This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Decoration of the inert basal plane of defect-rich MoS$_2$ with Pd atoms for achieving Pt-similar HER activity

Kun Qi, Shansheng Yu, Qiyu Wang, Wei Zhang, Jinchang Fan, Weitao Zheng* and Xiaoqiang Cui*

Outstanding hydrogen evolution reaction (HER) activity and stability are highly desired for transition metal dichalcogenide (TMD)-based catalysts as Pt substitutes. Here, we theoretically calculated and experimentally implemented to show that adsorbing Pd atoms on the basal plane of defect-rich (DR) MoS$_2$ will effectively modulate the surface electronic state of MoS$_2$ while retaining its active sites, which greatly enhanced the HER activity. Three decoration strategies were used to implement this design: direct epitaxial growth, assembling spherical nanoparticles and assembling Pd nanodisks (NDs). The results showed that only Pd NDs are able to be site-specifically decorated on the basal plane of DR-MoS$_2$ through lamellar-counterpart-induced van der Waals pre-combination and covalent bonding. This Pd NDs/DR-MoS$_2$ heterostructure exhibits exceptional Pt-similar HER properties with a low onset-overpotential (40 mV), small Tafel slope (41 mV dec$^{-1}$), extremely high exchange current density (426.58 μA cm$^{-2}$) and robust HER durability. These results demonstrate a novel modification strategy by a lamellar metallic nanostructure for designing excellent layered TMD-based HER catalysts.

1. Introduction

The electrocatalytic hydrogen evolution reaction (HER) is an efficient and easily accessible strategy for producing hydrogen, which is considered a promising eco-friendly and sustainable substitute fuel with high energy density. Most of the research on HER in the past few years has been focused on efforts to develop earth-abundant materials to replace the state-of-the-art Pt. Among these alternatives, molybdenum disulfide (MoS$_2$) has gained tremendous attention because of its high natural abundance and high HER efficiency resulting from its characteristic structure and appropriate hydrogen adsorption energy. Although numerous attempts have been made to improve the HER activity of MoS$_2$ engineering MoS$_2$-based electrocatalysts with activities similar to Pt remains challenging. Creating additional HER-active sites by designing defect-rich or edge-oriented structures has resulted in superior HER performance because unsaturated terrace and edge sites have been demonstrated to be active sites for the HER reaction. Improving the intrinsic conductivity of MoS$_2$ is another effective approach for enhancing its activity. Unfortunately, increasing the number of active sites and enhancing the conductivity are normally contradictory because an abundance of active sites will generally decrease the intrinsic conductivity of MoS$_2$.

To overcome this obstacle, Xie’s group developed oxygen-incorporated disordered MoS$_2$ ultrathin nanosheets for efficient HER with both abundant active sites and good intrinsic conductivity. Bao’s group doped a single Pt atom into a matrix of MoS$_2$ to improve the electronic state and the inert S-atom activity. Recently, Santos and Nørskov’s theoretical studies have predicted that the HER activity of monolayer MoS$_2$ can be enhanced by adsorbing it onto metal substrates. However, the experimental complexity and the flaws of geometric dimensioning limit the real application of these systems. Modification of metal nanoparticles on MoS$_2$ nanosheets has already shown a certain enhancement of HER activity. Zhang’s group has shown that modifying MoS$_2$ with noble-metal nanoparticles (NPs) can enhance the intrinsic properties of MoS$_2$. However, these epitaxial growth methods suffer from the fact that the active defect sites are most likely to be covered by the nucleation of the metal nanostructures. Given the aforementioned considerations, successfully modifying the defect-rich MoS$_2$ nanosheets while retaining their active sites would result in substantial improvement of their HER activity.

