Journal of Materials Chemistry A

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsA

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

J.-K. Ewert,^a D. Weingarth,^b C. Denner,^a M. Friedrich,^a M. Zeiger,^{b,c} A. Schreiber,^b N. Jäckel,^{b,c} V. Presser,^{b,c}* and R. Kempe^a*

Supercapacitors combine efficient electrical energy storage and performance stability based on fast electrosorption of electrolyte ions at charged interfaces. They are a central element of existing and most importantly of perspective energy concepts. A better understanding of capacitance enhancement option is essential to exploit the full potential of supercapacitors. Here, we report on a novel hierarchically structured N-doped carbon material and a significant capacity enhancement for a specific ionic liquid. Our studies indicate that a matching of the electrode material and the ionic liquid specifically leads to a constant normalized resistance (voltage window up to ±1 V vs. carbon) and a significant enhancement of the specific capacitance. Such effects are not seen for standard organic electrolytes, non-matched ionic liquids, or non-N-doped carbons. A higher N-doping of the electrode material improves the symmetric full cell capacitance of the match and considerably increases its long-term stability at +3 V cell voltage. This novel observance of enhanced specific capacitance for N-doped carbons with matched ionic liquid may enable a new platform for developing supercapacitors with enhanced energy storage capacity.

Introduction

Electrochemical capacitors, also known as supercapacitors or ultracapacitors, capitalize the high efficiency and performance stability of fast electrosorption of electrolyte ions at the charged interface with nanoporous carbon.^[1, 2] While derived from abundantly available biomass, commonly used high surface area carbons show only a moderate electrical conductivity, which presents a limitation to effective charge screening, leading to a limited energy storage capacity.^[3] On a device level, this shortcoming is usually compensated by the admixing of conductive additives;^[4] yet, this approach is not an intrinsic solution for the inability to accommodate a high amount of electric charge within the carbon nanopores.

The beneficial impact of N-doping on the electrical conductivity and, more generally, the electrochemical performance of supercapacitors has first been investigated by Lota et al. on polymer-derived carbons.^[5] By now, a series of carbon materials with N-doping have been explored, including carbon nanotubes,^[6, 7] mesoporous carbon spheres^[8], biomass-derived porous carbon,^[9] metal organic frameworks,^[10] and graphene-like carbon^[11]. Nitrogen can be introduced to

This journal is © The Royal Society of Chemistry 20xx

Besides improving the electrical conductivity and, henceforth, increasing the charge screening ability of carbon,^[7] N-sites at the carbon surface may facilitate charge transfer across the electrode/electrolyte interface. Such redox-sites may contribute significantly to the energy storage mechanism by enabling access to reversible Faradaic reactions and possibly pseudocapacitance;^[11,16] yet, this is often accomplished at the cost of sacrificing power handling and longevity to some degree.^[2]

Considering the high ion mobility and the possible benefit of redox-related charge storage, most of the investigations of nitrogen-doped carbons has been carried out in aqueous electrolytes, foremost $H_2SO_4^{[5, \, 6, \, 17]}$ and KOH.^[5] In such systems, an enhancement of the electrochemical performance is accomplished by the introduction of fast surface redox-reactions of quaternary nitrogen and other N-groups with the

YAL SOCIETY CHEMISTRY

^{a.} Inorganic Chemistry II, Universität Bayreuth, Universitätsstraße 30, NW I, 95440 Bayreuth, Germany

^{b.} INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany

^{c.} Department of Materials Science and Engineering, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany

^{*} Corresponding authors. E-mail: <u>kempe@uni-bayreuth.de</u> (Rhett Kempe) and <u>volker.presser@leibniz-inm.de</u> (Volker Presser)

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

ARTICLE

protic electrolyte. Only a small number of studies, so far, has been carried out on organic electrolytes,^[5] including ionic liquids^[18]. The latter are a highly promising group of electrolytes that enable to push the voltage limit of supercapacitors to at least 3.5 V even for long-term operation,^[19] while benefitting from a non-volatile and temperature-stable nature at the cost of low ion mobility.^[20] Since the stored amount of energy scales with the square of the cell voltage, ionic liquids are attractive candidates for highenergy supercapacitor devices.^[21] While the results for many of N-doped carbons are promising, one aspect has somewhat been overlooked: the intricate correlation between ions and the carbon surface. Matching the ionic liquid to an optimized voltage window has recently been demonstrated for pure carbon materials,^[22] but it is still unclear what selection strategy should be applied for matching an ionic liquid to nitrogen-doped carbon.

Herein, we report on novel hierarchically porous N-doped carbon materials obtained from meso-structured polymer derived silicon carbon nitride and their electrochemical performances in different ionic liquids. We observe a significantly improved capacitance for a specific ionic liquid and an increased N-doping improves the symmetric full cell capacitance as well as the long-time stability of such cells at high voltage.

