Journal of Materials Chemistry A

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsA

Journal Name

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Photocatalytic reduction of CO₂ with water promoted by Ag clusters in Ag/Ga₂O₃ photocatalyst[†]

Muneaki Yamamoto,^{*a} Tomoko Yoshida,^{*b,c} Naoto Yamamoto,^a Toyokazu Nomoto,^d Yuta Yamamoto,^c Shinya Yagi^c and Hisao Yoshida^{e,f}

Ag loaded Ga₂O₃ (Ag/Ga₂O₃) photocatalysts were prepared by an impregnation method, and examined for photocatalystic reduction of CO₂ with water where CO, H₂ and O₂ were formed as products. TEM and X-ray absorption near edge structure (XANES) measurements revealed that around 1 nm sized Ag clusters were formed predominantly in an active Ag/Ga₂O₃ sample while partially oxidized large Ag particles with the size of several – several tens nm were observed in a less active Ag/Ga₂O₃ samples. Both Ag L₃-edge and O K-edge XANES analysis suggested that the small Ag clusters accepted more electrons in the *d*-orbitals as the result of the strong interaction with the Ga₂O₃ surface. In-situ FT-IR measurements for the Ag/Ga₂O₃ samples showed CO₃ stretching vibration bands assignable to monodentate bicarbonate and bidentate carbonate species chemisorbed on the Ga₂O₃ surface, and to monodentate carbonate species on the large Ag particles. Among these chemisorbed species, the monodentate bicarbonate and/or the bidentate carbonate species was formed not by the plasmonic excitation of the Ag nanoparticles but by the photoexcitation of the Ga₂O₃ semiconductor, and the formation process would be promoted at the perimeter of the Ag clusters on the Ga₂O₃ surface by the effective separation of electron-holes pairs.

Introduction

Photocatalytic CO₂ reduction with water to usable products has attracted much attention because of its potential to realize an artificial photosynthesis.^{1,2} To use water as a reductant for CO₂ reduction, the activation of water is intrinsically required. Thus, heterogeneous metal oxide photocatalysts which can activate water have been widely studied toward CO₂ reduction with water. Recently, it has been reported that both the photocatalytic activity and selectivity for CO₂ reduction to CO is improved by loading of Ag as a cocatalyst on several metal oxide photocatalysts such as BaLa₄Ti₄O₁₅,³ Ga₂O₃,⁴ Zn-doped Ga₂O₃,⁵ ZnGa₂O₄,⁶ KCaSrTa₅O₁₅,^{7,8} CaTiO₃,⁹ La₂Ti₂O₇,¹⁰ and SrO-modified Ta₂O₅.¹¹

The Ag cocatalyst has been considered as one of the effective electron receiving sites to promote the separation of photogenarated electron-hole pairs as well as the possible CO₂ reduction sites to produce CO.³⁻¹¹ It has been also proposed that the particle size and chemical state of the Ag should affect the photocatalytic activity, and

^c EcoTopia Science Institute, Nagoya University, Nagoya 464-8603, Japan

† Electronic Supplementary Information (ESI) available. See DOI: 10.1039/x0xx00000x metallic Ag nanoparticles with the small size and uniform distribution contribute to the enhancement for the photocatalytic conversion of CO_2 with water.^{3,6,11}

In our previous study, Ga_2O_3 which is known as an active photocatalyst for water splitting¹² promoted photocatalytic reduction of CO_2 with water and the photocatalytic activity was enhanced by loading of Ag.^{4,13} We have carried out in-situ FT-IR measurements of Ag loaded Ga_2O_3 (Ag/Ga₂O₃) photocatalysts at each reaction steps, and proposed the reaction mechanism involving the generation process of bidentate formate species as the reaction intermediates.¹⁴

In the present study, we focused on the influence of the structural and chemical states of Ag catalyst as well as its interaction with Ga₂O₃ support on the reaction mechanism for the photocatalytic reduction of CO₂ with water over Ag/Ga₂O₃. The size of the Ag particles was investigated by TEM measurements. Diffuse reflectance UV-visible spectra was carried out to obtain information of the size and chemical state of the Ag cocatalyst. In order to clarify the surface chemical state of Ag/Ga₂O₃ samples, we measured Ag L₃-edge and O Kedge X-ray absorption near edge structure (XANES) spectra of the samples. In situ FT-IR spectroscopy was applied to Ag/Ga₂O₃ samples to understand the reaction steps such as the adsorption of CO2 molecules, and the subsequent generation of bidentate formate species as the reaction intermediates. Through these analyses, the function of the Ag cocatalyst was discussed.