Adsorbing Pd atoms on the basal plane of defect-rich MoS$_2$ will greatly enhance the HER activity because an effectively modulating the surface electronic state of MoS$_2$ while retaining its active sites based on our theoretical calculations. This MoS$_2$-based hetero-nanostructure with trace amount of Pd showing Pt-similar HER activity will push forward the real application since the price of Pd is only one third of Pt. Traditional direct epitaxial growth or assembling spherical nanoparticles are not able to meet the requirements of site-
specifically decoration of Pd atoms on the basal plane while retaining the active defect sites of MoS\(_2\). Here, we designed and implemented a facile strategy by assembling Pd nanodisks (NDs) on the basal plane of defect-rich MoS\(_2\) nanosheets (DR-MoS\(_2\)) while retaining their active sites. The Pd-ND-modified DR-MoS\(_2\) heterostructure (Pd NDs/DR-MoS\(_2\)) was constructed by the lamellar-counterpart-induced van der Waals pre-combination and further sonication-induced covalent bonding.\(^{31-33}\) The ingenious assembly strategy and disk-like 2D structure of Pd NDs avoid the occupation of HER active sites which was commonly resulted by traditional epitaxial growth and assembling method. Meanwhile, the surface state of the MoS\(_2\) was rationally modulated by Pd-ND modification, resulting in a product that exhibits extremely high HER activity and stability similar to that of Pt/C. Our results demonstrate a potential strategy via lamellar metallic nanostructure modification for designing excellent layered transition metal dichalcogenide (TMD) HER catalysts.

2. Result and discussion

Density functional theory (DFT) calculations were used to predict the surface-state modulation of MoS\(_2\) after Pd adsorption. Geometrical optimizations of the palladium-adsorbed MoS\(_2\) slab are performed for one palladium atom located near the Mo-edge with sulfur monomers. The three sites of high symmetry are considered, which are top of Mo, S, and hexagon center. It is found when the palladium atom is on the top of S, it will spontaneously fall into its next top of Mo. Therefore, including the edge of MoS\(_2\) slab, there exist seven stable geometrical structures as shown in Figure 1. The palladium adsorption energy \(\Delta E(\text{Pd})\) can be calculated for evaluating the structural stability using the following equation:

\[
\Delta E(\text{Pd}) = E(\text{slab + Pd}) - E(\text{slab}) - E(\text{Pd})
\]

where \(E(\text{slab + Pd})\) is the total energy for the MoS\(_2\) slab adsorbed with one palladium atom. \(E(\text{slab})\) is the total energy for the pristine MoS\(_2\) slab, and \(E(\text{Pd})\) is the energy for one palladium atom. The calculated palladium adsorption energies are listed in Table 1. Energy values show that the palladium atom clearly prefers to bond with sulfur monomers on the edge due to uncoordinated sulfur atoms in Figure 1f and Figure 1g, which suggests that the catalytic active sites should be blocked. Therefore, we should endeavor to avoid covering the active site during the preparation of catalysts. Except for the edge, the top of Mo is the following favorable adsorbed site on the surface of MoS\(_2\) slab in Figure 1a, where the active sites are kept, which is considered to be favorable and detailed discussed in this work.

As described in Figures 1, Table 1, and Figure S1, the fact that Pd atom prefers to bond with uncoordinated S monomers on the edge will result in a decrease in the number of catalytically active sites.\(^{21,34}\) On the contrary, the active sites are supposed to be retained if Pd atoms are adsorbed onto the basal plane of MoS\(_2\) (Figure 1a-1e), which is favorable for further improvement of the HER activity. The Gibbs free energy of hydrogen adsorption on the edge S atoms of the basal plane modified Pd-MoS\(_2\) slab are then calculated that possesses a smaller differential binding free energy than that of any pristine MoS\(_2\) system previously reported, as shown in Figure 2a, indicating a lower energy barrier or lower overpotential to drive the HER process (see Figures S2, S3 and Tables S1, S2 for details).\(^{6,9}\) One notable interesting result is that a much smaller binding free energy obtained at higher H coverage, which indicates that higher H coverage can be achieved at a lower overpotential, thus providing more HER-effective sites on Pd-MoS\(_2\) (Figure S4). The density of states (DOS) in Figure 2b show that the electron states near the Fermi level are significantly increased as a result of the adsorption of Pd atoms onto the basal plane of MoS\(_2\), which indicates that the electrical conductivity of MoS\(_2\) will be enhanced. Benefitting from the optimization of both the H adsorption free energy and the interdomain conductivity of MoS\(_2\) by Pd modulation on the basal plane, a better HER performance with a small onset overpotential and large
Figure 3. Typical TEM image of (a) DR-MoS2; (b) Pd nanoparticles/DR-MoS2 composite obtained by epitaxial growth method; (c) Pd nanoparticles/DR-MoS2 composite obtained by sonification; (d) Pd NDs/DR-MoS2 (Scale bars: 50 nm; arrows show the aggregation of Pd nanoparticles at the boundary defect sites of DR-MoS2). (e) HER polarization curves of the Pd/DR-MoS2 based catalysts.