Results and Discussion

Preparation of the hierarchical porous N-doped carbon material

Figure 1. Schematic process of the synthesis of the N-doped hierarchically porous carbon materials and transmission electron microscopy (TEM) images of $PS_{50}SiCN_{900}$

(left, top) PS₅₀SiCN₉₀₀Cl₂-800°C (left, bottom) following a three step procedure. 1) Mixing 50 nm polystyrene (PS₅₀) particle template, the commercially available SiCN precursor HTT-1800, and dicumylperoxide (DCP, cross linker) in toluene as well as structuring by removal of the solvent. 2) Pyrolysis at 900 °C obtaining the mesoporous SiCN material PS₅₀SiCN₉₀₀. 3) Chlorination at 800 °C or 1000 °C leading to the hierarchical porous N-doped carbon material PS₅₀SiCN₉₀₀Cl₂-800°C and PS₅₀SiCN₉₀₀Cl₂-1000°C, respectively.

Since the template free synthesis of polymer-derived silicon carbon nitride (SiCN) materials leads neither to micro pores nor to meso pores^[23], we decided to synthesize a polystyrenepolysilazane nanocomposite regarding meso-structuring.^[24] Therefore, positively charged polystyrene (PS) spheres with a diameter of about 50 nm (PS₅₀) were synthesized as structuring template via emulsion polymerization (Figure 1; see also Supporting Information, Figure S1). The particles were mixed in toluene with commercially available polysilazane HTT-1800. Divinylbenzene (DVB) was used as cross linker stabilizing the particles in toluene. Thus, an enhanced yield of residual carbon is the consequence. Evaporation of the solvent gave rise to the nano-composite green body. The green body was pyrolyzed at 900 °C in order to remove the PS₅₀ template and leading to the thermal stable meso-structured SiCN material PS₅₀SiCN₉₀₀. (Figure 1; see also Supporting Information, Figure S2). Chlorine treatment, commonly used for the synthesis of carbide-derived carbons (CDC)^[25] was employed at 800 °C (PS50SiCN900Cl2-800) and 1000 °C (PS50SiCN900Cl2-1000°C) to volatize residual silicon and partially mobilize silicon nitride.^[26]

Material characterization

Transmission electron microscopy (TEM) images of $PS_{50}SiCN_{900}Cl_2$ -800 before and after chlorination are shown in **Figure 1**. For scanning electron microscopy (SEM) and TEM images of all materials, see *Supporting Information*, **Figure S1**-**S3**. As common for CDC,^[27] our materials remained conformal after chlorine gas treatment, preserving the structuring of the mesoporous SiCN material and adding additional pores so that a very high pore volume (up to 1.67 cm³/g) was reached.

The SiCN material PS₅₀SiCN exhibits a characteristic nitrogen sorption isotherm typical for a purely mesoporous material (Figure 2A).^[28] The nitrogen gas sorption isotherms of the material after chlorine gas treatment were a combination of the IUPAC Type I and Type IV isotherm with a pronounced Type H2 hysteresis in reflectance of the mixed micro- and mesoporous pore structure (Figure 2B).^[28] Compared to the mesoporous SiCN material (107 m²/g), the BET surface area strongly increases as a result of chlorine etching at 800 °C to $1745 \text{ m}^2/\text{g}$ and at 1000 °C to $1817 \text{ m}^2/\text{g}$ (Table 1). PS₅₀SiCN₉₀₀Cl₂-800°C is dominated by mesopores, 71 % of the pore volume (Table 1). In contrast, PS₅₀SiCN₉₀₀Cl₂-1000°C shows approximately a one-to-one distribution of micro- and mesopores at a lower total pore volume $(1.19 \text{ cm}^3/\text{g instead of})$ 1.67 cm³/g). The smaller pore volume may result from an enhanced carbon sintering and pore coalescing at 1000 °C.^[29] The hierarchic pore size distributions observed for both Ndoped carbon materials facilitates access of ionic liquid ions to

the pores (**Table 1**). The diameter of the largest mesopores is significantly smaller than 50 nm (diameter of the used PS templates) due to incomplete cracking of the PS template during pyrolysis (**Figure 2B**).

The materials after chlorine gas treatment showed Raman spectra with pronounced D- and G-peaks around 1350 cm⁻¹ and 1590 cm⁻¹, respectively, as typical for incompletely graphited carbons (**Figure 2C**).^[30] With increased chlorination temperature, the degree of carbon ordering increases indicated by the small decrease of the integral I_D/I_G signal ratio from 2.3 to 2.1.

Figure 2. Characterization of the hierarchically porous nitrogen-doped carbon materials (A) Nitrogen sorption isotherms and (B) calculated pore size distribution of the ceramic template and the chlorinated materials.(C) Raman spectra of the samples $PS_{50}SiCN_{900}$ -800°C and $PS_{50}SiCN_{900}$ -1000°C, (D) XPS survey spectra of the samples $PS_{50}SiCN_{900}$ -800°C and $PS_{50}SiCN_{900}$ -1000°C, (E) N1s high resolution spectrum of $PS_{50}SiCN_{900}$ -800°C and $PS_{50}SiCN_{900}$ -1000°C, (F) O1s high resolution spectrum of $PS_{50}SiCN_{900}$ -800 and $PS_{50}SiCN_{900}$ -1000°C.

