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Three-dimensional molecular donors combined with polymeric 
acceptors for high performance fullerene-free organic photovoltaics  

 

Shi-Yong Liu,abc Jae Woong Jung,a Chang-Zhi Li,ab Jiang Huang,ad Jianyuan Zhang,a Hongzheng 
Chen*b and Alex K.-Y. Jen*ab 

The non-fullerene acceptors based organic photovoltaics (OPVs) reported so far are inferior to those derived from fullerenes. 

This intrigues the speculation whether donors need to be tailored for advancing non-fullerene OPVs. We explored herein 

two direct arylation-derived diketopyrrolopyrrole(DPP)-based three-dimensional (3D) donors that can deliver respectable 

power conversion efficiencies (PCEs) of 4.64% and 4.02% with polymeric acceptor N2200 blends, surpassing those 

obtained from PC71BM (3.56% and 3.22%, respectively). It is found that these 3D-shaped molecular donors can yield the 

improved photo-to-current conversion and balanced charge transport when blending with  linear N2200 polymer. This 

finding suggests that the engineering molecular geometry can be a promising approach for developing high-performance 

materials.  

1  Introduction 

Organic electron donor (D) and acceptor (A) based bulk 
heterojunction (BHJ) photovoltaics have attracted extensive 
attentions in the past decade due to their light-weight, good 
flexibility, and cost-effectiveness merits that can be potentially 
realized through simple solution processing.1 Ideally, these electron 
donors and acceptors should possess intensive and complementary 
absorption for efficient light harvesting, and the ability to form nano-
structured interpenetrating networks of D-A phases for efficient 
photon-charge generation and transport. Although fullerene 
derivatives have been widely used as efficient electron acceptor for 
the BHJ OPVs, they inherit certain drawbacks from pristine fullerene 
such as weak visible light absorption, limited electronic tunability, 
and high production cost. Therefore, vigorous efforts have been 
devoted to developing efficient non-fullerene acceptors,2 leading to 
encouraging performance for non-fullerene based OPVs.3, 4 

Usually, the development of non-fullerene based devices is 
focused on pairing acceptors with well-established efficient donors. 
Materials with non-planar and/or 3D architectures in general exhibit 

better performance in devices than the planar ones,4-23 which 
coincides with the spherical feature of fullerenes facilitating multi-
directional charge-transport in OPVs.24 Among numerous non-
fullerene acceptors that have been developed so far, their device 
performance are usually lower than those derived from fullerenes 
using the same donors.3,4b,5-22 This intrigued the speculation whether 
the donors previously developed for blending with fullerenes are 
suitable for non-fullerene OPV. It inspires us to explore possible 
strategies on making new donors for better pairing with efficient 
electron acceptors.  

In this paper, four DPP electron-donating units are installed onto 
either a tetraphenyl-methane or a tetraphenyl-silane core via an atom 
efficient direct arylation reaction to result in two novel 3D-shaped 
donor molecules (named as C-DPP and Si-DPP, Fig. 1). These 
donors are expected to transport hole carriers in multiple directions 
in devices.24 To verify our design concept, two well-known electron 
acceptors, polymer N220025,26 and PC71BM were chosen to pair with 
3D-DPP donors (hereafter, 3D-DPPs refers to both C-DPP and Si-
DPP) for solution-processed BHJ OPV devices. The PCEs achieved 
for C-DPP:N2200 and Si-DPP:N2200 devices are 4.64 and 4.02%, 
respectively. In a parallel study, the performance of the devices 
made from these two molecular donors with PC71BM, C-
DPP:PC71BM and Si-DPP:PC71BM have lower PCE with 3.56% 
and 3.22%, respectively. The higher performance derived from the 
3D-DPPs:N2200 devices are attributed to the improved incident 
photon-to-current conversion efficiency (IPCE) from the 
complementary and broader light absorption of 3D-DPPs:N2200 
blends, and the more balanced charge mobility. The PCE of 4.64% is 
a respectable value for the non-fullerene OPVs using molecular 
donor and polymer acceptor.26a-c,27 The current system also 
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represents one of the most efficient BHJs composed of organic 
semiconductors obtained via direct arylation.28, 29 

