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Abstract: Two acetylene-bridged molecules, built by grafting phthalimides on 

thienoisoindigo (TII) and diketopyrrolopyrrole (DPP) blocks have been synthesized, 

characterized and evaluated as electron acceptor material in air-processed inverted organic 

solar cells. Once blended with the poly(3-hexylthiophene), power conversion efficiencies 

(PCEs) of ca 0.4% and 3.3% were achieved for TII and DPP based devices respectively. To 

the best of our knowledge these PCEs (i) rank amongst the highest reported so far for 

diketopyrrolopyrrole based acceptors and (ii) make this contribution the very first example of 

thienoisoidingo based material used as non-fullerene electron acceptor. 

 

1. Introduction 

 

The synthesis of active materials for organic solar cells (OSCs) is a focus of 

considerable attention.1-3 Multi-disciplinary research effort in device fabrication and design of 

donor materials has led to rapid progress.4-7 Actually, power conversion efficiencies (PCEs) 

exceeding 10.0% have been recently reported for cells based either on low band gap polymers 

or on molecular donors.8-10 

On the other hand, fullerene derivatives have served as the standard electron-acceptor 

materials for almost two decades.11-14 However, despite of large electron affinity, high 

electron-mobility and isotropic charge-transport, owing to their 3-dimensional structures,15-17 

fullerenes derivatives present several drawbacks such as low absorption in the visible 
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spectrum, limited structural tunability of energy levels and relatively high cost and 

environmental impact of their soluble derivatives PC61BM and PC71BM.  

In this context, polymeric and molecular non-fullerene acceptors have received increasing 

attention in recent years.18-21 In particular, it has been a surge in the development of well-

defined small molecules due to their inherent advantages in terms of synthesis, purification 

and analysis of structure-properties relationships. Various classes of molecular systems have 

been synthesized and evaluated as acceptors including vinazene,22-24 9,9′-bifluorenylidene,25, 

26 diketopyrrolopyrrole derivatives,27-30 dicyan-substituted quinacridone,31 functionalized 

isoindigo,32 BODIPYs,33 electron-deficient pentacenes,34 fluoranthene-fused imide,35, 36  

spiro-annulated derivatives,37, 38 naphthalene-diimides39, 40 or perylene-diimides.41-44 Rapid 

improvement of PCEs have been reported for OSCs combining extended molecular 

architectures,45-47 mainly based on PDIs,48-52 with high performance low band gap polymers. 

For instance, Nuckolls et al. recently achieved an impressive 8.3% power conversion 

efficiency by blending helical perylene diimide oligomers with the well-known PTB7-Th, 

thus competing with the best fullerene based OSCs.53 On the other hand, few examples of 

PCEs exceeding 2.5% have been recorded so far with the standard poly(3-hexylthiophene) 

(P3HT) donor material.22, 54 

In our continuing commitment towards simplified chemical structures of active OPV 

materials,55-58 we report here on the synthesis and preliminary evaluation of two electron-

acceptors built, in few steps, by attaching electron-withdrawing phthalimide groups on two 

central chromophore blocks namely the thienoisoindigo (TII) and diketopyrrolopyrrole (DPP) 

(Scheme 1) through the use of acetylenic linkages. Such connectors indeed permit to extend 

the effective conjugation while lowering the energy level of the frontier orbitals and reducing 

the steric interactions between thiophene units and phenyl rings.59, 60 

 

2. Experimental section  

 

Materials 

All reagents and chemicals from commercial sources were used without further purification. 

Reactions were carried out under neutral atmosphere unless otherwise stated. Solvents were 

dried and purified using standard techniques. 
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Measurements and characterization 

Flash chromatography was performed with analytical-grade solvents using Aldrich silica gel 

(technical grade, pore size 60 Å, 230-400 mesh particle size). Flexible plates ALUGRAM® 

Xtra SIL G UV254 from MACHEREY-NAGEL were used for TLC. Compounds were 

detected by UV irradiation (Bioblock Scientific) or staining with I2, unless stated otherwise. 