The insertion of nitrogen into the carbon network was confirmed by X-ray photoelectron emission spectroscopy (XPS) (Figure 2D-F, Table 1) and elemental analysis (EA) (Table 1). The chlorination temperature has a strong effect on the N-doping. The decrease of the temperature during the chlorination process causes a lower nitrogen removal and a higher amount of nitrogen in the final carbon material (Table 1).^[15]

Table 1. Pore characteristics derived from nitrogen gas sorption at liquid nitrogen temperature and nitrogen content calculated from ^[a] elemental analysis (EA) and ^[b]

 X-ray photoelectron spectra (XPS) for the samples after chlorine gas treatment.

ARTICLE

	PS ₅₀ SiCN ₉₀₀	PS ₅₀ SiCN ₉₀₀ Cl ₂ -800°C	PS ₅₀ SiCN ₉₀₀ Cl ₂ -1000°C
BET SSA (m ² /g)	106	1745	1817
DFT SSA (m ² /g)	117	1536	1516
V _{total} (cm ³ /g)	0.27	1.67	1.19
V _{micropores} (cm ³ /g)	0	0.47	0.59
V _{mesopores} (cm ³ /g)	0.27	1.19	0.60
Pore size average (nm)	4.4	3.3	2.0
N (mass%) ^[a]	not measured	5.5	1.6
N (mass%) ^[b]	not measured	4.6	1.1

Electrochemical measurements

Next, we investigated the electrochemical behavior of the Ndoped carbon materials. As seen from the cyclic voltammograms (CV) of PS₅₀SiCN₉₀₀Cl₂-800°C (Figure 3A) and PS₅₀SiCN₉₀₀Cl₂-1000°C (Figure 3B), stable electrochemical performance is obtained in the studied voltage window (up to ±1 V vs. carbon, equivalent to 2 V cell voltage).^[31] As shown for galvanostatic charge/discharge data (Supporting Information, Figure S4A-B), a maximum specific capacitance of 151 F/g at -1 V vs. carbon is seen for $\mathsf{PS}_{50}\mathsf{SiCN}_{900}\mathsf{Cl}_2\text{-}800^\circ\mathsf{C}$ in combination with 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF₄), reflecting the behavior of the CV curves. In contrast, 1 M (TEA-BF₄) tetraethylammonium tetrafluoroborate in acetonitrile (ACN) results in 121 F/g and 122 F/g for neat 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI). The same behavior is seen for PS₅₀SiCN₉₀₀Cl₂-1000°C, with a maximum capacitance of 149 F/g for EMIM-BF₄ and only 126 F/g for 1 M TEA-BF₄ in either propylene carbonate (PC) or ACN. The only difference between the latter two solvents, as seen from the CV in Figure 3B, is the lower ion mobility during loading and discharging for PC. Neat 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF₄) also yields a lower capacitance, namely 134 F/g. The capacitance values of different N-doped carbon electrodes with aqueous and non-aqueous electrolytes found in literature are compared in Table 2.

supercapacitor electrodes with aqueous and non-aqueous electrolytes in literature.				
Publication	Electrolyte	Capacitance (F/g)		
[5]	1 M H ₂ SO ₄	95-201		
[5]	1 M TEA-BF ₄ / ACN	52-114		
[17]	1 M H ₂ SO ₄	up to 264		
[32]	1 M H ₂ SO ₄	95-182		
[33]	1 M H ₂ SO ₄	205		
[34]	1 M LiPF ₆ in EC/DMC	159		
[35]	6 М КОН	202		
[36]	6 M KOH	up to 420		

