Journal of Materials Chemistry B

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsB

Journal Name

COMMUNICATION

A facile and one-step ethanol-thermal synthesis of MoS₂ quantum dots for two-photon fluorescence imaging Wei Gu,^a Yinghan Yan,^a Xuni Cao,^b Cuiling Zhang,^{*a} Caiping Ding^a and Yuezhong Xian^{*a}

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Two-photon fluorescenct (TPF) molybdenum disulfide quantum dots (MoS_2 QDs) were synthesized through a facile and one-step solvothermal approach. The MoS_2 QDs exhibit small size and high stability. Because of low toxicity and TPF ability, the MoS_2 QDs are successfully applied in the two-photon fluorescence bio-image.

INTRODUCTION

With the development of two-photon microscopy, two-photon fluorescence imaging has become a powerful tool for research in biological areas because of its unique advantages, such as low tissue autofluorescence, large penetration depth, reduced photobleaching and so on.¹⁻⁴ Fluorescence probes with twophoton excitation have been widely applied in TPF imaging,^{5, 6} and which can simultaneously absorb two less-energetic photons to reach the excited state of fluorophores. The TPF probes for cellular imaging should possess large two-photon absorption cross section, low toxicity and low photobleaching. Nowadays, great successes have been made on the synthesis of TPF probes, including organic dyes, semiconductor quantum dots, rare earth ions doped nanoparticles and carbon-based materials (carbon dots and graphene quantum dots (GQDs)). However, the poor photobleaching and little two-photon absorption cross section of organic dyes⁷ and unavoidable toxicity of heavy metal of semiconductor quantum dots⁸ overwhelmingly limit their positive applications for cellular imaging. Although carbon dots and GQDs do not exist these problems, and have been extensively used as TPF probes, 9, 10

searching for stable and non-toxic alternatives obtained by a facile synthesis route is still an intense challenge.

Recently, as a kind of typical layered transition-metal dichalcogenide, molybdenum disulfide (MoS₂) has drawn great attention, for it can be easily exfoliated from molybdenite compound. The crystal structure is consisting of covalently bonded S-Mo-S single layers interacting by Van der Waals forces.^{11, 12} Compared with MoS₂ nanosheets, MoS₂ QDs have stronger quantum confinement and edge effects, which will make them show unique and extra electrical/optical properties. So far, MoS₂ QDs have been used in fluorescent sensor,¹³ hydrogen evolution reaction¹⁴ and bioimaging.¹⁵ General methods for the synthesis of MoS2 QDs can be classified into two types: bottom-up and top-down. For the former, MoS₂ QDs were synthesized through the hydrothermal route by using molybdate salt and thiol-containing small molecules as precursors.^{13, 16} The final product was obtained by the timeconsuming dialysis process. For the latter, MoS2 QDs were prepared by a variety of methods, such as mechanical and chemical exfoliation,14, 17-19 electrochemically induced Fenton reaction,²⁰ thermal ablation method²¹ and so on. For instance, Shaijumon's group reported to prepare MoS₂ QDs using a liquid exfoliation technique involving bath sonication followed by ultrasound probe sonication of MoS₂ flakes.¹⁴ Li and coworkers demonstrated that electrochemically induced Fenton reaction could be used to generate QDs by etching MoS₂ nanosheets.²⁰ Recently, Wu et al. prepared MoS₂ QDs though thermal ablation of MoS₂ nanosheets in N, Ndimethylformamide (DMF) which has a high boiling point.²¹ Despite the great success with the synthesis of MoS₂ QDs, it is urgently to develop a simple approach for the preparation of MoS₂ QDs with stable fluorescence.

^{a.}Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchan Road, Shanghai 200241, China. Email: <u>clzhang@chem.ecnu.edu.cn</u>; yzxian@chem.ecnu.edu,cn.