Figure 4. (a) Typical TEM image of Pd NDs; the inset in (a) shows the statistical data for diameter and thickness; (b-c) HRTEM images of two Pd NDs recorded parallel and vertical on a TEM grid, respectively; (d) Corresponding SAED pattern of Pd NDs; (e-f) AFM images of Pd NDs; the inset in (f) illustrates the average length and height drawn from the white square zone in (e).

Cathodic current density can be expected for the Pd-MoS2 hetero-coordinated catalyst.35

Three decoration strategies were used to implement the design of Pd atom modification: direct epitaxial growth, assembling spherical nanoparticles, and assembling Pd NDs. Ultrathin and defect-rich MoS2 nanosheets were synthesized via a previous method reported by Xie’s group as shown in Figure 3a and Figure S5.13 TEM images in Figure 3 show that Pd are efficiently modified onto the pristine DR-MoS2 surface in all three conditions. Electrochemical results in Figure 3e show that the HER activities of Pd/MoS2 heterostructure from direct epitaxial growth (curve b) and assembling spherical nanoparticles (curve c) are even worse than that of the pristine DR-MoS2 (curve a). The reason of the poor performances is explained by the fact that the direct epitaxial growth or assembly of small Pd nanoparticles will occur on the uncoordinated S atoms of the boundary defect sites, as indicated by the arrows in the TEM images of Figure 3b and 3c, which will definitely block the HER-active sites. To address this challenge, we synthesized lamellar Pd NDs for assembling on the basal plane of MoS2 by exploiting the strong van der Waals interaction between two lamellar counterparts.36 The HER performance of DR-MoS2 is greatly improved after the modification of Pd NDs, as shown by curve d in Figure 3e. The Pd loading amount for these three methods are kept same for comparison.

Lamellar circular Pd NDs were specially synthesized through a modified solvothermal method in which oxygen was used as an etchant.37 The structure was characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected-area electron diffraction (SAED), and atomic force microscopy (AFM) as shown in Figure 4. Two main morphologies of nanodisk and nanorod were observed in Figure 4a. The TEM images collected at various tilt angles (Figure S6) suggested that the nanorods are probably the vertical alignment of nanodisks. The disk feature of as-prepared Pd nanostructure is further confirmed by the AFM images in Figure 4e and 4f. HRTEM micrographs and SAED patterns in Figure 4b-4d show that the Pd NDs are dominated by (111) facets. The synergistic effect of etching-regrowth by oxygen and carbon monoxide is demonstrated to be essential during the synthesis of Pd NDs (details are described in SI, Figure S7-S9).38, 39 The Pd NDs show an average thickness of 3.5 ± 0.9 nm and a diameter of 15.0 ± 3.5 nm.