Table 2. Comparison of the capacitance values of different N-doped carbon

ARTICLE

To find a possible explanation for the difference in capacitance, the Ohmic resistance of the N-doped carbon materials was measured in the charged state of the electrodes.^{[37],[38]} This way, it was possible to address the change in electronic properties uninfluenced by the electrolyte. As seen in Figure 3C, an expected behavior is recorded for the standard electrolyte based on ACN, namely a characteristic bell-shaped curve with a decrease in normalized resistance at increased potential. As shown in Figure 3B-C the PC-based electrolyte shows comparable capacitance values compared to the ACN based electrolyte, indicating that the resistance behavior is also very similar (cf. Ref. [38]). For the EMIM-BF₄ system, no decrease in normalized resistance is measured (Figure 3C), indicating interactions of the electrolyte with the electrode material considering that only the electrolyte was changed. This is additionally confirmed by measuring the in situ resistivity of EMIM-BF₄ in a standard activated carbon (YP80F from Kuraray, Figure S4C). Here, the typical voltage-dependency of the normalized resistance is seen again for EMIM-BF4. Thus, the unique behavior of a constant profile of the electrical conductivity is only achieved by a suitable match between electrode material (i.e., N-doped carbon) and electrolyte. Additionally, the pore hierarchy supports the ion transport. In principle, larger pores (like mesopores) facilitate in micrometer-sized particles the ion mobility, while, at the same time, a large amount of mesopores is essential to enable a high specific capacitance (i.e., high ion storage ability).^[39] Noticeably, the CV shape does not indicate the occurrence of any further processes, such as ion depletion or surface saturation.^[1b] This is further supported when comparing the cyclic voltammograms of a SiC-CDC-800°C material and PS₅₀SiCN₉₀₀Cl₂-800°C (Figure S4D). The performance of the non N-doped material is clearly inferior to PS₅₀SiCN₉₀₀Cl₂-800°C regarding capacitance and rate capability. To check whether the performance of a single electrode as presented before can be translated to a full cell, symmetric full cells were constructed (Figure 3D). First, the potential window was opened successively up to 3 V cell voltage with a scan rate of 10 mV/s. The cell capacitance of $PS_{50}SiCN_{900}Cl_2$ -800°C (ca. 34 F/g) is higher than that of $PS_{50}SiCN_{900}Cl_2$ -1000°C (ca. 30 F/g). Note that the values for the cell capacitance can be transformed to the specific capacitance (for one electrode) by multiplying by a factor of 4. The data from cyclic voltammetry agree well with galvanostatic charge/discharge measurements. At a low current density of 0.1 A/g, the specific capacitive of $\mathsf{PS}_{50}\mathsf{SiCN}_{900}\mathsf{Cl}_2\text{-}800^\circ\mathsf{C}$ (129 F/g) is higher than that of $PS_{50}SiCN_{900}Cl_2$ -1000°C (118 F/g). Up to 2 A/g, both materials display a high rate capability before the capacitance is fading at higher current densities.

Finally, the long-term stability at 3 V cell voltage was tested by voltage floating.^[40] Both cells are characterized by a decay in capacitance over time (**Figure 3F**); however, $PS_{50}SiCN_{900}Cl_2$ -800 lasted approximately twice as long as $PS_{50}SiCN_{900}Cl_2$ -1000 at an elevated voltage of 3 V. A drop of 20% in capacitance, the common device failure definition in industry,^[4] was not seen within 200 h for $PS_{50}SiCN_{900}Cl_2$ -1000°C in EMIM-BF₄. The cycling stability up to 3 V cell voltage (*Supporting Information*,

Figure S5) indicates that after a drop in capacitance at the beginning the cell approach a stable performance after 1000 cycles.

Figure 3. Cyclic voltammograms of PS₅₀SiCN₉₀₀Cl₂-800 (A) and PS₅₀SiCN₉₀₀Cl₂-1000°C (B) in the range of ±1 V vs. carbon. Scan rate: 10 mV/s (C) In situ resistivity measurements for PS₅₀SiCN₉₀₀Cl₂-800°C and PS₅₀SiCN₉₀₀Cl₂-1000°C with 1 M TEA-BF₄ and EMIM-BF₄ as electrolyte. (D) Full cell cyclic voltammograms of PS₅₀SiCN₉₀₀Cl₂-1000°C and PS₅₀SiCN₉₀₀Cl₂-1000°C with EMIM-BF₄ as electrolyte, scan rate: 10 mV/s. (E) Rate handling behavior of PS₅₀SiCN₉₀₀Cl₂-800°C and PS₅₀SiCN₉₀₀Cl₂-1000. (F) Long term stability test at 3 V cell voltage of PS₅₀SiCN₉₀₀Cl₂-800°C and PS₅₀SiCN₉₀₀Cl₂-1000°C in EMIM-BF₄.

Conclusions

In summary, we synthesized a hierarchically porous nitrogendoped carbon material with different distributions of mesoand micropores as well as a varied N-doping. Both N-doped materials show significant capacity enhancement for the ionic liquid EMIM-BF₄ in comparison to 1 M TEA-BF₄ in ACN or EMIM-TFSI. In addition, N-doped carbon in combination with EMIM-BF₄ shows a nearly constant normalized resistance from -1 V to +1 V. Distinct differences were observed for both electrode materials in symmetric full cells. The nitrogen-richer carbon material shows a higher cell capacitance and a twice as high long-term stability at 3 V cell voltage.

For the moment, the mechanisms causing the enhanced specific capacitance for the matched ionic liquid $\mathsf{EMIM}\text{-}\mathsf{BF}_4$

compared to other electrolytes (such as EMIM-TFSI or when using organic solvents) remains unclear. Yet, the electrochemical data shows that processes like ion sieving or ion saturation cannot cause the phenomenon. Instead, electrical conductivity shows and anomalous enhancement in electrical conductivity of the N-doped carbon electrode material only when using EMIM-BF₄. Noticeably, this is not seen for conventional porous carbon (i.e., without N-doping). The unique solid-state response of N-doped carbon to a specific ionic liquid is an intriguing effect to be unraveled in future work.