2  Results and discussion 

2.1 Synthesis, characterization and theoretical calculation 

Fig. 1 depicts the synthetic route of C-DPP and Si-DPP, and the 
chemical structure of polymer N2200. An effective strategy to access 
multi-DPPs29 was used to install four DPP units onto tetraphenyl-
silane and tetraphenyl-methane cores via a ligand-free palladium-
catalyzed direct arylation reaction to afford C-DPP and Si-DPP with 
excellent yields (90% and 94%, respectively). The n-type polymer 
N2200 employed in this work (Mn= 49.2kDa, Mw= 89.5 kDa and 
PDI=1.8) was synthesized by using a modified reported 
procedure.25a The target 3D-DPPs have been fully characterized by 
1H and 13C NMR, matrix-assisted laser desorption ionization time of 
flight (MALDI-TOF) mass spectroscopy (MS) (Fig. S1-S5, see 
Electronic Supplementary Information (ESI)) and elemental analysis. 

Differential scanning calorimetry (DSC) measurement was used to 
gain insight of intermolecular interactions and crystallinity for C-
DPP and Si-DPP. The DSC scanning from 5 to 280 °C did not find 
any melting or recrystallization peak (Fig. S6), suggesting both 3D-
DPPs are non-crystalline in nature, which is similar to the 3D tetra-
PDI previously reported.22 

Density functional theory (DFT) calculation was carried out to 
study the molecular geometries of 3D-DPPs. The DFT-optimized 
geometries show that four DPP units of 3D-DPPs are tetrahedrally 
orientated with radii of 2.02 and 2.05 nm respectively (Fig. 1), 
owing to the sp3 hybrid of C and Si atom centers. Such a tetrahedral 
architecture should help suppress the tight packing of molecules.30 

Structurally, the four DPP arms are connected via sp3 C and Si 
centers. Although the DPP arms have less molecular orbital (MO) 
overlap between each others, they are close to each other in space at 
atomic scale. We speculate that the charges on 3D-DPPs would 
delocalize throughout the DPP arms, and can hop among each other. 
In this way, 3D distribution and transport of charges will lead to 
statistically better D-A charge separation and collection. 

Fig. 1  Direct arylation synthesis of C-DPP and Si-DPP, and their corresponding DFT optimized geometries (ethyl-hexyl chains 
replaced by methyl groups) shown by space filling models, and the structure of N2200.
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2.2 Optical and electrochemical properties 

Fig. 2a shows the normalized individual UV-vis absorption spectra 
of the donors (C-DPP and Si-DPP), and the acceptor polymer 
N2200 from spin-coated films. C-DPP and Si-DPP films exhibit 
similar absorption spectra, with two peaks at 586 and 640 nm (C-
DPP) and 582 and 640 nm (Si-DPP). These peaks are red-shifted 
compared to their solution absorption spectra (Fig. S7). In order to 
maximize light harvesting of BHJs, low bandgap acceptor, N2200 
with strong absorption peaks around 400 and 704 nm was chosen to 
complement the absorption of C-DPP and Si-DPP donors (Fig. 1a 
and 2b). Consequently, the blend films composed of 3D-DPPs and 
N2200 exhibit a strong absorption band ranged from 550 to 750 nm. 
In contrast to 3D-DPPs:N2200, the 3D-DPPs:PC71BM blends show 
mainly the 3D-DPPs absorption features with a narrower band from 
586 to 640 nm, along with the intense absorption less than 350 nm 
arising from PC71BM(Fig. S8, see ESI).   