Melting point measurements were performed using a Reichert Jung THERMOVAR (ranging 

from room temperature to 250°C). NMR spectra were recorded with a Bruker AVANCE III 

300 (1H, 300 MHz and 13C, 75 MHz). Chemical shifts are given in ppm relative to TMS and 

coupling constants J in Hz. UV-Vis spectra were recorded with a Perkin Elmer 950 

spectrometer. Mass spectrometry was performed with a JEOL JMS-700 B/E. Cyclic 

voltammetry was performed in 1.0 M Bu4NPF6/CH2Cl2 (HPLC grade). Solutions were 

degassed by argon bubbling prior to each experiment. Experiments were carried out in a one-

compartment cell equipped with platinum electrodes and a saturated calomel reference 

electrode (SCE) using a Biologic SP-150 potentiostat with positive feedback compensation. 

FTIR measurements were performed using a Bruker Vertex 70 instrument. 

 

Synthetic procedures 

(E)-2,2'-dibromo-4,4'-bis(2-ethylhexyl)-[6,6'-bithieno[3,2-b]pyrrolylidene]-5,5'(4H,4'H)-dione 

TII-Br2,
61 3,6-bis(5-bromothiophen-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-

1,4(2H,5H)-dione DPP-Br2
62 and 5-ethynyl-2-hexylisoindoline-1,3-dione Pht63 were 

synthesized  according to previously reported methods. 

 
General procedure for the synthesis of TII-Pht2 and DPP-Pht2: 
 
TII-Br2 or DPP-Br2 (100 mg ; 1 eq), Pht (2 eq), copper(I) iodide (0.07 eq) and tetrakis-

(triphenylphosphine) palladium(0) (0.06 eq) were combined into a dry Schlenk tube equipped 

with a stir bar and degassed under vacuum. A solution of toluene (20 mL, HPLC grade) and 

diisopropylamine (2 eq) was degassed separately by freeze-pump-thaw cycles (3 x 30 min). 

The later was then added to the powders and reaction mixture was heated overnight at 50°C 

under Ar atmosphere. After cooling down to room temperature, the organic layer was washed 

with water (3 x 100 mL) and dried over MgSO4. After removal of the solvent, crude product 

were subjected to silica column chromatography using chloroform as eluent to provide the 

desired compounds. 
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TII-Pht2: (99 mg, 64% yield) 1H NMR (300 MHz, CDCl3, ppm) : 7.90 (s, 2H), 7.82 (d, J = 

7.8 Hz, 2H), 7.76 (dd, 3J = 6.6 Hz, 4J = 1.2 Hz, 2H), 6.96 (s, 2H), 3.73-3.65 (m, 8H), 1.89-

1.81 (m, 2H), 1.72-1.63 (m, 4H), 1.44-1.25 (m, 28H), 0.97-0.86 (m, 18H). 13C NMR (75 

MHz, CDCl3, ppm) : 170.68, 167.80, 167.70, 151.26, 136.47, 132.71, 131.27, 130.26, 

128.66, 125.71, 123.41, 120.97, 117.37, 115.83, 96.90, 88.63, 46.05, 38.64, 38.44, 31.50, 

28.79, 28.66, 26.68, 24.07, 23.20, 22.65, 14.21, 14.15, 10.75. FAB+ HRMS: calculated for 

C60H68N4O6S2 1004.4580, found 1004.4574. FTIR (cm-1): 2169 (st(C≡C)); 1711 (st(C=O)). MP: 

>250°C. 

 

DPP-Pht2: (128 mg, 84% yield) 1H NMR (300 MHz, CDCl3, ppm) : 8.91 (d, J = 4.2 Hz, 

2H), 7.96 (s, 2H), 7.84 (s, 4H), 7.45 (d, J = 4.2 Hz, 2H), 4.02 (d, J = 7.8 Hz, 4H), 3.68 (t, J = 

7.2 Hz, 4H), 1.90 (m, 2H), 1.68 (m, 4H), 1.44-1.25 (m, 28H), 0.94-0.86 (m, 18H). 13C NMR 

(75 MHz, CDCl3, ppm) : 167.80, 167.68, 161.61, 139.69, 136.70, 135.72, 134.22, 132.72, 

131.82, 131.58, 129.18, 128.37, 127.28, 125.44, 123.44, 109.42, 95.96, 86.49, 46.31, 39.31, 

38.47, 31.49, 30.27, 28.66, 28.44, 26.68, 23.70, 23.19, 22.65, 14.19, 14.14, 10.61. FAB+ 

HRMS: calculated for C62H70N4O6S2 1030.4737, found 1030.4754. FTIR (cm-1): 2192 

(st(C≡C)); 1770 (st(C=O)). MP: 219°C. 