Experimental

^{a.} Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan. Email: yamamoto.muneaki@f.mbox.nagoya-u.ac.jp

^{b.} Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka 558-8585, Japan. Email: tyoshida@ocarina.osaka-cu.ac.jp

^d Aichi Synchrotron Radiation Center, Seto 489-0965, Japan

^e Graduate school of human and environmental studies, Kyoto University, Kyoto 606-8501, Japan

^f Element Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan

ARTICLE

Catalysts preparation.

Ag/Ga₂O₃ samples were prepared by an impregnation method. A mixture of a Ga₂O₃ powder (Kojundo Chemical Laboratory Co. Ltd. purity 99.99 %) and an aqueous solution of AgNO₃ (Kishida Chemical Co. Ltd. purity 99.8 %) was magnetically stirred and dried up, followed by calcination at 673 K for 2 h, which provided the Ag/Ga₂O₃ samples. The loading amounts of Ag were 0.1, 0.2, 0.5 and 1.0 wt%.

Reaction tests.

The photocatalytic reaction tests were conducted in a specially designed reactor of gas–liquid–solid three phases as follows: Before the reaction test, the Ag/Ga₂O₃ powder (0.2 g) in the reactor was irradiated from a 300 W Xe lamp for 1 h under CO₂ gas with a flow rate at 3.0 mL/min, where the light intensity measured in the range of 254 ± 10 nm was 25 mW/cm². Then a NaHCO₃ aqueous solution (H₂O 10 mL, NaHCO₃ 0.92 g) was added to this reactor cell in dark. After 1 h, the background was measured with an online gas chromatograph with thermal conductivity detector (GC-TCD, Shimadzu GC-8APT). Successively, photocatalytic reduction of CO₂ under photoirradiation was started and CO, H₂ and O₂ production rates were measured every 1 h with the GC-TCD up to five repetitions.

TEM measurements.

For TEM measurements, samples were dispersed in an ethanol solution, and a drop of the suspension was mounted on a holey carbon covered copper mesh. TEM images of samples were recorded with a Hitachi H-800 electron microscope operated at 200 kV at the High Voltage Electron Microscope Laboratory in Nagoya University.

Cs-corrected S/TEM (JEOL, JEM-ARM 200F Cold) equipped with a thermal field-emission gun was operated at 200 kV. HAADF-STEM images were taken at almost just focus at a resolution of 1024 \times 1024 pixels (0.021 \times 0.021 nm² pixel⁻¹).

DR UV-Vis spectroscopy.

Diffuse reflectance UV–visible spectrum was recorded at room temperature on a spectrophotometer (JASCO V-670) equipped with an integrating sphere covered with BaSO₄, where BaSO₄ was used as the reference.

XANES spectroscopy.

XANES measurements were carried out at the beam line 6N1 and 7U at Aichi Synchrotron Radiation Center. Ag L_3 -edge XANES spectra of the samples were measured using a two-crystal Ge(111) monochromator at room temperature in an atmospheric chamber with He gas. The data were recorded in a fluorescent X-ray yield mode with a silicon drift detector (Vortex Electronics). O K-edge XANES spectra of the samples were measured at room temperature in a total electron yield mode, where the X-ray energy dependence of the O Auger electron yield was monitored. Considering the escape depth of the Auger electrons, the spectra showed the state of the surface layers up to a few nm in depth.¹⁵

FT-IR spectroscopy.

FT-IR spectra were recorded with a FT/IR-6100 (JASCO) in a transmission mode at room temperature. Sample (ca.15 mg) was pressed into a disk (diameter: 10 mm) at 50 MPa and placed in an insitu IR cell equipped with CaF_2 windows. The cell allowed us to perform heating, introduction of substrates, photoirradiation, and measurement of spectra in-situ. Before the measurement, the sample was evacuated at 673 K for 1h. For each spectrum, the data from 6 scans were accumulated at a resolution of 4 cm⁻¹.

Results and discussion

Photocatalytic reduction of CO_2 with water over the Ag/Ga₂O₃ samples.

