418 mg QD/mL), QD-DOX at 5 µg 
Ag/mL (0.336 mg QD/mL) and free DOX (15 and 24 nM). Incubation of 
nanoparticles and DOX was performed (A) in complete DMEM, (B) in folic 
acid free medium with 2 mM folic acid and (C) in folic acid free medium. 
Three controls represent the untreated control cells in each plate. 
Statistical analysis was done with one-way ANOVA with Tukey's multiple 
comparison at p < 0.05(*), p < 0.01 (**), p < 0.001 (***) and p < 0.0001 
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PEG QDs are well tolerated by both a cancer cell line (HeLa) 
and mouse fibroblast (NIH/3T3) at exceptionally high doses 
(mg range) of particles.  Internalized particles, generates a 
strong NIR signal which can be even improved further with a 
more suitable detector where emission at the peak maximum 
rather than the tail can be imaged.   

High molecular weight of PEG allow DOX loading to QDs.  
Ag2S-PEG QDs tagged with FA and loaded with DOX showed 
excellent drug efficiency coupled with receptor mediated 
uptake which allows selective delivery of particles to target 
site, while PEG only coating, increases blood-circulation and 
decreases fast uptake of particles. About 50 % drop in cell 
viability in 24h achieved with as low as 15 nM DOX carried with 
0.418 mg/mL QDs is remarkable. Minimizing the effective dose 
of the chemotherapeutic agent is very important.  Usually, 
loading the toxic drug into a relatively safer drug-carriers aims 
to achieve low effective dose and site specific delivery, when 
possible.53 These results are very promising from this 
perspective. A recent study reported about 40 % drop in the 
viability of MDA-MB-231 cells with Ag2S QDs coated with 
dodecanethiol/C18PMHPEG bilayer with 20 μM DOX 
(corresponding to 10 μg/mL Ag2S concentration) in 72h. They 
have achieved similar toxicity with Ag2S to free DOX between 
10-150 μM DOX concentrations.36 Here, we have achieved 
much higher toxicity with much lower DOX dose.  

We strongly believe that these particles are promising 
theranostic QDs, prepared in a very simple method.  
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