 

 

3. Results and discussion  

 

TII-Pht2 and DPP-Pht2 were obtained in 64 and 84% yields respectively by Sonogashira 

cross-coupling reaction between the di-brominated dyes TII-Br2 or DPP-Br2 and the 5-

ethynyl-2-hexylisoindoline-1,3-dione (Pht) (Scheme 1). 
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Both molecules exhibit a quasi-planar structure with a torsion angle between the phthalimide 

block and the central core of ca 1.0 and 0.04° for TII-Pht2 and DPP-Pht2 respectively. For 

both compounds the HOMO is essentially localized on the central dye while the LUMO is 

more evenly distributed along the whole backbone. The calculated energy levels and energy 

gaps are in satisfying agreement with the values estimated from UV-vis absorption and cyclic 

voltammetric data. 

 

A preliminary evaluation of the potential of the two compounds as electron acceptor 

materials for OSCs has been carried out on solution-processed bulk heterojunction (BHJ) 

solar cells. Although higher PCE could probably be obtained with high performance low band 

gap polymers, the use of P3HT as donor material allows a direct comparison with the large 

body of results published for the P3HT/PCBM standard system.65 To this end, inverted solar 

cells of configuration: ITO/ZnO/Active layer/MoO3/Ag were fabricated (see SI). Devices 

characteristics are summarized in Table 3 and the best current density-voltage (J-V) curves 

measured under AM. 1.5 simulated solar illumination (80 mW cm-2) are plotted in Figure 4.  

 

Table 3. Photovoltaic characteristics of BHJ cells based on P3HT and TII-Pht2 or DPP-Pht2. 
a(average value of 

12 cells) 
  

Acceptor DIO 
Voc 

(V) 

Jsc 

(mA cm-2) 

FF 

(%) 

PCE (%) 

Max, (average)a 

TII-Pht2 

w/o 0.59 1.05 31 0.24 (0.21) 

2  % 0.66 1.62 27 0.36 (0.34) 

      

DPP-Pht2 
w/o 0.73 2.29 29 0.60 (0.58) 

2  % 0.89 5.91 50 3.28 (3.00) 

 

The best results were obtained with active layers spun-cast at 1000 rpm from chloroform 

solutions containing 20 mg/mL of donor and acceptor materials and annealed at 110°C for 5 

min. Optimal weight to weight P3HT/acceptor ratios were 1:1.5 and 1:2 for TII-Pht2 and 

DPP-Pht2 respectively. In addition, the impact of diiodooctane (DIO) as additive for the 

processing of the active film was investigated.66, 67 
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Figure 5. EQE curves of DPP-Pht2 (red circles) and TII-Pht2 (black squares) based OSCs 

 

The spectra in Figure 5 reveal a common peak around 560 nm attributed to the 

absorption of the P3HT donor material and broad shoulders in the 650-730 nm and 650-800 

nm regions attributed to the contribution of DPP-Pht2 and TII-Pht2 respectively to the photo-

current. The large difference in intensity between the two EQE curves is in good agreement 

with the higher Jsc values obtained for the DPP based-devices. Finally, it is noteworthy that 

the current density integrated from the EQE of the best DPP-Pht2 and TII-Pht2 based devices 

are close to their corresponding Jsc values (5.85 and 1.42 mA.cm-2 vs 5.91 and 1.62 mA.cm-2).  

 

In order to complete these results, the electron mobilities (e) of both acceptors were 

investigated using the space-charge limited current (SCLC) method with devices of structure 

ITO/ DPP-Pht2 or TII-Pht2/LiF/Al (see SI).70 e values of 2.310-5 and 1.510-4 cm2 V-1 s-1 

were obtained for TII-Pht2 and DPP-Pht2 respectively. This ca one order of magnitude 

higher electron mobility of DPP-Pht2 probably contributes to the better Jsc, FF and 

consequently PCE of OSCs based on this acceptor.  

The nano-scale morphology of the optimized active layers has been investigated using 

atomic force microscopy (AFM). As shown in Figure 6, the P3HT:TII-Pht2 blend exhibits 

smaller and more homogenous domains than those observed on the surface of DPP-Pht2-

based cells with an average root mean square (RMS) roughness value of ca 6 nm vs ca 32 nm 

for DPP-Pht2 based cells.  

