This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Introduction

Using sunlight as an inexpensive, non-polluting, abundant and clean energy source is undoubtedly a strategy that will aid in reducing our fossil fuel dependence as well as reducing anthropogenic CO₂ emissions. Taking inspiration from Nature, where various chromophores or photocatalysts for converting solar energy into chemical energy have been utilized for millions of years, synthetic chemists have developed a vast number of visible light-driven systems involving photo-redox processes in order to mimic the natural photosynthesis in recent years.¹⁻⁶ Beside the well-developed transition metal-based complexes,⁷⁻⁸ metal-free and organic dyes have also been successfully employed as non-metal photo-redox catalysts in the last two decades.⁹⁻¹¹ However, a number of disadvantages associated with these homogeneous catalytic systems still affects the long-term usage. For instance, they are either highly expensive, toxic, and with limited availability in nature; or suffer from solvolytic attack in the reaction medium, which can be troublesome for the recycling ability of the catalyst. It is therefore beneficial to develop a new class of organic heterogeneous photocatalyst with high stability and reusability. For this purpose, two different heterogeneous photocatalytic model systems, (i) nanometer-sized system and (ii) porous materials are herein investigated. Nanoparticles (NPs) offer a huge advantage over conventional bulk catalysts due to their high surface-to-volume ratio.¹²⁻¹³ Porous materials offer an enlarged active interface during the catalytic process due to their large surface area.¹⁴ Recently, conjugated microporous polymers (CMPs), which combine photoactive π-electron backbone and microporous properties, have been employed as stable heterogeneous photocatalysts for organic synthesis under irradiation of visible light.¹⁴⁻¹⁹ Recent research activities have demonstrated their ability for singlet oxygen generation,²⁰ high selective oxidation of organic sulfides,²¹ oxidative C-C bond formation,²² oxidative hydroxylation of aryloboronic acids,²³ reductive dehalogenation reaction,²⁴ visible light-initiated free radical and cationic polymerization,²⁵⁻²⁶ and light-induced hydrogen evolution.²⁷ A transformation of bulk CMPs into nanostructured systems (CMP NPs) offers a combination of the aforementioned advantages in heterogeneous catalytic systems.

Herein, we report the design and synthesis of well-dispersible nanoparticles of conjugated microporous polymers as high efficient metal-free visible light photocatalysts. The CMP NPs combine high porosity with enhanced solution dispersibility, an important feature which allows for a heterogeneous material to behave closer to a homogeneous system. Therefore, this property also opens the possibility for the use of CMP NPs in solution processible methodologies such as spin-coating. Via the incorporation of different electron donor and acceptor building-blocks, CMP NPs were synthesized in a variety of shapes, ranging from nanospheres, nanorods to nanorings. The possible mechanism of non-spherical formation of the CMP NPs was studied by monitoring the polymerization process. High photocatalytic activity of the CMP NPs was demonstrated in the reductive activation of molecular oxygen for degradation of the dye rhodamine B and the photooxidation of N,N,N′,N′-tetramethyl-p-phenylenediamine under irradiation of a household energy saving light bulb.

The design principle and the synthesis of the CMP NPs were illustrated in Figure 1. The CMP NPs backbone structures were designed to demonstrate the formation of electron-hole pairs under visible light irradiation. After the light-induced charge separation of the electron-hole pair, the valence band (VB) and the conduction band (CB) should function as oxidative and reductive
Results and discussion

The CMP NPs were obtained via palladium-catalysed Suzuki-Miyaura and Sonogashira-Hagihara cross-coupling polycondensation reaction in an oil-in-water miniemulsion (Figure 1a)\(^{28,29}\). For each polymerization reaction, the same amount of starting compounds and surfactant were used to achieve similar reaction conditions within the miniemulsion droplets. The detailed reaction conditions along with detailed characterization of the polymers are described in the experimental section and in the Supplementary Information (SI). The building-blocks, i.e. the \(A_3\)-type cross-linkers and \(B_2\)-type co-monomers used for the different CMP NPs and their physical properties are listed in Table 1. The obtained CMP NPs showed a high stability as dispersion in organic solvents, and despite their hydrophobic nature, also in water (Figure S1 in Supplementary Information).