The prepared Ag/Ga₂O₃ samples were examined for the photocatalytic reduction of CO₂ with water. Table 1 shows photocatalytic activity for the reaction over a bare Ga₂O₃ sample, the 0.1 wt% Ag/Ga₂O₃ sample and the 1.0 wt% Ag/Ga₂O₃ sample after 5 h. The products observed in the present study were CO, H₂ and O₂, which consisted with the results in other reports.^{3-11,13,14} In the present system, both the CO₂ reduction and water splitting would take place competitively. The CO production rates over all the Ag/Ga₂O₃ samples were faster than that over the bare Ga₂O₃ sample. It was confirmed that the Ag cocatalyst well accelerated the CO production. The CO production rate over the 0.1 wt% Ag/Ga₂O₃ sample, while the selectivity to CO was higher for the latter sample. These results should derive from the difference in the structural and chemical state of the Ag cocatalyst among these samples.

Ag species in Ag/Ga₂O₃ samples.

Figure 1 shows TEM images of the Ag/Ga₂O₃ samples. The size distribution of the Ag particles varied with the loading amount of Ag. The Ag particles with the size of several tens nm were observed in the 0.1 wt% Ag/Ga₂O₃ sample, but the number of particles was very few and a smaller particle was not found. On the other hand, the Ag particles with the size of several–several tens nm were observed in the 1.0 wt% Ag/Ga₂O₃ sample. Note that many Ag particles with the size of several nm existed in the 1.0 wt% Ag/Ga₂O₃ sample. The size of several nm was smaller than that of Ag particles observed in the 0.1 wt% Ag/Ga₂O₃ sample although the larger amount of Ag loading might provide the larger Ag particle. Considering the resolution of TEM measurement, this result probably indicates the presence of ca. 1 nm or sub nm sized Ag particles in the 0.1 wt% Ag/Ga₂O₃ sample.

To confirm the existence of such very small Ag particles, we conducted the HR-STEM measurement for the 0.1 wt% Ag/Ga_2O_3 sample. HR-STEM successfully revealed the presence of the small Ag particles in the 0.1 wt% Ag/Ga_2O_3 sample as indicated by the arrows in Figure 2a, which size was estimated around 1 nm in diameter. Figure 2b shows the distribution of the particle size estimated from more than twenty images, where the majority was found around 1 nm.

Figure 3 gives a diffuse reflectance UV-visible spectrum of the 0.1 wt% Ag/Ga₂O₃ sample. A large absorption band for bandgap excitation of Ga₂O₃ was observed less than 300 nm in wavelength. No clear band assignable to a localized surface plasmon resonance of

Journal Name

Journal Name

Ag nanoparticles around 450 nm was observed, while a very small band at 350 nm due to Ag small clusters $(Ag_n)^{16}$ was found. This is consistent with the result obtained by the TEM and HR-STEM measurements.

Figure 4 shows the Ag L₃-edge XANES spectra of the Ag/Ga₂O₃ samples together with those of Ag foil and Ag₂O reference samples. Ag L₃-edge XANES arises mainly from the excitation of the 2p_{3/2} core level electron into the unoccupied states of d character above the Fermi level. The XANES spectrum of the 1.0 wt% Ag/Ga2O3 sample exhibited a sharp absorption (whiteline) at 3353 eV due to the oxidized Ag as well as the fine resonance peaks around 3380 and 3400 eV characteristic of the metallic Ag. However, this spectrum could not be reproduced by simple imposing the spectra of the Ag foil and the Ag₂O reference samples. This result suggests that Ag metal particles in the 1.0 wt% Ag/Ga2O3 sample would be not a mixture of large metallic particles and large oxidized particles but probably partially oxidized large particles. Note that the absorption features due to the Ag metal and oxides in the spectra of the Ag/Ga₂O₃ samples became weaker with decreasing the loading amount of Ag, and indistinct broad feature was observed. As mentioned in Supporting Information with Figure S1⁺ and S2⁺, it was confirmed that the broad peaks were not due to the decreased amount of Ag but to the decreased Ag particle size and/or the enhanced interaction between the Ag clusters and the Ga2O3 surface. It is thus suggested that the Ag species in the 0.1 wt% Ag/Ga₂O₃ sample would be well dispersed to form Ag clusters, as a result which would be strongly interacted with the Ga2O3 surface. This should support the explanation mentioned above for the TEM and HR-STEM images and DR UV-Vis spectrum, i.e., the Ag clusters with the size of around 1 nm were mainly present in the 0.1 wt% Ag/Ga2O3 sample. If there were large particles with the size of several tens nm in this sample mainly, its XANES spectrum should be more similar to that of the Ag foil. Thus, the large particles observed in the TEM image would be minor in this sample.