400 500 600 700 800
0

10

20

30

40

50

E
Q

E
 (

%
)

wavelength(nm)

Page 10 of 14Journal of Materials Chemistry A

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
A

A
cc

ep
te

d
M

an
us

cr
ip

t



 

 

 

Figure

  

Furtherm

domains

the dono

 

 

4. C

 

In sum

diketopy

moieties

estimate

and 3.2

noting t

material

far for a

device o

 

 

 

 

e 6. AFM pha

more, this i

s in the P3H

or which is 

Conclusion

mmary, tw

yrrolopyrro

s have been

ed in inverte

8% for TII

that it is, to

l used as a 

a diketopyr

optimization

ase images (10

imaging tec

HT:DPP-P

expected to

n 

wo simple

ole or thieno

n synthesize

ed BHJ sola

I-Pht2 and D

o the best o

non-fullere

rrolopyrrole

ns and side 

0 x 10 µm) of 

chnique als

Pht2 blend th

o be benefic

e acetylen

oisoindigo c

ed. Their p

ar cells. Onc

DPP-Pht2 b

f our know

ene electron

e based mol

chain engin

11 

optimized DP

o revealed

that can be 

cial for effec

ne-bridged 

core end-ca

potential as 

ce blended 

based devic

wledge, (i) th

n acceptor a

lecular acce

neering are 

PP-Pht2 (a) an

the presenc

associated t

ctive charge

n-type s

apped with p

electron-ac

with P3HT

ces respecti

he first exa

and (ii) the 

eptor mater

ongoing to 

nd TII-Pht2 (b

ce of fibrill

to a better s

e transport.7

mall mole

phthalimide

cceptor mate

T, promising

vely were r

mple of thi

highest eff

rial in BHJ 

improve the

b) based active

lar microcr

self-organiz
71 

ecules ba

e electron-a

erial for OS

g PCEs of c

reached. It 

ienoisoiding

ficiency rep

solar cells.

ese perform

 

e layers 

rystalline 

zation of 

sed on 

accepting 

SCs was 

ca 0.36% 

is worth 

go based 

ported so 

. Further 

mances. 

Page 11 of 14 Journal of Materials Chemistry A

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
A

A
cc

ep
te

d
M

an
us

cr
ip

t



12 
 

5. Acknowledgments  

 

The University of Angers is acknowledged for financial support (AAP CS project SolarIs). 

The Chinese Government Scholarship (CGC) program is thanked for the Ph-D grant of Y. 

Jiang. The PIAM (Plateforme d’Ingénierie et Analyses Moléculaires) of the University of 

Angers is thanked for the characterization of organic compounds.  

 

 

6. References 

 

1. F. C. Krebs, N. Espinosa, M. Hösel, R. R. Søndergaard and M. Jørgensen, Advanced 
Materials, 2014, 26, 29-39. 

2. K. A. Mazzio and C. K. Luscombe, Chemical Society Reviews, 2015, 44, 78-90. 
3. Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray and L. Yu, Advanced Materials, 

2010, 22, E135-E138. 
4. Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade and H. Yan, Nat 

Commun, 2014, 5. 
5. S.-H. Liao, H.-J. Jhuo, Y.-S. Cheng and S.-A. Chen, Advanced Materials, 2013, 25, 4766-

4771. 
6. Z. M. Beiley, M. G. Christoforo, P. Gratia, A. R. Bowring, P. Eberspacher, G. Y. Margulis, C. 

Cabanetos, P. M. Beaujuge, A. Salleo and M. D. McGehee, Advanced Materials, 2013, 25, 
7020-7026. 

7. Y.-H. Chen, L.-Y. Lin, C.-W. Lu, F. Lin, Z.-Y. Huang, H.-W. Lin, P.-H. Wang, Y.-H. Liu, K.-
T. Wong, J. Wen, D. J. Miller and S. B. Darling, J. Am. Chem. Soc., 2012, 134, 13616-13623. 

8. S.-H. Liao, H.-J. Jhuo, P.-N. Yeh, Y.-S. Cheng, Y.-L. Li, Y.-H. Lee, S. Sharma and S.-A. 
Chen, Scientific Reports, 2014, 4, 6813. 

9. J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li and Y. 
Yang, Advanced Materials, 2013, 25, 3973-3978. 

10. B. Kan, M. Li, Q. Zhang, F. Liu, X. Wan, Y. Wang, W. Ni, G. Long, X. Yang, H. Feng, Y. 
Zuo, M. Zhang, F. Huang, Y. Cao, T. P. Russell and Y. Chen, Journal of the American 
Chemical Society, 2015, 137, 3886-3893. 