^{b.}School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China)

⁺ Electronic Supplementary Information (ESI) available: Experimental section, Raman spectrum, XPS spectra, pH-depended fluorescence spectrum, Hoechst 33342/PI staining, TPF images of MDA-MB-468 incubated for different time, TPF images of MDA-MB-468 and Hela cells, fluorescence spectrum of MoS₂ QDs in presence of DNA, control experiment for TPF imaging, photostability of MoS₂ QDs within cells. See DOI: 10.1039/x0xx00000x

COMMUNICATION

Herein, we report the design and synthesis of MoS₂ QDs for TPF cellular imaging. The MoS₂ QDs were prepared by a facile, environmental-friendly, top-down, ethanol-thermal route from bulk MoS₂. These QDs exhibit stable TPF, high dispersibility, small size, non-toxicity and good biocompatibility. Furthermore, TPF imaging for cellular nucleus is successfully realized using MoS₂ QDs as probe. We believe the MoS₂ QDs are the kind of promising probe for the applications in vitro and vivo TPF bio-imaging.

RESULTS AND DISCUSSION

MoS₂ QDs were prepared by the combination of the ultrasonication and ethanol-thermal treatment. The asprepared MoS₂ QDs exhibit bright blue fluorescence. Uniform MoS₂ QDs without aggregation are observed from the TEM image (Fig. 1a). The lateral size distribution of MoS₂ QDs ranged from 1.2 to 4.2 nm, and the average size is about 2.9 nm. The suitable size distribution ensures them with the possibility to enter the cellular nucleus. Because of the low boiling point of ethanol, the as-prepared MoS₂ QDs do not agglomerate after removing the solvent by vacuum distillation and re-dispersing in water. The highly crystalline structure of the QDs with hexagonal lattice are visualized on the highresolution TEM (HRTEM) image (Fig. 1b) and the lattice fringe spacing is 0.27 nm deriving from the (100) lattice of MoS2.^{22, 23} As shown in Fig. 1c, the thickness of MoS_2 QDs varies from 1.4 to 2.8 nm, which is comparable with the interlayer space of few-layer MoS₂ nanosheets.^{24, 25}

XRD pattern of MoS₂ QDs is then investigated, and the bulk MoS₂ is used as a reference. It shows a strong diffraction peak at 2θ = 14.41° and three lower peaks at 2θ =32.71°, 39.56°, and 49.82° for bulk MoS₂ (Fig. 1d, red line).These peaks were attributed to the (002), (100), (103) and (105) planes of MoS_2 , respectively. For MoS₂ QDs (Fig. 1d, black line), only two peaks can be detected at 20=14.37° (002), 39.57° (103), and the signal of the (002) obviously decreased with the disappearance of most of other peaks, indicating the formation of mono-or few-layered MoS₂ QDs. Besides, Raman spectra of MoS₂ QDs exhibited two typical phonon modes of in-plane vibration of Mo and S atoms (E12g) and out-of-plane vibration of S atoms (A_{1g)} at 379.2 cm⁻¹ and 403.9 cm⁻¹, with a frequency difference of 24.3 cm $^{-1}$ (Fig. S1). $^{6,\ 26}$ According to the "frequency difference-thickness relation" of exfoliated MoS₂ nanosheets, the frequency difference could be corresponded to that of few-layered MoS₂ QDs,²⁴ which is consistent with the AFM measurement. To explore the changes of chemical composition, XPS of the QDs is characterized. As shown in Fig. S2a and S2b, Mo 3d3/2, Mo 3d5/2, S 2s, S 2p1/2, S 2p3/2 peaks are observed at 232.9, 229.7, 226.9, 163.8, 162.6 eV, which belong to the dominant 2H MoS₂ phase of the asprepared MoS₂ QDs.^{27, 28} The characteristic peaks arising from Mo 3d3/2, Mo 3d5/2 corresponded to the +4 oxidation of Mo, and the S 2p3/2 at 162.6 eV ascribed to the -2 oxidation state of S.²⁹ Low intensity peak at 236.0 eV may result from slight oxidation of Mo during solvothermal reaction. These results demonstrate that the MoS₂ QDs are successfully prepared.