Experimental Section

Materials: Synthesis was performed in a dry argon atmosphere using standard Schlenk techniques. Halogenated solvents were dried over P_2O_5 and non-halogenated solvents over sodium benzophenone ketyl. All chemicals were purchased from commercial sources with a purity over 95 % and used without further purification unless described detailed below.

Synthesis of the PS₅₀ template: The cross linked polystyrene particles with an average diameter of 50 nm were synthesized by emulsion polymerization. Therefore, a three neck round bottom flask with a KPG stirrer and a reflux condenser was used. Divinylbenzene (DVB, technical grade, 55 %, Sigma Aldrich) and styrene (> 99 % purity, Sigma Aldrich) were purified by destabilization (alumina B column, ICN Biomedicals GmbH). A dispersion of 4.10 g styrene (39.39 mmol) and 0.40 g DVB (3.07 mmol) were stirred in 90 mL ultrapure water. The dispersion was degased for 30 min. After that, a solution of 0.25 g (1-hexadecyl)trimethyl-ammoniumbromide (0.69 mmol) (CTAB, 98 % purity, abcr GmbH) in 5 mL ultrapure water was added under stirring (200 rpm) at 80 °C. After 0.5 h 0.01 g 2,2'azobis(2-methylpropionamidine)dihydrochloride (0.04 mmol) (97 % purity, Sigma Aldrich) was added initiating the polymerization. Polystyrene particles were dialyzed for purification and freeze dried.

Synthesis of PS₅₀**SiCN**₉₀₀ **material**: For several hours the polystyrene template PS₅₀ was evacuated removing residual water. After that, a solution of 0.50 g of KiON HTT1800 (7.77 mmol) (Clariant Advanced Materials GmbH) and 0.05 g dicumylperoxide (1.85 mmol) (97 % purity, Sigma Aldrich) in 40 mL toluene was added under stirring. The dispersion was heated to 110 °C for 24 h without stirring. After removal of the solvent the in situ structured green body was treated at 110 °C for 24 h finalizing the cross linking. The PS₅₀SiCN₉₀₀ green body was pyrolyzed under nitrogen atmosphere according to the following procedure: to 300 °C at 1 °C/min (held for 3 h), to 400 °C at 1 °C/min (held for 3 h), to 500 °C at 0.5 °C/min (no holding time), and finally to 900 °C at 1 °C/min (held for 0.5 h). A Gero furnace was used for this task.

Synthesis of N-doped carbon: For the chlorine treatment around 3 g of $PS_{50}SiCN_{900}$ powder was put into a graphite crucible and placed in a quartz tube furnace (Gero F-A 40-200). The tube was flushed with a constant argon flow of 20 sccm for at least 8 h. During heating, chlorine and hydrogen

treatment the argon background flow was set to 100 sccm. The heating rate was 15 °C/min and the oven was held 6 h at each chlorination temperature (600 °C, 800 °C, and 1000 °C). During the dwell time, the chlorine gas flow was set to 10 sccm. After cooling to 600 °C with 15 °C/min, the chlorine gas flow was stopped and 10 sccm hydrogen gas as applied for 3 h to remove residual chlorine. At the end, the furnace was cooled down to room temperature with a constant argon flow of 20 sccm. The same procedure was followed for the synthesis of SiC-CDC-800°C (Precursor: Nano SiC, Plasmachem; average particle size ca. 20-30 nm).

Materials characterization: Elemental analysis were carried out on a Vario elementar EL III. Thermal gravimetric analysis (TGA) was carried out under nitrogen atmosphere using a Thermowaage L81 (Linseis, Germany). With a heating rate of 5 °C/min the sample was heated to 900 °C. Photon correlation spectroscopy (PCS) was performed using an ALV DLS/SLA-SP 5022F laser goniometer system. The power source was a Ne/Ar ion laser (λ = 632.8 nm at 260 mW). By an ALV-5000/E multiple tau digital correlator the correlation function was generated. The decalin bath temperature was 20 °C regulated by a computer-operated thermostat. 90° fixed angle measurements were carried out. Data were analyzed by the CONTIN analysis. On a Zeiss field emission SEM LEO 1530 GEMINI scanning electron microscopy (SEM) performed. The acceleration voltage was up to 5 kV and the materials were sputter-coated with a 1.3 nm platinum layer. Fourier transform infrared (FTIR) measurements were carried out using a Perkin-Elmer FTIR Spectrum 100 (from 4400 to 650 cm⁻¹). Raman spectra of the raw materials were recorded with a Renishaw inVia Raman system using an Nd-YAG laser (532 nm) with 0.2 mW power at the sample's surface. The peak analysis and peak fitting were performed assuming one Lorentzian peak for each the D-mode and the G-mode. Nitrogen gas sorption measurements (-196 °C) of the electrodes (i.e., carbon + binder) were performed with an Autosorb iQ system (Quantachrome, USA). The materials were outgassed at 150 °C for 10 h in vacuum. The specific surface area was calculated with the ASiQwin-software using the Brunauer Emmett Teller (BET) equation in the linear relative pressure range 0.01-0.2. The SSA and pore size distribution (PSD) were also calculated via quenched-solid density functional theory (QSDFT) with a hybrid model for slit and cylindrical pores and pore size between 0.56 and 37.5 nm. Samples for transmission electron microscopy (TEM) were dispersed and sonicated in chloroform and placed on a copper grid (CF200-Cu-grid, Electron Microscopy Sciences, Hatfield, PA, USA). The TEM images were taken with a Varian LEO 9220 (120 kV, Carl Zeiss) and a JEOL 2100F system at 200 kV. X-ray photoelectron spectroscopy (XPS) measurements were performed using a VG ESCALAB 220iXL spectrometer (Thermo Fisher Scientific) equipped with an Al-Kα mono-source (power: 150 W; spot diameter: 500 µm) and a magnetic lens system. The spectra were recorded in constant analyzer energy mode at a pass energy of 20 eV. The XPS was calibrated using the Ag $3d_{5/2}$, the Cu $2p_{3/2}$, and the Au 4f_{7/2} lines as reference signals. The full-width half maximum (FWHM) of the Ag 3d_{5/2} line was measured to be 0.62 eV at a