Solid state \(^{13}\)C/MAS NMR spectroscopy showed typical chemical

<table>
<thead>
<tr>
<th>CMP NPs</th>
<th>Cross-linker ((A_3)-type)</th>
<th>Co-monomer ((B_2)-type)</th>
<th>Shape</th>
<th>Surface area ([\text{m}^2\text{g}^{-1}])</th>
<th>Pore volume ([\text{cm}^3\text{g}^{-1}])</th>
<th>Pore diameter ([\text{nm}])</th>
<th>Band Gap/opt. ([\text{eV}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-FL(_3)-a</td>
<td>(\text{Br})</td>
<td>(\text{C}6\text{H}{13})</td>
<td>spherical</td>
<td>18</td>
<td>0.058</td>
<td>7.5</td>
<td>3.04</td>
</tr>
<tr>
<td>B-BPh(_3)-a</td>
<td>(\text{Br})</td>
<td>(\text{C}6\text{H}{13})</td>
<td>irregular shape</td>
<td>281</td>
<td>0.264</td>
<td>1.5</td>
<td>2.52</td>
</tr>
<tr>
<td>B-BT(_3)-a</td>
<td>(\text{Br})</td>
<td></td>
<td>rod-shape</td>
<td>93</td>
<td>0.220</td>
<td>1.5</td>
<td>1.96</td>
</tr>
<tr>
<td>B-FL(_3)-b</td>
<td>(\text{Br})</td>
<td></td>
<td>spherical</td>
<td>48</td>
<td>0.067</td>
<td>3.8</td>
<td>2.64</td>
</tr>
<tr>
<td>B-BPh(_3)-b</td>
<td></td>
<td></td>
<td>spherical</td>
<td>512</td>
<td>0.382</td>
<td>1.4</td>
<td>2.36</td>
</tr>
<tr>
<td>B-BT(_3)-b</td>
<td></td>
<td></td>
<td>ring-shape</td>
<td>200</td>
<td>0.560</td>
<td>1.4</td>
<td>1.76</td>
</tr>
</tbody>
</table>
shifts between 110 and 150 ppm for all the CMP NPs, which can be assigned to aromatic rings in the polymer backbone (Figure S2-7 in SI). For B-FL$_3$-a and B-FL$_3$-b, alkyl signals of the dihexylfluorene (FL) unit appeared between 14 and 56 ppm. Signals between 85 and 94 ppm of B-FL$_3$-b, B-BPh$_3$-b and B-BT$_3$-b can be assigned to the triple bonds of the polymer backbone. For B-BT$_3$-a and B-BT$_3$-b, the benzothiadiazole (BT) unit can be characterized by the signals at about 155 ppm, which are assigned to the adjacent carbon next to nitrogen in the BT unit. TGA analysis showed a clear tendency of higher stability of the triple bond-containing CMP NPs B-FL$_3$-b, B-BPh$_3$-b and B-BT$_3$-b (up to 350°C) in comparison to the other series without triple bonds (up to 200°C) (Figure S9). To note, B-FL$_3$-b and B-BPh$_3$-b showed a high “left weight”, which could indicate the carbonized content after being heated under nitrogen.

The Brunauer-Emmett-Teller (BET) surface area of the CMP NPs varied from 18 m2 g$^{-1}$ to 512 m2 g$^{-1}$ (Table 1). The low surface area of B-FL$_3$-a and B-FL$_3$-b can be due to the dihexylfluorene unit, which most likely blocked the micropores with the alkyl side chains, leading to almost impossible diffusion of nitrogen gas molecules during the gas sorption analysis. The biphenyl (BPh) containing B-BPh$_3$-b showed the highest surface area of 512 m2 g$^{-1}$, which is lower than the bulk CMP reported. The same effect also applies to B-BT$_3$-b with a surface area of about 200 m2 g$^{-1}$, which is lower in comparison to the bulk CMP from our previous work. The overall trend of the CMP NPs obtained via Sonogashira coupling showed that they have higher surface areas than the ones prepared via Suzuki-coupling. This can be explained because the preparation of the polymers via Sonogashira coupling results in the formation of triple bonds, which act as rigid bridges between the building blocks, therefore, adding an extra space in the polymer backbone resulted in higher surface area. The FL-containing CMP NPs showed broad pore size distribution with size larger than 2 nm. This could be caused by the alkyl side chains of the fluorene unit, which blocked the micropores and required larger space inside the porous polymers as reported before. A previous study of Cooper et al. about the formation mechanism of CMPs via Sonogashira coupling showed that the high surface area was mainly obtained at the last phase of the reaction, after the fusion of small porous fragments. Here, the lower surface area of the CMP NPs could be partially due to the lack of small fragments inside the droplets during the reaction.