We investigated the difference in the chemical state of the Ag species among the above two samples in detail. It is expected that the chemical states of the Ag species would change with heating atmosphere. Figure 5 illustrates the Ag L3-edge XANES spectra of the samples heated at 673 K for 2 h in air or in vacuum. As for the 1.0 wt% Ag/Ga₂O₃ sample, the significant effect of heating atmosphere was found on the XANES feature. The XANES spectrum of the sample heated in vacuum was substantially similar to that of the Ag foil, although a shoulder at 3353 eV was still observed. By heating up to 673 K in vacuum, the partially oxidized large Ag particles as prepared were almost decomposed to Ag metal particles. On the other hand, the XANES spectrum of the 0.1 wt% Ag/Ga_2O_3 sample heated in vacuum was almost the same as that of the sample heated in air. This result indicates that the well dispersed Ag particles, i.e. the Ag clusters, in the 0.1 wt% Ag/Ga2O3 sample would be stable even under the heating. The stability should be attributed to the strong interaction between the Ag cluster and the Ga₂O₃ surface.

Actually, in Figure 6, the characteristic XANES feature just above the edge would represent the interaction between the Ag cluster and the Ga_2O_3 surface. The absorption band just above the edge around 3350–3365 eV is lower for the Ag/Ga₂O₃ samples rather than a bulk Ag metal, which was most significant for the 0.1 wt% Ag/Ga₂O₃ sample. Similar features were reported by Bzowski *et al.* for the XANES spectra of Au-Ag alloys and they concluded that the electron density in the *d*-orbital of the Ag atom increased by alloying with Au.¹⁷ Therefore, in the present Ag/Ga₂O₃ samples, the Ag species would probably accept more electrons in the *d*-orbitals as the result of interaction with the Ga₂O₃ surface, in other words, the electron density in the *d*-orbitals of the Ag atom would be increased by the hybridization with the band of the Ga₂O₃ surface. This phenomenon seemed more significant for the 0.1 wt% Ag/Ga₂O₃ sample would interact with the Ga₂O₃ surface stronger than the partially oxidized large Ag particles in the 1.0 wt% Ag/Ga₂O₃ sample.

The interaction of the Ag-Ga₂O₃ interface was also discussed based on the O K-edge XANES involving the excitation of O 1s core level to the unoccupied 2p states. The spectra were recorded by the total electron yield mode and thus the obtained information would reflect only the state of the surface layers by considering the electron escape depth. Figure 7 shows the O K-edge XANES spectra of the Ag/Ga₂O₃ samples and the bare Ga₂O₃ sample which have been stored in an air atmosphere and evacuated at room temperature. The shoulder at 531.5 eV assigned to the absorption of silver oxides species¹⁸ grew with an increase of the Ag loading, suggesting that the partially oxidized Ag particles would exist preferentially on the Ag/Ga2O3 samples with higher Ag loading. Two broad peaks observed around 534.5 eV and 540.5 eV could be attributed to the excitation of O 1s to hybridized orbital of the metal sp and O 2p orbitals.¹⁸⁻²¹ Note that the peak at 534.5 eV was higher for the 0.1 wt% Ag/Ga₂O₃ sample rather than the bare Ga₂O₃, implying that the unoccupied O 2p orbital of the Ga2O3 surface was increased by the interaction of the Ag-Ga2O3 interface. This should not be due to the increase of the amount of the silver oxides species in the samples, since the intensity of this peak decreased for the samples containing more silver oxide species such as the 1.0 wt% Ag/Ga2O3 sample. These results correspond to that obtained by the Ag L₃-edge XANES spectra and indicate the electron donation to some extent from the O atoms of the Ga₂O₃ surface to the Ag atoms in the Ag clusters. Thus, Ag L₃- and O K-edge XANES spectra demonstrated that the interaction between the Ag species and the Ga₂O₃ surface influences the electronic states of them, which would be more significant for the small size of the Ag clusters such as 1 nm. It is known that the work function of a smaller metal particle is larger than that of a large particle,²² in other words, the fermi level of the Ag clusters would be lower. This causes more electron donation from the n-type semiconductor Ga₂O₃ to the Ag metal through the metalsemiconductor junction. Therefore, the *d*-orbital of the Ag cluster would be more filled.

As a conclusion of this section, TEM images, DR UV-Vis and XANES spectra clarified the followings: In the Ag/Ga_2O_3 sample with the small amount of Ag loading, Ag clusters with the size of around 1 nm were formed predominantly. They had strong interaction with Ga_2O_3 supports, which caused the electron donation to some extent from the O atoms of the Ga_2O_3 surface to the Ag atoms in the Ag clusters. On the other hand, in the Ag/Ga₂O₃ sample with the large amount of Ag loading, partially oxidized large Ag particles existed and they were likely to decompose to metallic Ag particles with the heat treatment in vacuum. These differences in the size and chemical state of Ag species would affect not only the

ARTICLE

photocatalytic activity for the $\rm CO_2$ reduction with water but also the reaction mechanism.