ARTICLE

pass energy of 20 eV. The data were evaluated using the Avantage software provided by Thermo Fisher Scientific. The background subtraction was performed according to Shirley^[41] and atomic sensitivity factors were used according to Scofield.^[42]

Electrode preparation: Electrodes were prepared using sample powder dispersed in ethanol. After homogenization in a mortar, 5-10 mass% of dissolved polytetrafluoroethylene (PTFE, 60 mass% solution in water from Sigma Aldrich) were added as binder. While kneading, the slurry became more viscous and the resulting material was rolled with a rolling machine (MTI HR01, MIT Corp.) to a $200 \pm 20 \,\mu\text{m}$ thick free standing electrode and dried at 120 °C at 2 kPa for 24 h. We employed a custom-built polyether ether ketone (PEEK) cell with spring loaded titanium pistons as a three electrode system described elsewhere.^[40] The ells employed electrodes with 12 mm diameter, a glass-fiber separator (GF/A (for full cells) or GF/D (for half cells)) from Whatman, USA), and carbon-coated aluminum foil current collectors (type Zflo 2653, Coveris Advanced Coatings). PTFE-bound YP-50F was used as reference electrode.^[43] The assembled cells were dried at 120 °C for 12 h at 2 kPa in an inert gas glove box (MBraun Labmaster 130, O_2 and $H_2O < 1$ ppm) and, after cooling to temperature, room vacuum-filled with 1 M tetraethylammonium tetrafluoroborate $(TEA-BF_4)$ in electrochemical grade (i.e., water content < 20 ppm) acetonitrile (ACN) or propylene carbonate (PC) purchased from BASF. The used ionic liquids 1-ethyl-3-methylimidazolium bis(trifloromethylsulfonyl)-imide (EMIM-TFSI; >99 %, Sigma Aldrich) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF₄; > 99 %, IoLiTec Ionic Liquids Technologies) were degassed using a Schlenk tube in a Si-oil bath heated to 100 °C and applying a vacuum of 1 Pa for at least 6 h to remove residual gas and water.

Electrochemical testing: The electrochemical measurements were carried out using a potentiostat/galvanostat VSP300 from Bio-Logic, with cyclic voltammetry (CV), galvanostatic cycling with potential limitation (GCPL), and electrical impedance spectroscopy (EIS). CVs were recorded in half cell mode at 1, 10, 100, 1000 mV/s in the potential range from 0 to 1 V vs. carbon with activated carbon (YP50, Kuraray chemicals) as reference electrode.^{[43],[44]} GCPL in half cell mode was performed to access the maximum available capacitance values from discharge in the range of ±1 V. The cell was charged for 10 min up to the desired potential and then discharged to 0 V. The capacitance was determined in 100 mV steps. Full cells were prepared for further testing in CV and GCPL mode. The CVs were recorded up to 3 V with 10 mV/s. In GCPL mode, the current density was increased in several steps from 0.1 A/g to 10 A/g with 10 s resting period between charging/discharging to access information on the IR-drop. The voltage holding experiments were performed at 3 V cell voltage with 10 h holding periods followed by 3 galvanostatic charge / discharge cycles to determine the capacitance. This was repeated for at least 10 times. The galvanostatic cycling experiments (see Supporting Information, Figure S5) were performed at 1 A/g.^[40] The in situ resistance measurements

were conducted with a system described in Ref.^[37]. The working electrode was galvanostatically charged to the favored potential and after cell charging, the working electrode cable was removed and a multimeter was used measuring the resistance between the other two gold contacts (accuracy: ± 1.5 %). This two-contact-point electrical conductivity probe for in situ measurements at various states of electrode charge was shown to yield data consistent with a four-point probe setup by Kastening et al. shown in Ref.^[45].