11. L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R. A. Street and Y. Yang, Advanced Materials, 2013, 
25, 6642-6671. 

12. H.-Y. Lin, W.-C. Huang, Y.-C. Chen, H.-H. Chou, C.-Y. Hsu, J. T. Lin and H.-W. Lin, Chem. 
Commun. (Cambridge, U. K.), 2012, 48, 8913-8915. 

13. K. R. Graham, C. Cabanetos, J. P. Jahnke, M. N. Idso, A. El Labban, G. O. Ngongang 
Ndjawa, T. Heumueller, K. Vandewal, A. Salleo, B. F. Chmelka, A. Amassian, P. M. 
Beaujuge and M. D. McGehee, Journal of the American Chemical Society, 2014, 136, 9608-
9618. 

14. Y. He and Y. Li, Physical Chemistry Chemical Physics, 2011, 13, 1970-1983. 
15. B. C. Thompson and J. M. J. Fréchet, Angewandte Chemie International Edition, 2008, 47, 

58-77. 
16. J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao and C. L. Wilkins, The Journal of 

Organic Chemistry, 1995, 60, 532-538. 
17. T. B. Singh, N. Marjanović, G. J. Matt, S. Günes, N. S. Sariciftci, A. Montaigne Ramil, A. 

Andreev, H. Sitter, R. Schwödiauer and S. Bauer, Organic Electronics, 2005, 6, 105-110. 
18. Y. Lin and X. Zhan, Materials Horizons, 2014, 1, 470-488. 
19. A. Facchetti, Materials Today, 2013, 16, 123-132. 

Page 12 of 14Journal of Materials Chemistry A

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
A

A
cc

ep
te

d
M

an
us

cr
ip

t



13 
 

20. A. a. F. Eftaiha, J.-P. Sun, I. G. Hill and G. C. Welch, Journal of Materials Chemistry A, 
2014, 2, 1201-1213. 

21. C. B. Nielsen, S. Holliday, H.-Y. Chen, S. J. Cryer and I. McCulloch, Accounts of Chemical 
Research, 2015, DOI: 10.1021/acs.accounts.5b00199. 

22. J. T. Bloking, X. Han, A. T. Higgs, J. P. Kastrop, L. Pandey, J. E. Norton, C. Risko, C. E. 
Chen, J.-L. Brédas, M. D. McGehee and A. Sellinger, Chemistry of Materials, 2011, 23, 5484-
5490. 

23. C. H. Woo, T. W. Holcombe, D. A. Unruh, A. Sellinger and J. M. J. Fréchet, Chemistry of 
Materials, 2010, 22, 1673-1679. 

24. B. Walker, X. Han, C. Kim, A. Sellinger and T.-Q. Nguyen, ACS Applied Materials & 
Interfaces, 2012, 4, 244-250. 

25. F. G. Brunetti, X. Gong, M. Tong, A. J. Heeger and F. Wudl, Angewandte Chemie 
International Edition, 2010, 49, 532-536. 

26. H. U. Kim, J.-H. Kim, H. Suh, J. Kwak, D. Kim, A. C. Grimsdale, S. C. Yoon and D.-H. 
Hwang, Chemical Communications, 2013, 49, 10950-10952. 

27. Y. Lin, Y. Li and X. Zhan, Advanced Energy Materials, 2013, 3, 724-728. 
28. P. Sonar, G.-M. Ng, T. T. Lin, A. Dodabalapur and Z.-K. Chen, Journal of Materials 

Chemistry, 2010, 20, 3626-3636. 
29. Y. Lin, P. Cheng, Y. Li and X. Zhan, Chemical Communications, 2012, 48, 4773-4775. 
30. A. D. Hendsbee, S. M. McAfee, J.-P. Sun, T. M. McCormick, I. G. Hill and G. C. Welch, 

Journal of Materials Chemistry C, 2015, 3, 8904-8915. 
31. T. Zhou, T. Jia, B. Kang, F. Li, M. Fahlman and Y. Wang, Advanced Energy Materials, 2011, 

1, 431-439. 
32. S. M. McAfee, J. M. Topple, J.-P. Sun, I. G. Hill and G. C. Welch, RSC Advances, 2015, 5, 

80098-80109. 
33. A. M. Poe, A. M. Della Pelle, A. V. Subrahmanyam, W. White, G. Wantz and S. 