Functions of the Ag cluster.

Here, we carried out in-situ FT-IR measurements of the Ag/Ga₂O₃ samples at each reaction steps. In this paper, the difference IR spectrum of a sample was obtained by subtracting the background spectrum of the sample after the heat treatment in vacuum. Therefore, the partially oxidized large Ag particles became metallic before the measurements. Figure 8 shows the difference FT-IR spectra of the adsorbed species on the Ag/Ga₂O₃ samples after introduction of 45 Torr of CO₂. The bands at 1635 and 1420 cm⁻¹ are assigned to asymmetric CO₃ stretching vibration [v_{as}(CO₃)] and symmetric CO₃ stretching vibration $[v_s(CO_3)]$ of monodentate bicarbonate species, respectively.²³⁻²⁶ The bands at 1590 and 1320 cm⁻¹ are ascribed to $v_{as}(CO_3)$ and $v_s(CO_3)$ of bidentate carbonate species, respectively.²³⁻ ²⁵ These bands were observed in all of the spectra regardless of the loading amount of Ag. CO2 molecules would react with the surface hvdroxv group and the surface lattice oxygen of Ga2O3 to form the bicarbonate and carbonate species, respectively.^{27,28} On the other hand, the bands around 1510 and 1350 cm⁻¹ are assigned to $v_{as}(CO_3)$ and $v_s(CO_3)$ of monodentate carbonate species, respectively,^{23,29-31} and these bands increased with the loading amount of Ag. Since the formation of the CO₃ species from CO₂ molecule are expected to require the surface oxygen,^{29,32} the large Ag metal particles would be covered with a surface oxide layer even after the heat treatment, and the monodentate carbonate species would be formed on them.

Figure 9 illustrates the difference FT-IR spectra of the samples after introduction of CO₂, followed by evacuation and photoirradiation for 1 h. The bands derived from the carbonate and bicarbonate species decreased and new bands appeared at 1577, 1388 and 1353 cm⁻¹. These bands are assigned to $v_{as}(CO_2)$, $\delta(CH)$ and v_s(CO₂) of bidentate formate species, respectively.²⁴⁻²⁶ The intensity of the bands ascribed to the bidentate formate species was high for the Ag/Ga₂O₃ samples with smaller amount of Ag loading such as the 0.1 wt% Ag/Ga₂O₃ sample, while low for the 1.0 wt% Ag/Ga₂O₃ sample. This result indicates that the bidentate formate species would arise from not the monodentate carbonate species adsorbed on the large Ag metal particles but the monodentate bicarbonate and/or the bidentate carbonate adsorbed on the Ga₂O₃ surface. We had also conducted in-situ FT-IR measurements using the visible light which could not excite electrons of Ga2O3 but of plasmonic Ag nanoparticles, and confirmed no reaction proceeded. This result suggests that the bidentate formate species was formed not by the plasmonic excitation of the Ag nanoparticles but by the electron excitation of the Ga2O3 semiconductor.

On the basis of these FT-IR results and our previous study,¹⁴ we propose tentative reaction schemes for the photocatalytic reduction of CO₂ with water over 0.1 wt% Ag/Ga₂O₃ sample as shown in Figure S3[†]. Since the formation of the bidentate formate species was promoted by the Ag clusters included in the 0.1 wt% sample, the Ag clusters would be one of the photocatalytic active sites that could form carbon monoxide via the bidentate formate species. As mentioned, Ag metal particle generally shows an increase of its work function when the particles size is reduced,²² therefore, such small Ag clusters could more enhance the band bending at the metal-

semiconductor junction, promoting the separation of photoexcited electron and hole pairs. As a result, the Ag cluster would effectively reduce the monodentate bicarbonate and/or the bidentate carbonate to produce the bidentate formate intermediate species. The adsorbed CO_2 species would migrate on the surface to the perimeter of the Ag clusters in turn to be reduced.

On the other hand, the large Ag metal particles in the 1.0 wt% Ag/Ga_2O_3 sample would have a capacity to trap many photoexcited electrons, and the Ag clusters, even if existence, could receive less electron competitively. Thus, the large Ag metal particles might prevent from producing the bidentate formate species at the perimeters of the Ag clusters. If the trapped electrons by the large Ag metal particles were provided for CO₂ reduction, they would be used for the reduction of monodentate carbonate species.