Page 2 of 6

Fig. 1 (a) TEM, (b) HRTEM, and (c) AFM images of MoS₂ QDs, (d) the XRD patterns of MoS_2 QDs (black) and bulk MoS_2 (red). The inset in (a) and (c) shows the lateral size distribution and the height profile along the line overlaid on the image.

UV-vis spectrum of the MoS2 QDs shows a shoulder peak at about 277 nm (black line in Fig. 2a), which could be attributed to blue-shifted convoluted Z, C, and D excitonic peaks.^{23, 30} Under the irradiation of 365 nm, MoS₂ QDs solution displays a strong blue fluorescence (blue line in Fig. 2a and inset in the Fig. 2a). Fig. 2b exhibits the fluorescence emission spectra of MoS₂ QDs at excitation wavelengths ranging from 300 to 380 nm. It can be seen that the emission peak shows a red-shift (from ca. 400 nm to 460 nm) as the excitation shifts towards longer wave wavelengths. The excitation-dependent fluorescence property has been widely reported, such as GQDs³¹, carbon dots³², MoS₂ QDs^{20, 21}, and so on. Although the exact origin of excitation-dependent photoluminescence of

Fig. 2 (a) UV-vis spectrum (black) and fluorescence spectrum (blue) of MoS₂ QDs (inset: photograph of MoS₂ QDs under irradiation of 365 nm), (b) emission spectra of MoS₂ QDs at different excitation wavelengths ranging from 300 to 380 nm, (c) fluorescence lifetime of MoS₂ QDs by monitoring the emission at 410 nm (Ex: 340 nm), (d) photostability of MoS₂ QDs under excitation of 345 nm.

Journal Name

COMMUNICATION

Fig. 3 (a) Two-photon fluorescence of the MoS_2 QDs (Ex: 690 nm), (b) TPF image of solid MoS_2 QDs (Ex: 690 nm, scale bar: 5 μ m).

these QDs are still under debate, it might be attribute to the polydispersity or the surface state of MoS₂ QDs³³. The fluorescence intensity decreases remarkably with the increase of the excitation wavelengths, which is consistent with MoS₂ QDs or fluorescent MoS₂ nanoflakes prepared by other methods.^{13, 20, 34} In addition, the fluorescence quantum yield was measured using quinine sulfate as the standard, and it was about 3.1%, which was comparable to those of the reported MoS₂ QDs and GQDs.^{13, 35, 36} The fluorescence lifetime of MoS₂ (Fig. 2c) was τ_{ave} = 11.0 ns, suggesting that the MoS₂ QDs were suitable for biological and optoelectronic applications.³⁷

The stability of fluorophores is crucially important for bioimaging application. Significantly, the MoS_2 QDs display excellent photostability. The QDs retain almost the original fluorescence intensity after irradiation for 2 h (Fig. 2d). The effect of pH on the performances of QDs was further investigated. As shown in Fig. S3a, the as-prepared MoS_2 QDs exhibit higher fluorescence intensity under acidic condition than that of alkaline condition. As the pH was switched repeatedly between 2 and 12, the fluorescence intensity could be varied reversibly (Fig. S3b). Compared with the conventional semiconductor quantum dots, the results indicate that the pH hardly affects the fluorescence properties of the MoS_2 QDs.