Thayumanavan, Chemical Communications, 2014, 50, 2913-2915. 
34. Y. Shu, Y.-F. Lim, Z. Li, B. Purushothaman, R. Hallani, J. E. Kim, S. R. Parkin, G. G. 

Malliaras and J. E. Anthony, Chemical Science, 2011, 2, 363-368. 
35. Y. Zhou, Y.-Z. Dai, Y.-Q. Zheng, X.-Y. Wang, J.-Y. Wang and J. Pei, Chemical 

Communications, 2013, 49, 5802-5804. 
36. Y. Zhou, L. Ding, K. Shi, Y.-Z. Dai, N. Ai, J. Wang and J. Pei, Advanced Materials, 2012, 24, 

957-961. 
37. D. Xia, D. Gehrig, X. Guo, M. Baumgarten, F. Laquai and K. Mullen, Journal of Materials 

Chemistry A, 2015, 3, 11086-11092. 
38. X.-F. Wu, W.-F. Fu, Z. Xu, M. Shi, F. Liu, H.-Z. Chen, J.-H. Wan and T. P. Russell, 

Advanced Functional Materials, 2015, 25, 5954-5966. 
39. G. Ren, E. Ahmed and S. A. Jenekhe, Advanced Energy Materials, 2011, 1, 946-953. 
40. E. Ahmed, G. Ren, F. S. Kim, E. C. Hollenbeck and S. A. Jenekhe, Chemistry of Materials, 

2011, 23, 4563-4577. 
41. A. Sharenko, C. M. Proctor, T. S. van der Poll, Z. B. Henson, T.-Q. Nguyen and G. C. Bazan, 

Advanced Materials, 2013, 25, 4403-4406. 
42. Z. Lu, B. Jiang, X. Zhang, A. Tang, L. Chen, C. Zhan and J. Yao, Chemistry of Materials, 

2014, 26, 2907-2914. 
43. X. Zhang, Z. Lu, L. Ye, C. Zhan, J. Hou, S. Zhang, B. Jiang, Y. Zhao, J. Huang, S. Zhang, Y. 

Liu, Q. Shi, Y. Liu and J. Yao, Advanced Materials, 2013, 25, 5791-5797. 
44. Y. Zhong, B. Kumar, S. Oh, M. T. Trinh, Y. Wu, K. Elbert, P. Li, X. Zhu, S. Xiao, F. Ng, M. 

L. Steigerwald and C. Nuckolls, Journal of the American Chemical Society, 2014, 136, 8122-
8130. 

45. Y. Lin, J. Wang, Z.-G. Zhang, H. Bai, Y. Li, D. Zhu and X. Zhan, Advanced Materials, 2015, 
27, 1170-1174. 

46. Y. Lin, Z.-G. Zhang, H. Bai, J. Wang, Y. Yao, Y. Li, D. Zhu and X. Zhan, Energy & 
Environmental Science, 2015, 8, 610-616. 

47. K. Cnops, B. P. Rand, D. Cheyns, B. Verreet, M. A. Empl and P. Heremans, Nat Commun, 
2014, 5. 

Page 13 of 14 Journal of Materials Chemistry A

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
A

A
cc

ep
te

d
M

an
us

cr
ip

t



14 
 

48. Y. Zhong, M. T. Trinh, R. Chen, W. Wang, P. P. Khlyabich, B. Kumar, Q. Xu, C.-Y. Nam, M. 
Y. Sfeir, C. Black, M. L. Steigerwald, Y.-L. Loo, S. Xiao, F. Ng, X. Y. Zhu and C. Nuckolls, 
Journal of the American Chemical Society, 2014, 136, 15215-15221. 

49. Y. Zang, C.-Z. Li, C.-C. Chueh, S. T. Williams, W. Jiang, Z.-H. Wang, J.-S. Yu and A. K. Y. 
Jen, Advanced Materials, 2014, 26, 5708-5714. 

50. J. Wang, Y. Yao, S. Dai, X. Zhang, W. Wang, Q. He, L. Han, Y. Lin and X. Zhan, Journal of 
Materials Chemistry A, 2015, 3, 13000-13010. 

51. P. E. Hartnett, A. Timalsina, H. S. S. R. Matte, N. Zhou, X. Guo, W. Zhao, A. Facchetti, R. P. 
H. Chang, M. C. Hersam, M. R. Wasielewski and T. J. Marks, Journal of the American 
Chemical Society, 2014, 136, 16345-16356. 