Besides complementary light absorption of the blends, suitable 
energetic levels with sufficient frontier orbital energy (FOE) gap 
between donor and acceptor is also important in driving photon-
generated charge dissociation and thus determining the performance 
of BHJ OPVs. The electrochemical properties of C-DPP, Si-DPP, 
N2200, and PC71BM were evaluated by cyclic voltammetry (CV) in 
CH2Cl2 solution. The lowest unoccupied molecular orbital (LUMO) 
and the highest occupied molecular orbital (HOMO) are estimated 
from the E1/2 values in solution, using the value of -5.1 eV for 
Fc/Fc+.31 Fig. 2c shows the FOEs of the donors and acceptors studied 
in this work. The bandgap of C-DPP, Si-DPP, N2200, and PC71BM 
are 2.01, 2.04, 1.61 and 2.03 eV, respectively. The LUMO of N2200 
(-4.11 eV) is close to that of PC71BM (-4.02 eV), indicating N2200 
may have comparable electron affinity with PC71BM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 a) UV-vis spectra of  neat films of 3D-DPPs and N2200; b) UV-vis spectra of  3D-DPPs:N2200 BHJ films; c) FOE diagram of 3D-
DPPs, N2200 and PC71BM; d) J-V curves of the optimal solar cells of 3D-DPPs:N2200 and 3D-DPPs: PC71BM. 
 
Table 1 Photovoltaic Parameters of the Optimal Cells based on 3D-DPPs:N2200 and 3D-DPPs:PC71BM under the illumination of AM 1.5G, 
100 mW cm-2 

D:A  VOC 
[V] 

JSC 
[mA cm-2] 

FF PCE 
[%]c 

Cal. JSC
d 

[mA cm-2] 

μ
h
 μ

e
 μ

h / 
μ

e
 

[10-4 cm2 V-1s-1] e) 

C-DPP:N2200a 0.87±0.01 8.59±0.18 0.62±0.01 4.64(4.45) 8.71 3.58 2.87 1.25 

Si-DPP:N2200a 0.86±0.01 8.14±0.22 0.54±0.03 4.02(3.93) 8.21 2.12 0.89 2.34 

C-DPP:PC71BMb 0.89±0.01 7.69±0.14 0.50±0.01 3.56(3.41) 7.74 2.20 0.11 20 

Si-DPP:PC71BMb 0.89±0.01 7.12±0.14 0.49±0.01 3.22(3.12) 7.19 1.65 0.33 5 

aThe D:A ratio is 1:1 (w/w). bThe D:A ratio is 1:1.5 (w/w). cThe best and average (in brackets, over 20 devices) PCEs. dCalculated from 
IPCE; average values from 12 devices. eHole and electron mobilities by SCLC method. 
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2.3  BHJ device performances 

Inverted devices with the configuration of indium tin oxide 
(ITO)/ZnO/3D-DPPs:N2200/MoO3/Ag were subsequently fabricated 
to investigate the performance of corresponding BHJ OPVs. The 
devices based on Si-DPP:N2200 (1:1) BHJ are first optimized with 
three sets of solvents: chloroform (CF), chlorobenzene (CB), and the 
mixed CF/CB (1:1, v/v). The PCEs of Si-DPP:N2200 (1:1) based 
devices processed by CF, CB and CF/CB were 1.03, 1.73 and 3.76%, 
respectively (Fig. S9 and Table S1). Note that the PCE of 3.76% in 
the Si-DPP:N2200 based device was accomplished without applying 
any post-treatments or additives. It is close to the highest PCE (3.9%) 
reported for molecular donor/polymer acceptor device using di-
DPP:N2200 BHJ with 1-chloronaphthalene (CN) as additive.26a By 
adding 3% (v/v) CN, the PCE of Si-DPP:N2200 is further improved 
to 4.02%. Under the similar processing condition, C-DPP:N2200 
exhibits the highest PCE of 4.64% (with open circuit voltage, VOC of 
0.86 V; short current, JSC of 8.72 mA cm-2, and fill factor, FF of 
0.62). Fig. 2d shows the current density-voltage (J-V) characteristic 
curves of the optimal cells under the simulated AM 1.5 G irradiation 
with intensity of 100 mWcm-2, and Table 1 summarizes the 
photovoltaic parameters. 