On the 1.0 wt% Ag/Ga₂O₃ sample, the bidentate formate species was not observed although a certain amount of carbon monoxide was formed. At present, although the reaction on the large metal Ag particles has not been clarified yet, we might point out some possibilities: One is that, if the bidentate formate species was produced, the further reaction might be too fast to detect them in the present FT-IR measurement.³¹ Another is that, if the bidentate formate species was not formed, the monodentate carbonate generated on the large Ag metal particles might rather be converted to carbon monoxide. Further study is required.

Conclusions

In the photocatalytic reduction of CO₂ with water with the Ag loaded Ga₂O₃ photocatalysts, the CO production rate depended on the loading amount of Ag and the 0.1 wt% Ag/Ga₂O₃ sample showed higher CO production rate than the 1.0 wt% Ag/Ga₂O₃ sample. We investigated the structural and chemical states of the Ag cocatalyst as well as its interaction with the Ga₂O₃ surface by measuring TEM images, DR UV-Vis and XANES spectra.

In the Ag/Ga₂O₃ samples with low Ag loading, around 1 nm sized Ag clusters were formed predominantly. Such dispersed Ag clusters had strong interaction with the Ga₂O₃ surface, which caused the electron donation to some extent from the O atoms of the Ga₂O₃ surface to the Ag atoms in the Ag clusters. With an increase of Ag loading, additional Ag particles with the size of several – several tens nm increased. These large particles were partially oxidized, and likely to decompose to Ag metal ones when it was heated in vacuum.

In addition, we have carried out in-situ FT-IR measurements of the Ag/Ga₂O₃ photocatalysts at each reaction steps, and revealed the following CO₂ adsorption behaviours: CO₂ molecules mainly adsorbed on the Ga₂O₃ surface to form the monodentate bicarbonate and the bidentate carbonate species. And the small Ag clusters on the Ga₂O₃ surface would not have a significant influence on the amounts of these adsorbed species. On the other hand, CO₂ molecules adsorbed on the large Ag metal particles to form monodentate carbonate species. The bidentate formate species as the reaction intermediate was generated from not the monodentate carbonate species on the large Ag metal particles but the monodentate bicarbonate and/or the bidentate carbonate species on the Ga₂O₃ surface. The formation of the bidentate formate species would take place at the perimeters of the Ag clusters on the Ga₂O₃ surface, because such small Ag clusters could enhance the band bending in Journal Name

the Ga_2O_3 semiconductor, promoting the effective separation of the photoexcited electrons and holes.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (No.24360332 and 24656489) from the Japan Society for the Promotion of Science (JSPS). Synchrotron experiments were carried out at Aichi Synchrotron Radiation Center which is supported by No.2503042.

References

- 1 A. Kubacka, M. Fernández-García and G. Colón, *Chem. Rev.*, 2012, **112**, 1555.
- 2 D. Chen, X. Zhang and A. F. Lee, J. Mater. Chem. A, 2015, DOI: 10.1039/c5ta01592h.
- 3 K. Iizuka, T. Wato, Y. Miseki, K. Saito and A. Kudo, J. Am. Chem. Soc., 2011, 133, 20863.
- 4 Z. Like, E. Tanabe, K. Morikawa, T. Kazino, T. Sekihuzi, S. Matumoto, Y. Hirata and H. Yoshida, *108th Symposium of Catal. Soc. A*, 2011, 1D15 (in Japanese).
- 5 K. Teramura, Z. Wang, S. Hosokawa, Y. Sakata and T. Tanaka, *Chem. Eur. J.*, 2014, **20**, 9906.
- 6 Z. Wang, K. Teramura, S. Hosokawa and T. Tanaka, J. Mater. Chem. A, 2015, 3, 11313.
- 7 T. Takayama, K. Tanabe, K. Saito, A. Iwase and A. Kudo, *Phys. Chem. Chem. Phys.*, 2014, **16**, 24417.
- 8 T. Takayama, A. Iwase and A. Kudo, Bull. Chem. Soc. Jpn., 2015, 88, 538.
- 9 H. Yoshida, L. Zhang, M. Sato, T. Morikawa, T. Kajino, T. Sekito, S. Matsumoto and H. Hirata, *Catal. Today*, 2015, 251, 132.
- 10 Z. Wang, K. Teramura, S. Hosokawa and T. Tanaka, *Appl. Catal. B: Environ.*, 2015, **163**, 241.
- 11 K. Teramura, H. Tatsumi, Z. Wang, S. Hosokawa and T. Tanaka, Bull. Chem. Soc. Jpn., 2015, 88, 431.
- 12 T. Yanagida, Y. Sakata and H. Imamura, *Chem. Lett.*, 2004, **33**, 726.
- 13 N. Yamamoto, T. Yoshida, S. Yagi, Z. Like, T. Mizutani, S. Ogawa, H. Nameki and H.Yoshida, *e-J. Surf. Sci. Nanotech.*, 2014, 12, 263.
- 14 M. Yamamoto, T. Yoshida, N. Yamamoto, H. Yoshida and S. Yagi, e-J. Surf. Sci. Nanotech., 2014, 12, 299.
- 15 A. Erbil, G. S. Cargil, R. Frahm and R. F. Boehme, *Phys. Rev. B*, 1988, **37**, 2450.
- 16 A. N. Pestryakov and A. A. Davydov, J. Electron Spectrosc. Relat. Phenom., 1995, 74, 195.
- 17 A. Bzowski, Y. M. Yiu and T. K. Sham, Jpn. J. Appl. Phys., 1993, 32, 691.
- 18 V. I. Bukhtiyarov, M. Havecker, V. V. Kaichev, A. Knop-Gericke, R. W. Mayer and R. Schlogl, *Phys. Rev. B*, 2003, 67, 235422.
- 19 F. Tourtin, P. Armand, A. Ibanez, G. Tourillon and E. Philippot, *Thin Solid Films*, 1998, **322**, 85.
- 20 W-S. Yoon, K-B. Kim, M-G. Kim, M-K. Lee, H-J. Shin, J-M. Lee, J-S. Lee and C-H. Yo, *J. Phys. Chem. B*, 2002, 106, 2526.