The Pd NDs/MoS2 hetero-nanostructure were further investigated by TEM, HRTEM, scanning electron microscopy (SEM), energy dispersive X-ray spectrum (EDX), and X-ray photoelectron spectroscopy (XPS). TEM characterization show that the Pd NDs were uniformly assembled on the basal plane of DR-MoS2 (Figure 5a), with seldom aggregating on the boundary defect sites. The combination of Pd NDs and DR-MoS2 was further confirmed by the XRD and HRTEM images in
Figure 5. Characterization of the Pd NDs/DR-MoS$_2$ heterostructure: (a) Typical TEM image of Pd NDs/DR-MoS$_2$; the inset in (a) shows the XRD pattern and the distribution of Pd NDs/DR-MoS$_2$; (b) HRTEM image of the Pd NDs/DR-MoS$_2$; (c) FFT-masked HRTEM image of the yellow square area in (b), which clearly shows the atom distribution of Mo, S and Pd on the surface of the Pd NDs/DR-MoS$_2$; (d) SEM image of Pd NDs/DR-MoS$_2$; (e) EDX mapping image of Pd NDs/DR-MoS$_2$; inset in (e) show the element distribution of Mo, S and Pd, respectively.

Figure 6. XPS spectra showing the surface binding state of (a-b) DR-MoS$_2$ nanosheets; (c) Pd NDs and (d-f) Pd NDs/DR-MoS$_2$.

The XPS data presented in Figure 6 show that the covalent bonds are formed between Pd and S atoms after the modification. The binding energies of Mo and S in the MoS$_2$ nanosheets exhibit an obvious variation before (Figure 6a and 6b) and after (Figure 6d and 6e) the Pd ND modification. The S 2p spectrum in Figure 6d shows a broad and complex peak consisting of three doublets, i.e., S$^{2-}$ 2p$_{3/2}$ (160.2 eV), S$^{2-}$ 2p$_{1/2}$ (162.3 eV); S$^{2-}$ 2p$_{3/2}$ (162.9 eV), S$^{2-}$ 2p$_{1/2}$ (164.4 eV); and bridging S$_2^2$ or/and apical S$^{2-}$ (165.5 eV), S$^{4+}$ (166.9 eV). The appearance of S with a high binding energy state may indicate potential HER-active sites. The binding energy of the Mo 3d spectrum also shows an obvious shift of the peak position (Figure 6b and 6e), which is attributed to the valence-state variation of Mo stemming from the bonding between S and Pd after the Pd ND modification. A comparison of the Pd 3d spectra (Figure 6c and Figure 6f) reveals a slight Pd0 positive shift and the appearance of much more Pd$^{2+}$ after combination, which further confirms the formation of covalent bonds between S and Pd during sonication, indicating the tight bonding between the Pd NDs and MoS$_2$ nanosheets. The variations of the S 2p, Mo 3d and Pd 3d spectra after the Pd ND modification clearly show that the surface-state modulation which may further enhance the interdomain conductivity. The variation of the electronic state about S may benefit the HER because the increase in the number of unsaturated sulfide bonds on the intrinsic surface will boost the HER activity. The XPS results obtained from DR-MoS$_2$ sonicated in the absence of Pd NDs shows a negligible change of the surface states (Figure S12).
The HER activity of Pd NDs/DR-MoS2 was investigated by electrochemical measurements in 0.5 M H2SO4 solution. As-prepared Pd NDs/DR-MoS2 exhibits an extremely small onset overpotential (η) of 40 mV for the HER, which is much smaller than those of the DR-MoS2, 9,51 Pd NDs, and also Pd/C, and is even similar to that of Pt/C. The cathodic current density is 83 mA cm$^{-2}$ at an overpotential of 300 mV, which is 2.8 and 6.4 times greater than those of MoS2 9,51 and Pd NDs, respectively (Figure 7a and Table S3). Electrochemical impedance spectroscopy (EIS) characterization of the Nyquist plots (Figure 7b) reveals that the Pd NDs/DR-MoS2 heterostructure shows a remarkable decrease in charge-transfer resistance (R_{ct}) compared with the MoS2 nanosheets, which is attributed to the enhancement of the interdomain conductivity upon Pd ND modification, consistent with the DOS results illustrated in Figure 2b.19,52,53