The optimized 3D-DPPs:PC71BM devices were employed to 
compare with 3D-DPPs:N2200 devices. Unlike the 3D-DPPs:N2200, 
the desired solvent and effective additive for 3D-DPPs:PC71BM 
were CF and 1,8-diiodooctane (DIO, 3% v/v), respectively. The 
highest PCEs obtained for Si-DPP:PC71BM and C-DPP:PC71BM are 
3.22% and 3.56%, respectively (Fig. 2d and Table 1), which are 
albeit lower than the N2200-based cells. The inferior PCEs of 3D-
DPPs:PC71BM are mainly ascribed to their lower JSC and FF. 
Although a large variety of star-shaped molecular donors have been 
developed for OPVs,32-34 the highest PCE for PCBM-based OPVs 
using these donors remain around 5%.34a,b These molecular donor 
may not be able to form optimal nanoscale D-A phase separated 
morphology with PC71BM (ESI, Fig. S13a). However, the PCE 
(4.64%) achieved in our study without using fullerene is very close 
to the highest PCE of star-shaped donor:PC71BM BHJs reported so 
far,34a,b implying polymer acceptors have the potential to be further 
explored for pairing with the star-shaped or 3D-shaped molecular 
donors.  

2.4  Photoluminescence (PL) and IPCE measurements 

To better understand their photophysical properties, PL spectra of 
neat films (3D-DPPs, N2200, PC71BM) and their corresponding D-A 
blends, in conjunction with the device IPCE spectra were studied. 
The PL of 1:1 blends show effective and mutual quenching of 
individual 3D-DPPs and N2200 emission, suggesting efficient 
charge transfer between3D-DPPs and N2200 (Fig. 3). However, the 
emission of C-DPP can be quenched more effectively by N2200 
than that of Si-DPP, which may account for the higher Jsc observed 
from C-DPP:N2200 BHJ OPVs (Fig. 3a and Table 1). Fig. 3b 
displays the corresponding IPCE spectra of solar cells based on C-
DPP:N2200, Si-DPP:N2200, C-DPP:PC71BM, and Si-
DPP:PC71BM. The calculated JSCs from IPCE are 8.71, 8.21, 7.74, 

and 7.19 mA cm-2, respectively (Table 1), which are consistent with 
the measured JSC values. Interestingly, the IPCEs of 3D-
DPPs:N2200 blends extend from 350 nm to 800 nm, which match 
well with their UV-vis absorption spectra (Fig. 3b). It indicates that 
light absorbed by both 3D-DPPs and N2200 are effectively 
converted into current in solar cells (Fig. S11), suggesting excitons 
generated from donor and acceptor domain can be dissociated 
effectively at the D-A junction. 

The IPCE spectra of 3D-DPPs:PC71BM BHJs are ranging from 
350-700 nm, which are slightly lower and narrower than those of 
3D-DPPs:N2200. Aside from the weak absorption of PC71BM (Fig. 
S8, S12), the amorphous 3D-DPPs may intimately mix with PC71BM 
to prevent the formation of suitable nanoscale D-A phase separation. 
As shown by the DFT calculations, 3D-DPPs have a radius of more 
than 2.0 nm (Fig. 1). The spherical PCBM with a diameter of ~ 0.8 
nm34 would be embraced by 3D-DPPs, leading to intimate D-A 
mixing (Fig. S13a). Such an intimate D-A mixing will enhance 
quenching of PL emission (ESI, Fig. S14), however, it will adversely 
affect charge separation,36 and decrease the IPCE of 3D-
DPPs:PC71BM BHJs. Unlike fullerene-based BHJs, the blend of 
crystalline N22003b,25 with amorphous 3D-DPPs allows easier 
nanoscale phase separation (Fig. S13b), facilitating better charge 
separation and transport. 