- 21 X. T. Zhou, F. Heigl, J. Y. P. Ko, M. W. Murphy, J. G. Zhou, T. Regier, R. I. R. Blyth and T. K. Sham, *Phys. Rev. B*, 2007, 75, 125303.
- 22 D. M. Wood, Phys. Rev. Lett., 1981, 46, 749.
- 23 G. Busca and V. Lorenzelli, *Mater. Chem.*, 1982, 7, 89-126.
- 24 S. E. Collins, M. A. Baltanas and A. L. Bonivardi, J. Catal., 2004, 226, 410.
- 25 S. E. Collins, M. A. Baltanas and A. L. Bonivardi, J. Phys. Chem. B, 2006, 110, 5498.
- 26 H. Tsuneoka, K. Teramura, T. Shishido and T. Tanaka, J. Phys. Chem. C, 2010, 114, 8892.
- 27 M. Primet, P. Pichat and M.-V. Mathieu, J. Phys. Chem., 1971, 75, 1221.
- 28 S. Neatu, J. A. Macia-Agullo, P. Concepcion and H. Garcia, *J. Am. Chem. Soc.*, 2014, **136**, 15969.
- 29 E. M. Stuve, R. J. Madix and B. A. Sexton, *Chem. Phys. Lett.*, 1982, **89**, 48.
- 30 J. I. D. Cosimo, V. K. Díez, M. Xu, E. Iglesia and C. R. Apesteguía, J. Catal., 1998, 178, 499.
- 31 M. F. Baruch, J. E. Pander III, J. L. White and A. B. Bocarsly, *ACS Catal.* 2015, **5**, 3148.
- 32 C. T. Campbell and M. T. Paffett, Surf. Sci., 1984, 143, 517.

Page	6	of	16
------	---	----	----

photocatalyst	CO production rate (µmol/h)	H_2 production rate (µmol/h)	O_2 production rate (µmol/h)
Ga ₂ O ₃	0.4	2.4	0.6
$0.1 \text{ wt\% Ag/Ga}_2\text{O}_3$	2.0	9.4	4.6
$1.0 \text{ wt\% Ag/Ga}_2O_3$	1.1	0.7	_

Figure Captions

Figure 1. TEM images of 0.1 wt% Ag/Ga₂O₃ (a) and 1.0 wt% Ag/Ga₂O₃ (b).

Figure 2. HAADF-STEM image of 0.1 wt% Ag/Ga₂O₃ (a) and the size distribution of Ag particles (b).

Figure 3. Diffuse reflectance UV-Vis absorption spectrum of 0.1 wt% Ag/Ga₂O₃.

Figure 4. Ag L_3 -edge XANES spectra of 0.1 wt% Ag/Ga₂O₃ (a), 0.2 wt% Ag/Ga₂O₃ (b), 0.5 wt% Ag/Ga₂O₃ (c), 1.0 wt% Ag/Ga₂O₃ (d) and Ag references.