The TPF properties of the MoS_2 QDs were further evaluated. As shown in Fig. 3a, the as-prepared MoS_2 QDs show the maximum TPF emission at 428 nm with the excitation wavelength at 690 nm. From TPF imaging of MoS_2 QDs (Fig. 3b), it can be seen that MoS_2 QDs display blue fluorescence under excitation of 690 nm. Recently, Song's group reported synthesis of water-soluble monolayer MoS_2 QDs through bottom-up route with N-acetyl-L-cysteine (NAC) as capping

Fig. 4 Cell viability by MTT assay of MDA-MB-468 Cells. (The concentrations of MoS_2 QDs are 0, 25, 50, 75, 100, 120, 150 $\mu g/mL$, respectively)

Fig. 5 TPF images of MDA-MB-468 cells incubated with MoS_2 QDs (50 μ g/mL) for 0 min to 3 h. (a: 0 min, b: 10 min, c: 30 min, d: 1 h, e: 2 h, f: 3h)

reagent¹⁶, and the QDs show upconversion fluorescence due to the two successive energy transfer from capping reagent NAC to MoS₂ QDs accompanied with the depletion of intermediate excited state by the upconversion process. With regard to our strategy, MoS₂ QDs were obtained through a top-down route without surface ligand, therefore, the TPF mechanism might be that two photons arrive QDs simultaneously and combine their energies to promote MoS₂ in ground states to an excited states, and then proceed along the normal fluorescence-emission pathway. As it has been well-recognized, the two-photon action cross section is an essential attribute for two-photon excited materials. By using rhodamine B as the reference, the two-photon absorption cross-section of MoS₂ QDs is estimated to be 9500±500 GM (Goeppert-Mayer unit, with 1 GM = 10^{-50} cm⁴s/photon), which is much larger than that of the organic dyes and compatible to that of semiconductor quantum dots and graphitic-C₃N₄ quantum dots^{38, 39}.

Toxicity assessment is also critical importance for the biological application. In this work, MTT assay was used to evaluate the cytotoxicity of MoS₂ QDs using MDA-MB-468 cells as model. As shown in Fig. 4, low concentrations of MoS₂ QDs are little toxic for these cells. Moreover, the cells maintained about 80% viability after incubated with QDs as high as 150 µg/mL. In addition, the cells incubated with different concentrations of MoS₂ QDs were stained with Hoechst 33342 and PI (Fig. S4). It is well known that Hoechst 33342 can penetrate the cell membranes and label the cell nucleus with blue fluorescence, while PI is commonly used for identifying dead cells. It can be seen that the cell viability is very well even the concentration of MoS_2 QDs is up to 150 μ g/mL. Almost no dead cells are found because the living cells can't be stained by PI. These data indicate that the MoS₂ QDs might be promising probe in cellular imaging.

To demonstrate the MoS_2QDs utility for TPF bioimaging, we further employ QDs for in vitro cell imaging. Fig. 5 and Fig. S5 show the TPF images of MDA-MB-468 cells incubated with MoS_2 QDs for different time. It can be observed that weak fluorescence appears in the cells within 10 min. The

This journal is © The Royal Society of Chemistry 20xx

fluorescence intensity is enhanced gradually with incubation time, and maintains a constant intensity after 2 h. To confirm the distribution of MoS₂ QDs in the cells, the TPF images were further investigated by culturing MDA-MB-468 and Hela cells with QDs (50 μ g/mL) for 2 h. It can be observed in Fig. S6 that MoS₂ QDs are able to label the cell nucleus of MDA-MB-468 cells and Hela cells, which is similar with that of graphitic-C₃N₄ QDs reported by Xie et al.³⁹. There may be some specific interactions between MoS₂ QDs and DNA (main components of chromatin). As shown in Fig. S7, with the addition of DNA, the fluorescence intensity of the solution of MoS₂ QDs increases. Although the mechanism is not clear, it might be associated with its charge-transfer excited states that are sensitive to external environment. Liu et al reported a watersoluble nanodot with an average diameter of 3.3 ± 0.5 nm for TPF imaging of cellular nucleus⁴⁰. They find the enhanced fluorescence with the addition of DNA, and ascribe the phenomenon to the significant increment hydrophobicity of nanodots with interaction with DNA. As a control, scarcely any fluorescence could be found in the cells without the MoS_2 QDs (Fig. S8). What's more, the fluorescence intensity of the MoS2 QDs within cells almost keeps unchanged after irradiation under 690 nm for 2 h (Fig. S9). The results imply that the QDs have the great potential in applications of the TPF bioimaging.