 

 

 

 

 

 

 

 

 

Fig. 3 a) Steady PL spectra of 3D-DPPs, N2200 neat films, and 3D-
DPPs:N2200 BHJ films (1:1, w/w) (excited at 650 nm) b) IPCE 
spectra of 3D-DPPs:N2200 and 3D-DPPs:PC71BM BHJs.  
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2.5  BHJ morphology and charge carrier mobility 

Atomic force microscopy (AFM) and space-charge-limited-current 
(SCLC) measurements were further employed to investigate surface 
morphology and charge mobility of the active layers. AFM scans 
were carried out for films spin-coated on ITO substrates. AFM 
images of the active layers based on 3D-DPPs:N2200 and 3D-
DPPs:PC71BM are shown in Fig. S15. As compared to Si-DPP-
based BHJs, C-DPP-based BHJs generally exhibit smoother surface 
(Fig. S15). For the SCLC tests, all devices were fabricated by using 
the identical procedure for solar cell preparation. The J-V curves for 
the hole-only and electron-only devices are shown in Fig. S16. The 
third-last and second-last columns in Table 1 list the corresponding 
values. The hole mobility (μh) of C-DPP:N2200, Si-DPP:N2200, C-
DPP:PC71BM and Si-DPP:PC71BM BHJs are 3.58, 2.12, 2.20, and 
1.65 (×10-4cm2 V-1 s-1), respectively, and the corresponding electron 
mobility (μe) are 2.87, 0.89, 0.11, and 0.33 (×10-4cm2 V-1 s-1), 
respectively. Among the four devices, C-DPP:N2200 exhibits the 
highest and the most balanced charge mobility with the μh/μe ratio of 
1.25 (Table 1), compared with the more imbalanced μh/μe ratios of 
2.3 for Si-DPP:N2200, 20.0 for C-DPP:PC71BM, and 5.0 for Si-
DPP:PC71BM. This may explain the higher FF (0.62) obtained for 
C-DPP:N2200 based device. 

Although electron mobility of 3D-DPPs:N2200 BHJs (~10-4 cm2 
V-1 s-1) is one order of magnitude higher than those of 3D-
DPPs:PC71BM BHJs (~10-5 cm2 V-1 s-1), the hole mobility of all four 
blends are very similar(~10-4 cm2 V-1 s-1) (Table 1). This suggests 
that the hole-transporting channels generated from 3D-DPPs are 
quite insensitive to mixing with either N2200 or PC71BM, resulting 
in similar level of hole mobility. This coincides well with the 
findings of other 3D-shaped conjugated structures reported in the 
literature that also form uniform, amorphous thin films with 
isotropic properties.30 On the other hand, the electron transport is 
more sensitive to electron acceptor used with polymer N2200 
forming better nanoscale continuous networks than that of molecular 
fullerene when blended with 3D-DPPs.   

2.6  General applicability 

Usually, efficient OPV devices often consist of spherical shaped 
fullerenes as acceptor and linear polymer as donor, and the best 
performing non-fullerene acceptors are also non-planar or 3D-
shaped.4-23 The same rationale could also be applied here, with a BHJ 
composed of a 3D donor and a linear polymer acceptor with one 
of the donor or acceptor4-23 be non-planar or 3D-shaped instead of 
both 3D-shaped, to achieve high efficiency in devices.  

To further assess the general applicability of 3D-donor/linear 
polymer acceptor combination, fluoro-substituted N2200 (di-F-
N2200)3b was also used as another polymeric acceptor (ESI, Fig. S10) 
to pair with the 3D-DPP donors. The preliminary device results 
derived from the 3D-DPPs:di-F-N2200 BHJs also showed promising 
PCEs of 4.41% (Si-DPP:di-F-N2200) and 4.60% (C-DPP:di-F-
N2200), respectively (data not shown), which supports the 
hypothesis of the effectiveness of 3D-donor:polymer acceptor blends.   