In Figure 2, SEM and TEM images of the CMP NPs are displayed. As it can be seen, a variety of nanoparticle shapes was obtained. As expected, the FL-containing B-FL$_3$-a and B-FL$_3$-b appeared as round spheres, exhibiting an average size ranging from 60 nm to 100 nm. B-BPh$_3$-a was obtained as irregular shape particles of ca. 80 nm, whereas B-BPh$_3$-b appeared as spherical NPs with size ranging between 100 – 150 nm, despite its great rigid polymer backbone.
Figure 3. Monitoring experiments of the nanoparticle formation of B-BT$_3$-b. SEM images of nanoparticles formed in different time intervals after ultrasonication and heating at 80°C. (a) 1 min, (b) 3 min, (c) 5 min, (d) 10 min, (e) 30 min, (f) 60 min. (G) UV/vis spectra of the NPs formed after defined time intervals.

To investigate the ring formation mechanism of B-BT$_3$-b, the polymerization process was monitored with defined reaction time intervals. As displayed in Figure 3, the UV/vis spectra of the as-made nanoparticle samples were taken, indicating their development upon the completion of the polymerization process. The graph shows that the main absorption band of B-BT$_3$-b with a maximum peak at ca. 430 nm appeared directly after the miniemulsion preparation using ultrasonication. Figure 3a – 3f display the SEM images of B-BT$_3$-b particles after the corresponding reaction time. Directly after the ultrasonication, small particles of ca. 20 nm were already formed (Figure 3a). These could be the pre-formed oligomers, which subsequently formed the ring-like particles inside the droplets of the miniemulsion within the first minutes (Figure 3b). After 5 minutes, the ring-shaped particles were clearly formed (Figure 3c), which did not differentiate largely from the ones obtained after 10, 30 or 60 minutes (Figure 3d – 3f) and the final product after the completion of the polymerization (Figure 2).

The monitoring experiment indicates a possible, but still not totally clear, ring formation mechanism of B-BT$_3$-b. An average droplet size of ca. 250 nm determined by dynamic light scattering (DLS) suggests that the final ring formation of B-BT$_3$-b might have first taken place at the interface (Figure S12 in SI), followed by an aggregation of the oligomers formed within the first minutes after the ultrasonication. According to the very rigid structure caused by the BT-based polymer backbone, a possible contraction of aggregates might have occurred, which led only to the formation of ring-shaped CMP NPs instead of capsule-like particles. After changing from an ionic surfactant (sodium n-dodecylsulfate) to a nonionic one (Lutensol® AT50) in the reaction, a ring-shaped CMP NPs were still formed (Figure S13 in SI). This result suggests that the formation mechanism is not depending on the type of surfactant used. And no strong evidence led to the assumption that the nanorings could likely be collapsed capsules in dry state.

The UV/Vis absorption spectra of the CMP NPs are displayed in Figure 4 and all of them show broad absorption band. The donor-based CMP NPs, B-FL$_3$-a and B-FL$_3$-b, B-BPh$_3$-a and B-BPh$_3$-b absorb mainly in the blue light range. After introducing a strong electron acceptor, BT unit into the polymer backbone, a large bathochromic shift up to 100 nm occurred, indicating a narrower band gap of the polymers. According to our recent studies on CMPs with various donor-acceptor combinations, the introduction of strong acceptors lowers mostly the LUMO level and therefore the redox-potential of the polymer, which could favor catalytic reactions initiated by light. The UV/vis absorption spectra also show that the triple

![Figure 3](image1.png)

![Figure 4](image2.png)
bond-containing B-FL₃-b, B-BPh₃-b, and B-BTₐ-b have clearly broader absorption bands than the ones without it. A narrower optical band gap can be derived from the absorption edges (Table 1), the reason behind it can be due to a more ordered structure obtained via efficient π-π stacking during the CMP synthesis, which led to a better conjugation throughout the CMP networks, and therefore, lowering the energy levels.