Acknowledgements

DW, MZ, NJ, and VP thank Prof. Eduard Arzt (INM) for his continuing support and acknowledge funding from the German Federal Ministry for Research and Education (BMBF) in support of the nanoEES^{3D} project (award number 03EK3013) as part of the strategic funding initiative energy storage framework. RK thanks the SFB 840 for financial support and JKE the Elitenetzwerk Bayern e.V. for a grant. We thank Annett Rabis (Paul Scherrer Institute, Switzerland) for performing the XPS measurements.

Notes and references

- a) P. Simon, Y. Gogotsi, Nat. Mat. 2008, 7, 845; b) J. Segalini, E. Iwama, P-L. Taberna, Y. Gogotsi, P. Simon, *Electrochem. Commun.* 2012, 1, 63.
- F. Beguin, V. Presser, A. Balducci, E. Frackowiak, Adv. Mat. 2014, 26, 2219.
- 3 a) H. Gerischer, R. McIntyre, D. Scherson, W. Storck, J. Phys. Chem. 1987, 91, 1930; b) A. A. Kornyshev, N. B. Luque, W. Schmickler, J. Solid State Electr. 2014, 18, 1345.
- 4 F. Beguin, E. Frackowiak, *Supercapacitors*, Wiley, Weinheim 2013.
- 5 G. Lota, B. Grzyb, H. Machnikowska, J. Machnikowski, E. Frackowiak, Chem. Phys. Lett. 2005, **404**, 53.
- 6 L. G. Bulusheva, E. O. Fedorovskaya, A. G. Kurenya, A. V. Okotrub, *Phys. Status Solidi B* 2013, 250, 2586.
- 7 J. D. Wiggins-Camacho, K. J. Stevenson, J. Phys. Chem. C 2009, 113, 19082.
- 8 J. Tang, J. Liu, C. Li, Y. Li, M. O. Tade, S. Dai, Y. Yamauchi, Angew. Chem. Int. Ed. 2015, 54, 588.
- 9 R. J. White, M. Antonietti, M.-M. Titirici, J. Mater. Chem. 2009, 19, 8645.
- a) J. Tang, R. Salunkhe, J. Liu, N. L. Torad, M. Imura, S. Furukawa, Y. Yamauchi, J. Am. Chem. Soc. 2015, **137**, 1572; b) R. R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J. H. Kim, Y. Yamauchi, ACS Nano, 2015, DOI: 10.1021/acsnano.5b01790; c) N. L. Torad, R. R. Salunkhe, Y. Li, H. Hamoudi, M. Imura, Y. Sakka, C.-C. Hu, Y. Yamauchi, Chem. Eur. J. 2014, **20**, 7895.
- 11 X. Fan, C. Yu, J. Yang, Z. Ling, J. Qiu, Carbon 2014, 70, 130.
- 12 J. Zhou, Z. Zhang, W. Xing, J. Yu, G. Han, W. Si, S. Zhuo, *Electrochim.* Acta 2015, **153**, 68.
- 13 M. Wahid, G. Parte, D. Phase, S. Ogale, J. Mat. Chem. A 2015, 3, 1208.
- 14 a) S. Zhang, K. Dokko, M. Watanabe, *Chem. Mater.* 2014, 26, 2915-2926; b) N. Fechler, T.-P. Fellinger, M. Antonietti, *Adv. Mater.* 2013, 25, 75.
- 15 S. Zhang, S. Tsuzuki, K. Ueno, K. Dokko, M. Watanabe, Angew. Chem. Int. Ed. 2015, 54, 1302.
- 16 Y. Hu, H. Liu, Q. Ke, J. Wang, J. Mater. Chem. A 2014, 2, 11753.
- 17 D.-Y. Kang, J. H. Moon, Sci. Rep. 2014, 4; D.-D. Zhou, W.-Y. Li, X.-L. Dong, Y.-G. Wang, C.-X. Wang, Y.-Y. Xia, J. Mater. Chem. A 2013, 1, 8488.