 

3  Conclusions 

In summary, two novel DPP-based 3D molecular donors were 
designed and facilely synthesized via an atom efficient direct C-H 
arylation reaction. The 3D-DPPs:N2200 BHJ non-fullerene based 
devices exhibit better performance than those derived from the 
fullerene-based ones, showing a respectable PCE of 4.64% for the 
3D-DPPs:N2200, which is ~30% higher than that derived from the 
3D-DPPs:PC71BM. The superior performance is attributed to more 
efficient IPCE generated from the complementary light absorption of 
3D-DPPs and N2200, and the high FFs obtained from the balanced 
charge mobilities. In contrast to the well-developed BHJs that 
consist of non-planar or 3D acceptors and polymer donors,4-23 the 
current work represents the first BHJ OPV based on 3D donors and 
polymer acceptors. This preliminary yet promising result 
demonstrates the strategy of blending 3D-donors with linear polymer 
acceptors can be effective for achieving high-performance OPVs.  

4   Experimental  

4.1  Materials and methods 

Unless otherwise specified, chemicals and solvents were purchased 
from Aldrich. All 1H and 13C NMR spectra were obtained in 
chloroform-d, with Bruker 300, and Bruker Avance DRX-499. 13C 
NMR (126 MHz) spectra were measured with a proton-decoupling 
pulse program. Chemical shifts for 1H and 13C NMR were referenced 
to residual signals from CDCl3 (

1H NMR δ =7.26 ppm and 13C NMR 
δ =77.23 ppm). Matrix-assisted laser desorption-ionization time of 
flight mass spectrometry (MALDI-TOF MS) was performed on a 
Bruker Autoflex II. Samples were prepared by diluting the molecules 
in CH2Cl2 using 2,5-dihydroxybenzoicacid as the matrixes. 
Elemental analyses were conducted on a Flash EA 1112 elemental 
analyzer. Theoretical calculations based on density functional 
methods have been performed for 3D-DPPswith Gaussian09 
program. Becke’s three-parameter gradient-corrected functional 
(B3LYP) with 6-31G(d,p) basis was used to optimize the geometry.  

DSC was measured on a WCT-2 thermal balance. UV−vis 
spectra were recorded with a Jasco V-670. PL spectra were 
measured on Fluoroskan Ascent FL. CV was done on a CHI 660C 
electrochemical workstation with Pt disk, Pt plate, and standard 10 
calomel electrode (SCE) as working electrode, counter electrode, 
and reference electrode, respectively, in a 0.1 molL-

1tetrabutylammoniumhexafluorophosphate (Bu4NPF6) CH2Cl2 
solution. The current-voltage (J-V) curves were measured with 
Keithley 2400 measurement source units at room temperature in air. 
The photocurrent was measured under a calibrated solar simulator 
(Abet 300 W) at 100 mW cm-2.  

The EQE system uses a lock-in amplifier (Stanford Research 
Systems SR830) to record the short circuit current under chopped 
monochromatic light. AFM images were obtained by a Nano 
ScopeIIIa (Digital instrument Inc.) operating in the tapping mode. 
SCLC were tested in electron-only devices with a configuration of 
ITO/ZnO/3D-DPPs:N2200 or PC71BM/Ca (20 nm)/Al (130 nm) and 
hole-only devices with a configuration of ITO/PEDOT:PSS/3D-
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Three-dimensional molecular 
donors combined with polymeric 
acceptors for high performance 
fullerene-free organic photovoltaics  

Shi-Yong Liu, Jae Woong Jung, Chang-Zhi Li, Jiang 
Huang, Jianyuan Zhang, Hongzheng Chen* and 
Alex K.-Y. Jen* 
 

Two novel diketopyrrolopyrrole-based 3D electron donors have been 
synthesized via direct arylation. The fullerene-free organic 
photovoltaics (OPVs) based on the 3D-molecular donor:polymer 
acceptor showed a respectable power conversion efficiency of 4.64%, 
which outperforms OPVs derived from PC71BM. 
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