Taking advantage of the excellent dispersibility of the hydrophobic CMP NPs in water, we first explored the photocatalytic activity of the CMP NPs in the reductive activation of molecular oxygen, in which the photon energy was transferred from the photogenerated electron of the electron-hole pair onto oxygen. The obtained activated oxygen species was then subsequently used for the degradation of a water-soluble organic dye, rhodamine B (RhB) (Figure 5a). It is worth to mention that a 23 W household energy saving light bulb was used as light source for the experiments (Figure S15 in Supporting Information). B-BTₐ-b initially showed a low degradation rate of RhB in the first minutes, however after 20 min it showed an accelerated degradation process of RhB, which might indicate a different reaction order in comparison to its triple-bond containing counterpart B-BTₐ-b. Other CMP NPs only showed very low photodegradation rates of RhB. At the same time, it is worth mentioning that B-BTₐ-b also showed higher photocatalytic efficiency in comparison to its bulk form, which indicates the enhanced photocatalytic activity of B-BTₐ-b in the nanostructured form (Figure S16 in SI). The efficiency of the CMP NPs, especially of B-BTₐ-b is comparable to porous carbon nitride (C₃N₄), a state-of-art non-metal based visible light photocatalyst under similar reaction conditions. ³⁴

In addition, the CMP NPs showed high stability during the photodegradation reaction. Five extra repeating experiments using B-BTₐ-b as photocatalyst were performed. RhB was degraded almost in a quantitative manner after every cycle, indicating the high stability and reusability of the CMP NPs in water. As shown in Figure S17 in Supporting Information, the absorption band of B-BTₐ-b barely changed after the photodegradation reaction, whilst the UV/vis absorption spectrum of RhB almost disappeared completely. It is important to mention that almost no degradation of RhB occurs under light irradiation without using the CMP NPs as photocatalyst.

In the photodegradation of organic dyes in water, it is well known that reactive species such as superoxide (˙O₂⁻), singlet oxygen (²O₂), ˙OH and the photogenerated hole (h⁺) play important roles in the photocatalytic process. ¹⁸, ³⁴, ³⁹ In order to better understand whether those species are involved in the RhB degradation using CMP NPs, we conducted a series of control experiments (Figure 6) using B-BTₐ-b as catalyst with the following radical scavengers:

Figure 5. (a) Photocatalytic degradation of RhB in the presence of the CMP NPs in water. C is the concentration of RhB after light irradiation for a certain period and C₀ is the concentration of RhB after reaching adsorption/desorption equilibrium in dark. Concentration of CMP NPs: 1 mg mL⁻¹, concentration of RhB: 10 mg L⁻¹. (b) Photooxidation of TMPD using different CMP NPs in acetonitrile. Concentration of CMP NPs: 1 mg mL⁻¹, concentration of TMPD: 32.85 mg mL⁻¹. The insert image shows: (left) pure TMPD solution after light irradiation and (right) TMPD solution mixed with B-BTₐ-b after light irradiation.

Figure 6. The effect of different scavengers, sodium azide (NaN₃), ammonium oxalate (AO), benzoquinone (BQ), isopropanol (IP) and
sodium azide (NaN₃) as 'O₂ scavenger, benzoquinone (BQ) for as 'O₂− scavenger, isopropanol (IP) as 'OH scavenger and ammonium oxalate (AO) as h⁺ scavenger. As shown in Figure 6, the addition of NaN₃ and the absence of oxygen in the reaction led to an expressive decrease in the photodegradation process of RhB. These results suggest that under visible light irradiation the B-BT₃-b is able to induce the formation of radical oxygen species, which are responsible for the degradation of RhB, with the main role played by 'O₂. In our previous study, it was shown that the bulk-made CMP similar to B-BT₃-b was able to generate singlet oxygen species (¹O₂) under visible light irradiation. Therefore, as an additional control experiment, we further confirmed the role of p-BCT in the photocatalytic system by using the well-studied furfuryl alcohol (FA) as 'O₂ trap. 59-62 S-Hydroxy-2(5H)-furanone was obtained as the oxidized product in a quantitative manner using B-BT₃-b as photocatalyst (Figure S18 in Supporting Information).

A significant decrease in the photocatalytic reaction was also observed by adding AO as hole scavenger (Figure 6), indicating the vital role of the photogenerated hole for the direct oxidation of RhB in a photocatalytic system. 41 We then further evaluated the electron transfer between the photogenerated hole inside the CMP NPs and substrate compounds, i.e. the photooxidation reaction. We examined the transformation of N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) into its cationic radical form (TMPD⁺) under an oxidative process using the CMP NPs as photocatalysts. The oxidized form TMPD⁺ can be determined by a color change from colorless to blue, and thus make the intermolecular oxidative electron transfer reaction from TMPD to the CMP NPs visible. 41 As displayed in Figure 5b, after the same reaction time under light irradiation, the absorption spectra of the dispersion containing B-BT₃-b and TMPD showed a significant decrease in the photodegradation process of RhB. These results were obtained from Alfa Aesar (Massachusetts, USA). 4,7-dibromofluorene (4.06 mg mL⁻¹) was added to the organic phase and vigorously stirred using a Branson sonifier at 80°C overnight. The resulted CMP nanoparticles were then transferred to a dialysis tube (MWCO 14,000 Da) with continuous water substitution to remove the surfactant.