Journal Name

18 P. Tamilarasan, S. Ramaprabhu, J. Nanosci. Nanotechno. 2015, 15, Table of Contents 1154.

19 D. Weingarth, I. Czekaj, Z. Fei, A. Foelske-Schmitz, P. J. Dyson, A.

- Wokaun, R. Kötz, J. Electrochem. Soc. 2012, 159, 611. 20 W.-Y. Tsai, R. Lin, S. Murali, L. Li Zhang, J. K. McDonough, R. S. Ruoff, P.-L. Taberna, Y. Gogotsi, P. Simon, Nano Energy 2013, 2, 403.
- 21 A. Brandt, S. Pohlmann, A. Varzi, A. Balducci, S. Passerini, MRS Bulletin 2013, 38, 554.
- 22 K. L. Van Aken, M. Beidaghi, Y. Gogotsi, Angew. Chem. Int. Ed. 2015, 54, 4806.
- 23 M. Zaheer, C. D. Keenan, J. Hermannsdörfer, E. Roessler, G. Motz, J. Senker, R. Kempe, Chem. Mater. 2012, 24, 3952-3963.
- 24 a) M. Kamperman, A. Burns, R. Weissgraeber, N. van Vegten, S. C. Warren, S. M. Gruner, A. Baiker, U. Wiesner, Nano Lett. 2009, 9, 2756; b) B. H. Jones, T. P. Lodge, J. Am. Chem. Soc. 2009, 131, 1676; c) S. K. Pillai, W. P. Kretschmer, C. Denner, G. Motz, M. Hund, A. Fery, M. Trebbin, S. Förster, R. Kempe, Small 2013, 9, 984; d) J.-K. Ewert, C. Denner, M. Friedrich, G. Motz, R. Kempe, nanomaterials, 2015, 5, 425
- 25 a) M. Rose, Y. Korenblit, E. Kockrick, L. Borchardt, M. Oschatz, S. Kaskel, G. Yushin, Small 2011, 7, 1108; b) V. Presser, M. Heon, Y. Gogotsi, Adv. Funct. Mater. 2011, 21, 810.
- 26 S.-H. Yeon, P. Reddington, Y. Gogotsi, J. E. Fischer, C. Vakifahmetoglu, P. Colombo, Carbon 2010, 48, 201.
- 27 Y. Gogotsi, A. Nikitin, H. Ye, W. Zhou, J. E. Fischer, B. Yi, H. C. Foley, M. W. Barsoum, Nat. Mater. 2003, 2, 591.
- 28 K. S. W. Sing, D. H. Everett, R. A. V. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 1985, 57, 603.
- 29 R. Dash, J. Chmiola, G. Yushin, Y. Gogotsi, G. Laudisio, J. Singer, J. Fischer, S. Kucheyev, Carbon 2006, 44, 2489.
- 30 A. C. Ferrari, J. Robertson, Phys. Rev. B 2000, 61, 14095, 1.
- 31 S. Zhang, N. Pan, Adv. Energy Mater. 2015, 5, 1401401, 1.
- 32 N. D. Kim, W. Kim, J. B. Joo, S. Oh, P. Kim, Y. Kim, J. Yi, J. Power Sources 2008. 180, 671.
- 33 W. Kim, J. B. Joo, N. Kim, S. Oh, P. Kim, J. Yi, Carbon 2009, 47, 1407.
- 34 W. Li, D. Chen, Z. Li, Y. Shi, Y. Wan, G. Wang, Z. Jiang, D. Zhao, Carbon 2007. 45. 1757.
- 35 L. F. Chen, X. D. Zhang, H. W. Liang, M. Kong, Q. F. Guan, P. Chen, Z. Y. Wu, S. H. Yu, ACS Nano 2012, 6, 7092.
- 36 L. L. Zhang, X. Zhao. H. Ji, M. D. Stoller, L. Lai, S. Murali, S. Mcdonnell, B. Cleveger, R. M. Wallace, R. S. Ruoff, Energy Environ. Sci., 2012, 5, 9618-9625.
- 37 P. W. Ruch, R. Kötz, A. Wokaun, Electrochim. Acta 2009, 54, 4451.
- 38 D. Weingarth, M. Zeiger, N. Jäckel, M. Aslan, G. Feng, V. Presser, Adv. Energy Mater. 2014, 4, 1400316, 1.
- 39 a) X. Wen, D. Zhang, L. Shi, T. Yan, H. Wang, J. Zhang, J. Mater. Chem. 2012, 22, 23835; b) Z. Peng, D. Zhang, T. Yan, J. Zhang, L. Shi, Appl. Surf. Sci. 2013, 282, 965; c) H. Jiang, P. S. Lee, C. Li, Energy Environ. Sci. 2013, 6, 41; d) X. Wen, D. Zhang, T. Yan, J. Zhang, L. Shi, J. Mater. Chem. A 2013, 1, 12334; e) H. Wang, L. Shi, T. Yan, J. Zhang, Q. Zhong, D. Zhang, J Mater. Chem. A 2014, 2, 4739; f) Q. Wang, J. Yan, Y. Wang, T. Wei, M. Zhang, X. Jing, Z. Fan, Carbon 2014, 67, 119.
- 40 D. Weingarth, A. Foelske-Schmitz and R. Kötz, J. Power Sources, 2013. 225. 84.
- 41 D. A. Shirley, Phys. Rev. B 1972, 5, 4709.
- 42 J. H. Scofield, J.Electron. Spectrosc. Relat. Phenom. 1976, 8, 129.
- 43 D. Weingarth, A. Foelske-Schmitz, A. Wokaun, R. Kötz, Electrochem. Com. 2012. 18. 116.
- 44 P. W. Ruch, D. Cericola, M. Hahn, R. Kötz, A. Wokaun, J. Electroanal. Chem. 2009, 636, 128
- 45 B. Kastening, M. Hahn, J. Kremeskötter, J. Electroanal. Chem. 1994, **374**, 159.

J. Name., 2013, 00, 1-3 | 7