Figure 5. Ag L₃-edge XANES spectra of 0.1 wt% Ag/Ga₂O₃ heated at 673 K in air (a), in vacuum (b), 1.0 wt% Ag/Ga₂O₃ heated at 673 K in air (c), in vacuum (d) and an Ag foil.

Figure 6. Ag L₃-edge XANES spectra of 0.1 wt% Ag/Ga₂O₃ heated in vacuum at 673 K (a), 1.0 wt% Ag/Ga₂O₃ heated in vacuum at 673 K (b) and an Ag foil. The spectra of Ag/Ga₂O₃ samples exhibit reduced intensity just above the edge relative to that of an Ag foil.

Figure 7. O K-edge XANES spectra of a bare Ga_2O_3 (a), 0.1 wt% Ag/ Ga_2O_3 (b), 0.2 wt% Ag/ Ga_2O_3 (c), 0.5 wt% Ag/ Ga_2O_3 (d) and 1.0 wt% Ag/ Ga_2O_3 (e).

Figure 8. Difference FT-IR spectra of the adsorbed species after the introduction of 45 Torr of CO₂ on a bare Ga₂O₃ (a), 0.1 wt% Ag/Ga₂O₃ (b), 0.2 wt% Ag/Ga₂O₃ (c), 0.5 wt% Ag/Ga₂O₃ (d) and 1.0 wt% Ag/Ga₂O₃ (e).

Figure 9. Difference FT-IR spectra of the adsorbed species after introduction of CO₂, followed by evacuation and photoirradiation for 1 h on a bare Ga_2O_3 (a), 0.1 wt% Ag/Ga_2O_3 (b), 0.2 wt% Ag/Ga_2O_3 (c), 0.5 wt% Ag/Ga_2O_3 (d) and 1.0 wt% Ag/Ga_2O_3 (e).

Figure 1. TEM images of 0.1 wt% Ag/Ga $_2O_3$ (a) and 1.0 wt% Ag/Ga $_2O_3$ (b).

Figure 2. HAADF-STEM image of 0.1 wt% Ag/Ga₂O₃ (a) and the size distribution of Ag particles (b).

Figure 3. Diffuse reflectance UV-Vis absorption spectrum of 0.1 wt% Ag/Ga₂O₃.

Figure 4. Ag L₃-edge XANES spectra of 0.1 wt% Ag/Ga₂O₃ (a), 0.2 wt% Ag/Ga₂O₃ (b), 0.5 wt% Ag/Ga₂O₃ (c), 1.0 wt% Ag/Ga₂O₃ (d) and Ag references.

Figure 5. Ag L₃-edge XANES spectra of 0.1 wt% Ag/Ga₂O₃ heated at 673 K in air (a), in vacuum (b), 1.0 wt% Ag/Ga₂O₃ heated at 673 K in air (c), in vacuum (d) and an Ag foil.

Figure 6. Ag L₃-edge XANES spectra of 0.1 wt% Ag/Ga₂O₃ heated in vacuum at 673 K (a), 1.0 wt% Ag/Ga₂O₃ heated in vacuum at 673 K (b) and an Ag foil. The spectra of Ag/Ga₂O₃ samples exhibit reduced intensity just above the edge relative to that of an Ag foil.

Figure 7. O K-edge XANES spectra of a bare Ga_2O_3 (a), 0.1 wt% Ag/ Ga_2O_3 (b), 0.2 wt% Ag/ Ga_2O_3 (c), 0.5 wt% Ag/ Ga_2O_3 (d) and 1.0 wt% Ag/ Ga_2O_3 (e).

Figure 8. Difference FT-IR spectra of the adsorbed species after the introduction of 45 Torr of CO₂ on a bare Ga₂O₃ (a), 0.1 wt% Ag/Ga₂O₃ (b), 0.2 wt% Ag/Ga₂O₃ (c), 0.5 wt% Ag/Ga₂O₃ (d) and 1.0 wt% Ag/Ga₂O₃ (e).

Figure 9. Difference FT-IR spectra of the adsorbed species after introduction of CO₂, followed by evacuation and photoirradiation for 1 h on a bare Ga_2O_3 (a), 0.1 wt% Ag/Ga_2O_3 (b), 0.2 wt% Ag/Ga_2O_3 (c), 0.5 wt% Ag/Ga_2O_3 (d) and 1.0 wt% Ag/Ga_2O_3 (e).