52. Y. Liu, J. Y. L. Lai, S. Chen, Y. Li, K. Jiang, J. Zhao, Z. Li, H. Hu, T. Ma, H. Lin, J. Liu, J. 
Zhang, F. Huang, D. Yu and H. Yan, Journal of Materials Chemistry A, 2015, 3, 13632-
13636. 

53. Y. Zhong, M. T. Trinh, R. Chen, G. E. Purdum, P. P. Khlyabich, M. Sezen, S. Oh, H. Zhu, B. 
Fowler, B. Zhang, W. Wang, C.-Y. Nam, M. Y. Sfeir, C. T. Black, M. L. Steigerwald, Y.-L. 
Loo, F. Ng, X. Y. Zhu and C. Nuckolls, Nat Commun, 2015, 6. 

54. S. Holliday, R. S. Ashraf, C. B. Nielsen, M. Kirkus, J. A. Röhr, C.-H. Tan, E. Collado-
Fregoso, A.-C. Knall, J. R. Durrant, J. Nelson and I. McCulloch, Journal of the American 
Chemical Society, 2015, 137, 898-904. 

55. J. Roncali, P. Leriche and P. Blanchard, Advanced Materials, 2014, 26, 3821-3838. 
56. Y. Jiang, C. Cabanetos, M. Allain, P. Liu and J. Roncali, Journal of Materials Chemistry C, 

2015, 3, 5145-5151. 
57. A. Leliege, R. C.-H. Le, M. Allain, P. Blanchard and J. Roncali, Chem. Commun., 2012, 48, 

8907-8909. 
58. V. Jeux, D. Demeter, P. Leriche and J. Roncali, RSC Advances, 2013, 3, 5811-5814. 
59. O. Vybornyi, Y. Jiang, F. Baert, D. Demeter, J. Roncali, P. Blanchard and C. Cabanetos, Dyes 

and Pigments, 2015, 115, 17-22. 
60. J.-W. Mun, I. Cho, D. Lee, W. S. Yoon, O. K. Kwon, C. Lee and S. Y. Park, Organic 

Electronics, 2013, 14, 2341-2347. 
61. P. G. W. P. Van, F. Gholamrezaie, M. M. Wienk and R. A. J. Janssen, J. Mater. Chem., 22, 

20387-20393. 
62. C. H. Woo, P. M. Beaujuge, T. W. Holcombe, O. P. Lee and J. M. J. Fréchet, Journal of the 

American Chemical Society, 2010, 132, 15547-15549. 
63. T. Kono, T. Sakaguchi, Y. Hu, M. Shiotsuki, F. Sanda and T. Masuda, Journal of Polymer 

Science Part A: Polymer Chemistry, 2006, 44, 5943-5953. 
64. C. M. Cardona, W. Li, A. E. Kaifer, D. Stockdale and G. C. Bazan, Advanced Materials, 

2011, 23, 2367-2371. 
65. M. T. Dang, L. Hirsch and G. Wantz, Advanced Materials, 2011, 23, 3597-3602. 
66. J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan and A. 

J. Heeger, Journal of the American Chemical Society, 2008, 130, 3619-3623. 
67. U. Vongsaysy, B. Pavageau, G. Wantz, D. M. Bassani, L. Servant and H. Aziz, Advanced 

Energy Materials, 2014, 4, 1300752. 
68. A. Sharenko, D. Gehrig, F. Laquai and T.-Q. Nguyen, Chemistry of Materials, 2014, 26, 

4109-4118. 
69. J. Warnan, A. El Labban, C. Cabanetos, E. T. Hoke, P. K. Shukla, C. Risko, J.-L. Brédas, M. 

D. McGehee and P. M. Beaujuge, Chemistry of Materials, 2014, 26, 2299-2306. 
70. M. A. Khan, W. Xu, Khizar-ul-Haq, Y. Bai, X. Y. Jiang, Z. L. Zhang, W. Q. Zhu, Z. L. Zhang 

and W. Q. Zhu, Journal of Applied Physics, 2008, 103, 014509. 
71. S. Berson, R. De Bettignies, S. Bailly and S. Guillerez, Advanced Functional Materials, 2007, 

17, 1377-1384. 

 

Page 14 of 14Journal of Materials Chemistry A

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
A

A
cc

ep
te

d
M

an
us

cr
ip

t