The Tafel plots of various catalysts were constructed to reveal their HER reaction kinetics. The Tafel slope of the Pd NDs/DR-MoS2 is 41 mV dec$^{-1}$, as shown in Figure 7c. To the best of our knowledge, this value, which is similar to the 30 mV dec$^{-1}$ of Pt/C, surpasses most of the previously reported Tafel slopes for MoS2-based materials and is even comparable to those of Pt-MoS2 hybrids and Pt-NP-modified TiO2, which exhibit a low slope of 40 mV dec$^{-1}$.26,54,55 indicating a Heyrovsky or Tafel rate-determining-step mechanism for the HER, instead of the common Volmer reaction.56,57 The small Tafel slope will lead to a faster increase of the HER rate with increasing overpotential, which is important in practical applications.58,59 Exchange current density values of various samples were obtained by applying an extrapolation method to the Tafel plots (Figure 7d). The Pd NDs/DR-MoS2 catalyst displays an extremely large exchange current density of 426.58 μA cm$^{-2}$, which is 50.7 times greater than that of DR-MoS2 nanosheets (Table S4). These results represent, for the first time, a non-Pt-metal-modulated MoS2 catalyst that approaches the performance of the benchmark Pt/C catalyst with superior catalytic activity and favorable reaction kinetics compared with catalysts previously reported in the literature, as shown in Table 2.

The cycling stability and long-term durability of Pd NDs/DR-MoS2 for HER were further studied in acidic media. The linear sweep voltammetry (LSV) curves measured for Pd NDs/DR-MoS2 before and after 1000 cyclic voltammetry (CV) cycles between 0.1 and -0.3 V vs. RHE at a scan rate of 50 mV s$^{-1}$ exhibit a negligible loss in current density compared to the initial curve (Figure 7e). Figure 7f shows the long-term durability measured by performing a continuous HER at a static overpotential of 150 mV. Consistent H2 generation was observed during the HER process (Figure S13) as the reaction proceeded. The as-measured time-dependent curve has a zigzag shape that can be attributed to the alternate processes of bubble accumulation and release on the surface of the electrode.13 The NDs/DR-MoS2 modified electrode is hydrophilic with a contact angle of 46° that will not affect the electrochemical behavior on the surface (as shown in Figure S14). After scanning was performed for 10,000 seconds, only a slight degradation of current density was observed; this degradation might be caused by the consumption of H+ in the electrolyte or by H2 bubbles remaining on the surface of the electrode thus hindering the reaction. The XPS and TEM results...
Table 2. Comparison of HER parameters.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Onset overpotential [mV]</th>
<th>Tafel slope [mV decade⁻¹]</th>
<th>j [mA cm⁻²]ᵃ</th>
<th>η [mV]ᵇ</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd NDs/DR-MoS₂</td>
<td>40</td>
<td>41</td>
<td>83</td>
<td>103</td>
<td>This work</td>
</tr>
<tr>
<td>Pd NDs</td>
<td>249</td>
<td>59</td>
<td>13</td>
<td>286</td>
<td>This work</td>
</tr>
<tr>
<td>DR-MoS₂</td>
<td>166</td>
<td>66</td>
<td>21</td>
<td>208</td>
<td>This work</td>
</tr>
<tr>
<td>Pd/C</td>
<td>264</td>
<td>124</td>
<td>2</td>
<td>398</td>
<td>This work</td>
</tr>
<tr>
<td>Pt/C</td>
<td>~0</td>
<td>30</td>
<td>150</td>
<td>77</td>
<td>This work</td>
</tr>
<tr>
<td>Defect-rich MoS₂</td>
<td>120</td>
<td>50</td>
<td>~65</td>
<td>~190</td>
<td>13</td>
</tr>
<tr>
<td>Defect-free MoS₂</td>
<td>180</td>
<td>87</td>
<td>~15</td>
<td>~265</td>
<td>13</td>
</tr>
<tr>
<td>Bulk MoS₂</td>
<td>250</td>
<td>81</td>
<td>~3</td>
<td>N/A</td>
<td>13</td>
</tr>
<tr>
<td>Edge-oriented MoS₂</td>
<td>150</td>
<td>50</td>
<td>~20</td>
<td>~280</td>
<td>14</td>
</tr>
<tr>
<td>Double-zygoid MoS₂</td>
<td>~175</td>
<td>50</td>
<td>~11</td>
<td>~230</td>
<td>15</td>
</tr>
<tr>
<td>MoS₂/RGO</td>
<td>100</td>
<td>41</td>
<td>N/A</td>
<td>~150</td>
<td>17</td>
</tr>
<tr>
<td>Metallic MoS₂</td>
<td>195</td>
<td>54</td>
<td>~80</td>
<td>~190</td>
<td>18</td>
</tr>
<tr>
<td>1T MoS₂</td>
<td>100</td>
<td>40</td>
<td>~40</td>
<td>~205</td>
<td>19</td>
</tr>
<tr>
<td>MoS₂/N-doped CNT</td>
<td>75</td>
<td>40</td>
<td>N/A</td>
<td>~110</td>
<td>20</td>
</tr>
<tr>
<td>Pt atom doped MoS₂</td>
<td>~150</td>
<td>96</td>
<td>N/A</td>
<td>~150</td>
<td>22</td>
</tr>
<tr>
<td>Au NRs-MoS₂ (dark)</td>
<td>220</td>
<td>86</td>
<td>~7</td>
<td>~330</td>
<td>29</td>
</tr>
<tr>
<td>Au NRs-MoS₂ (bright)</td>
<td>160</td>
<td>71</td>
<td>~20</td>
<td>~260</td>
<td>29</td>
</tr>
<tr>
<td>Au-MoS₂</td>
<td>230</td>
<td>57</td>
<td>~3</td>
<td>~346</td>
<td>30</td>
</tr>
<tr>
<td>Pt/RGO/CNT/MoS₂</td>
<td>90</td>
<td>103</td>
<td>~21</td>
<td>~220</td>
<td>52</td>
</tr>
<tr>
<td>MoS₂/MoS₂ Nanowires</td>
<td>200</td>
<td>60</td>
<td>~7</td>
<td>~250</td>
<td>57</td>
</tr>
</tbody>
</table>