CONCLUSIONS

In summary, a facile, top-down, one-step ethanol-thermal route has been developed to synthesize MoS_2 QDs with TPF behaviour. The QDs exhibit small size, high dispersibility, low cytotoxicity and excellent photostability. Most importantly, the as-prepared MoS_2 QDs are well suitable for staining cellular nucleus, which are more adaptable for the further study of TPF bioimaging. Such MoS_2 QDs are promising probes for the applications of biological and deep-tissue imaging.

ACKNOWLEDGEMENTS

We acknowledge financial support from the National Natural Science Foundation of China (21175046) and the Shanghai Natural Science Foundation (15ZR1411600).

Notes and references

- 1 W. Denk, J. H. Strickler and W. W. Webb, *Science*, 1990, **248**, 73-76.
- 2 F. Helmchen and W. Denk, *Nat. Methods*, 2005, **2**, 932-940.
- 3 H. Kim, B. R. Kim, J. H. Hong, J.-S. Park, K. J. Lee and B. R. Cho, *Angew. Chem. Int. Ed.*, 2007, **46**, 7445-7448.
- 4 H. J. Kim, J. H. Han, M. K. Kim, C. S. Lim, H. Kim and B. R. Cho, Angew. Chem. Int. Ed., 2010, **49**, 6786-6789.
- 5 L. Cao, X. Wang, M. J. Meziani, F. Lu, H. Wang, P. G. Luo, Y. Lin, B. A. Harruff, L. M. Veca, D. Murray, S.-Y. Xie and Y.-P. Sun, *J. Am. Chem. Soc.*, 2009, **129**, 11318-11319.
- 6 S. Balendhran, J. Z. Ou, M. Bhaskaran, S. Sriram, S. Ippolito, Z. Vasic, E. Kats, S. Bhargava, S. Zhuiykovd and K. Kalantar-zadeh, *Nanoscale*, 2012, 4, 461-466.
- 7 C. Xu and W. W. Webb, J. Opt. Soc. Am. B, 1996, 13, 481-491.
- 8 K. B. Male, B. Lachance, S. Hrapovic, G. Sunahara and J. H. T. Luong, *Anal. Chem.*, 2008, **80**, 5487-5493.