In conclusion, we report a new platform of well-dispersible CMP NPs as a combination of nanostructure and highly porous and heterogeneous photocatalytic system. The variety of shapes of the NPs can be controlled by introducing different electron donor and acceptor as building blocks into the polymer backbone, leading to shape variations ranging from nanospheres, nanorods to nanorings. High photocatalytic activity of the CMP NPs was demonstrated in the reductive activation of molecular oxygen for degradation of rhodamine B and the photooxidation of N,N,N′,N′-tetramethyl-p-phenylenediamine under visible light irradiation. It was shown that the transformation of the CMPs into nanoparticles could enhance the photocatalytic activity due to the higher dispersity and larger active surface content of the material. Additionally, it is important to note that a household energy saving light bulb was used as a light source, which provides an economically low-cost solution for the photocatalytic process in broader application fields.
min. Later, the homogeneous reaction mixture was stirred and heated at 80°C overnight. The resulted CMP nanoparticles were transferred to a dialysis tube (MWCO 14,000 Da) with continuous water substitution to remove the surfactant.

Characterization

UV/vis absorption spectra were taken on a Perkin Elmer Lambda 25 UV-vis spectrometer. FT-IR spectra were recorded on a Nicolet 730 FT-IR spectrometer. DLS measurements were carried out using a PSS Nicomp 380 Submicron Particle Sizer. Solid State CP/MAS NMR Spectroscopy was taken on a Bruker Avance solid state NMR spectrometer operating at 300 MHz Larmor frequency equipped with a 4 mm magic angle spinning (MAS) double resonance probe head. The polymer surface area and pore size distribution were measured by nitrogen adsorption and desorption at 77.3 K using Autosorb-1 (Quantachrome Instruments). Data were evaluated using QuadraWin software from Quantachrome Instruments. Pore size distributions and pore volumes were derived from the adsorption branches of the isotherms using Quenched Solid Density Functional Theory (QSDFT, N

Solid Density Function Theory (QSDFT, N

Acknowledgements

The authors appreciate the financial support from the Max Planck Society. B. C. M. acknowledges the financial support from DAAD, CAPES and CNPq. K. A. I. Z. thanks Fonds der Chemischen Industrie, FCI for funding.

Notes and references

22. J.-X. Jiang, Y. Li, X. Wu, J. Xiao, D. J. Adams and A. I. Cooper,
Macromolecules, 2013, 46, 8779-8783.
5, 3559-3562.
26. S. Dadashi-Silab, H. Bildirir, R. Dawson, A. Thomas and Y. Yagci,
27. R. S. Sprick, J.-X. Jiang, B. Bonillo, S. Ren, T. Ratvijitvech, P.
Guiglion, M. A. Zwijnenburg, D. J. Adams and A. I. Cooper, J. Am.
9612-9614.
5243-5249.
Khmyak and A. I. Cooper, J. Am. Chem. Soc., 2008, 130, 7710-
7720.
31. A. Laybourn, R. Dawson, R. Clowes, T. Hasell, A. I. Cooper, Y. Z.
32. Z. J. Wang, S. Ghasimi, K. Landfester and K. A. I. Zhang, Chem.
34. H. Li, Y. Liu, X. Gao, C. Fu and X. Wang, ChemSusChem., 2015, 8,
1189-1196.
35. M. Shalom, S. Inal, C. Fettkenhauer, D. Neher and M. Antonietti,
929-932.
1138.
2353-2355.
40. J. R. Choi, T. Tachikawa, M. Fujitsuka and T. Majima, Langmuir,
2010, 26, 10437-10443.
41. S. Ghosh, N. A. Kouamé, L. Ramos, S. Remita, A. Dazzi, A. Deniset-
Besseau, P. Beaunier, F. Goubard, P. Aubert and H. Remita,
Conjugated microporous polymer nanoparticles as highly dispersible heterogeneous organic photocatalysts for photocatalytic applications