ᵃ Cathodic current density (j) was recorded at η = 300 mV. ᵇ Overpotential (η) was recorded at j = 10 mA cm⁻²

reveal negligible changes of the morphology and composition after the durability tests (Figure S15 and Figure S16).

3. Conclusions

In summary, a newly designed HER catalyst—Pd modified on the basal plane of a DR-MoS₂ nanosheet—was determined by DFT calculations to be highly active toward the HER. The heterostructure was implemented by synthesizing and assembling a disk-like Pd nanostructure onto the basal plane of DR-MoS₂ while retaining the active sites. The synergistic regulation of both the structure and electronic states caused the Pd-NDs/DR-MoS₂ heterostructure to exhibit exceptional HER properties with a low onset-overpotential, small Tafel slope, extremely high exchange current density and robust HER durability. These results represent, for the first time, a non-Pt-metal-modulated MoS₂ catalyst that approaches the performance of the benchmark Pt/C catalyst with superior catalytic activity and favorable reaction kinetics compared with catalysts previously reported in the literature. The study demonstrates the potential for HER catalytic performance improvement of layered TMDs by modification of the lamellar metal nanostructure, which will open a new pathway for improving the HER activity of catalysts through synergistic structural and electronic modulations.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51571100, 21275064, 21075051), the Program for New Century Excellent Talents in University (NCET-10-0433), and the Specialized Research Fund for the Doctoral Program of Higher Education (20130061110035).

Notes and references

Molybdenum disulfide/palladium nanodisks heterostructure was determined to be highly active toward HER through DFT predictions and experimental verification.