- 9 B. Kong, A. Zhu, C. Ding, X. Zhao, B. Li and Y. Tian, *Adv. Mater.*, 2012, **24**, 5844-5848.
- 10 Q. Liu, B. Guo, Z. Rao, B. Zhang and J. R. Gong, Nano Lett., 2013, 13, 2436-2441.
- 11 A. Molina-Sánchez and L. Wirtz, *Phys. Rev. B*, 2011, **84**, 1-8.
- 12 M. Chhowalla, H. S. Shin, G. Eda, L.-J. L. , K. P. Loh and H. Zhang, *Nat. Chem.*, 2013, **5**, 263-275.
- 13 Y. Wang and Y. Ni, Anal. Chem., 2014, 86, 7463-7470.
- 14 D. Gopalakrishnan, D. Damien and M. M. Shaijumon, ACS nano, 2014, 8, 5297-5303.
- 15 J. Ou, A. F. Chrimes, Y. Wang, S. Tang, M. S. Strano and K. Kalantar-zadeh, *Nano Lett.*, 2014, **14**, 857-863.
- 16 H. Huang, C. Du, H. Shi, X. Feng, J. Li, Y. Tan and W. Song, Part. Part. Syst. Char., 2015, 32, 72-79.
- 17 G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen and M. Chhowalla, *Nano Lett.*, 2011, **11**, 5111-5116.
- 18 H. D. Ha, D. J. Han, J. S. Choi, M. Park and T. S. Seo, Small, 2014, 10, 3858-3862.
- X. Zhang, Z. Lai, Z. Liu, C. Tan, Y. Huang, B. Li, M. Zhao, L. Xie, W. Huang and H. Zhang, *Angew. Chem. Int. Edit.*, 2015, 54, 1-5.
- 20 B. Li, L. Chen, H. Zou, J. Lei, H. Luo and N. Li, Nanoscale, 2014, 6, 9831-9838.
- 21 S. Xu, D. Li and P. Wu, *Adv. Funct. Mater.*, 2015, 25, 1127-1136.
- 22 Y. Liu, H. Nan, XingWu, W. Pan, W. Wang, J. Bai, W. Zhao, L. Sun, X. Wang and Z. Ni, *ACS nano*, 2013, **7**, 4202-4209.
- 23 Y. C. Wang, J. Z. Ou, S. Balendhran, A. F. Chrimes, M. Mortazavi, D. D. Yao, M. R. Field, K. Latham, V. Bansal, J. R. Friend, S. Zhuiykov, N. V. Medhekar, M. S. Strano and K. Kalantar-zadeh, ACS nano, 2013, 7, 10083-10093.
- 24 L. Changgu, Y. Hugen, L. E. Brus, T. F. Heinz, J. Hone and S. Ryu, *ACS nano*, 2010, **4**, 2695-2700.
- 25 Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P.-H. Tan, M. Kan, J. Feng, Q. Sun and Z. Liu, *Nano Lett.*, 2013, **13**, 3870-3877.
- 26 H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier and D. Baillargeat, *Adv. Funct. Mater.*, 2012, **22**, 1385-1390.
- 27 N. H. Turner and A. M. Single, *Surf. Interface Anal.*, 1990, **15**, 215-222.
- 28 V. O. Koroteev, L. G. Bulusheva, I. P. Asanov, E. V. Shlyakhova, D. V. Vyalikh and A. V. Okotrub, *J. Phys. Chem. C*, 2011, **115**, 21199-21204.
- 29 J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan and Y. Xie, *J. Am. Chem. Soc.*, 2013, **135**, 17881-17888.
- 30 J. Wilcoxon and G. Samara, Phys. Rev. B, 1995, 51, 7299-7302.
- 31 Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou and L. Qu, Adv.
- Mater., 2011, **23**, 776-780. 32 H. Nie, M. Li, Q. Li, S. Liang, Y. Tan, L. Sheng, W. Shi and S. X.-
- A. Zhang, *Chem. Mater.*, 2014, **26**, 3104-3112.
- 33 D. Gopalakrishnan, D. Damien, B. Li, H. Gullappalli, V. K. Pillai, P. M. Ajayan and M. M. Shaijumon, *Chem. Comm.*, 2015, **51**, 6293-6296.
- 34 V. Stengl and J. Henych, Nanoscale, 2013, 5, 3387-3394.
- 35 R. Liu, D. Wu, X. Feng and K. Mullen, J. Am. Chem. Soc., 2011, 133, 15221-15223.
- 36 D. Wang, L. Wang, X. Dong, Z. Shi and J. Jin, Carbon, 2012, 50, 2147-2154.
- 37 J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. Zhu and P. M. Ajayan, *Nano Lett.*, 2012, **12**, 844-849.
- 38 U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke and T. Nann, *Nat. Methods*, 2008, 5, 763-775.
- 39 X. Zhang, H. Wang, H. Wang, Q. Zhang, J. Xie, Y. Tian, J. Wang and Y. Xie, *Adv. Mater.*, 2014, **26**, 4438-4443.

Journal Name

Journal Name

40 K. Y. Pu, K. Li, X. Zhang and B. Liu, Adv. Mater., 2010, 22, 4186-4189.

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2015

MoS₂ quantum dots with two-photon fluorescent feature are synthesized through a one-step solvothermal approach and successfully used for cellular bioimaging.