This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Fabrication of CeO$_2$/Fe$_3$O$_4$ composite nanospindles for enhanced visible light driven photocatalyst and supercapacitor electrode

N. Sabari Arul,ab D. Mangalaraj,b R. Ramachandran,c A. Nirmala Grace,c and Jeong In Hana

Hybrid CeO$_2$/Fe$_3$O$_4$ composite nanospindles (CNS) are synthesized by a simple and cost effective co-precipitation method. CeO$_2$/Fe$_3$O$_4$ CNS used as an efficient recyclable photocatalyst for degrading Eosin Yellow (EY) dye under visible light irradiation possess high degradation rate of 98% after 25 min. The estimated electrical energy efficiency of CeO$_2$/Fe$_3$O$_4$ CNS shows the consumption of less energy (6.588 kWhm$^{-1}$order1) in degrading EY. Besides, the CeO$_2$/Fe$_3$O$_4$ CNS exhibits a specific capacitance of 142.6 F g$^{-1}$ at a scan rate of 5 mV s$^{-1}$. Moreover, the composite displays excellent capacitance retention of 94.8% after 1000 cycles. This newly designed CeO$_2$/Fe$_3$O$_4$ CNS with enhanced visible light-driven photocatalytic activity and good supercapacitive cycling stability has great potential for use as wastewater treatment and energy storage applications.

1. Introduction

Semiconductor photocatalysis offers a green and energy-saving technology for the degradation of carcinogenic synthetic dyes in environmental and wastewater treatment. Among eco-friendly photocatalytic materials, cerium oxide (CeO$_2$), a direct band gap semiconductor material has fascinated significant interest of researchers due to its wide band gap (~3.2) and considered as a potential material for photocatalyst, fuel cells, three-way catalyst, sensors, water treatment, solar cells and electrochemical redox characteristics. Despite, the photocatalytic property of the CeO$_2$ is predominantly restricted by the rapid recombination of the photo-induced electrons and holes. To overcome this bottleneck, several approaches such as doping, noble metal loading and composites have been reported to reduce the charge recombination and enlarging the visible light exploitation of CeO$_2$ nanomaterials. Among them, CeO$_2$ based hybrid semiconductors have been designed to improve the absorption of photocatalysts in the visible light region. Besides, electrochemical supercapacitor can store energy by near-surface ion adsorption with an additional contribution from fast reversible Faradic reaction, which offer them the desirable properties of high power density, rapid charge/discharge process and extensive lifespan. CeO$_2$ nanorods and CeO$_2$/graphene based composites have been reported as the suitable candidate for high performance supercapacitor due to its better electrochemical redox characteristics, cost effective and eco-friendly material. Hematite (α-Fe$_2$O$_3$), as a direct bandgap (~2.1 eV) semiconductor material has been extensively used in water splitting and supercapacitor electrodes due to its high theoretical photocurrents under 1.5 A M illumination, sufficient stability and absorption capability in the visible light region. Recently, fabrication of α-Fe$_2$O$_3$ heterojunctional composite with other semiconductor photocatalysts have been successfully hindered the recombination of the photogenerated electrons and holes resulting in the enhancement of photocatalytic degradation efficiencies. Even though, α-Fe$_2$O$_3$ is considered as one of the most promising pseudocapacitor electrode materials, the high-rate charge/discharge performance and cyclic stability are not fulfilled due to their poor electrical conductivity and metastability. It is reasonable to speculate that combining Fe$_3$O$_4$ with CeO$_2$ may improve their catalytic activity, redox stability resulting in the enhanced performance in photocatalyst and electrochemical supercapacitor applications. Based on the above consideration, we have attempted to exploit a new impressive visible light reactive hybrid CeO$_2$/Fe$_3$O$_4$ nanocomposite photocatalysts with a tailored bandgap for its potential application in photocatalyst and supercapacitors. However, to best of our knowledge the report on CeO$_2$/Fe$_3$O$_4$ hybrid composite nanospindles as potent visible light driven photocatalyst and high performance supercapacitor are limited up to date.

This study reports the data for CeO$_2$ nanoparticles (NPs), CeO$_2$/Fe$_3$O$_4$ composite nanospindles (CNS) and Fe$_3$O$_4$ nanorods (NRs) as potent visible light driven photocatalyst and high performance supercapacitor. Newly, Eosin yellow (EY) dye was chosen as an organic pollutant to evaluate the catalytic activity of CeO$_2$ NPs, CeO$_2$/Fe$_3$O$_4$ CNS, Fe$_3$O$_4$ NRs under visible light irradiation. The CeO$_2$/Fe$_3$O$_4$ CNS used as an excellent photocatalyst in degrading EY dye under visible light irradiation possessed a high degradation rate of 98% after 25 min. Besides, the CeO$_2$/Fe$_3$O$_4$ CNS exhibited a specific capacitance of 142.6 F g$^{-1}$ at a scan rate of 5 mV s$^{-1}$. The fabricated CeO$_2$/Fe$_3$O$_4$ CNS showed an enhanced specific capacitance and photocatalytic degradation efficiency than pure CeO$_2$ NPs or Fe$_3$O$_4$ NRs.

aDepartment of Chemical and Biochemical Engineering, Dongguk University-Seoul, 100715, South Korea. Email: grtsabari@gmail.com; Tel: +82 2 2290 3646.
bDepartment of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046, India. Email: dmraj800@yahoo.com; Tel: +91 98947 62141.
cCentre for Nanotechnology Research, VIT University, Vellore, 632014, India.

ARTICLE

DOI: 10.1039/x0xx00000x
2. Experimental

2.1 Synthesis of CeO$_2$ NPs, CeO$_2$/Fe$_2$O$_3$ CNS and Fe$_3$O$_4$ NRs

CeO$_2$ NPs, CeO$_2$/Fe$_2$O$_3$ CNS and Fe$_3$O$_4$ NRs were prepared by a simple co-precipitation method.26 Cerium (III) nitrate (Ce(NO$_3$)$_3$.6H$_2$O) and iron (II) nitrate (Fe(NO$_3$)$_3$.6H$_2$O), and ammonium hydroxide (NH$_4$OH) were purchased from Alfa Aesar. For the preparation of CeO$_2$/Fe$_2$O$_3$ CNS, required amount of cerium nitrate hexahydrate and iron nitrate hexahydrate were mixed together in stoichiometric proportions and precipitated by ammonia hydroxide solution (pH~11) under constant stirring at room temperature. The obtained colloidal solution was sealed in a beaker and aged for two days at ambient atmosphere. The resultant precipitates were separated by centrifuging at 6000 rpm and washed several times with ethanol and de-ionized water to remove the impurities. The precipitate was dried in vacuum oven at 90°C for overnight to obtain CeO$_2$/Fe$_2$O$_3$ CNS. A similar procedure was adopted to obtain pure CeO$_2$ NPs and Fe$_3$O$_4$ NRs.

2.2 Characterization techniques

The crystal structure of the CeO$_2$ NPs, CeO$_2$/Fe$_2$O$_3$ CNS and Fe$_3$O$_4$ NRs was determined by using Rigaku XRD/Max-2200 diffractometer with Cu-Kα radiation (λ = 0.15406 nm). The average crystal size of the obtained product was determined through X-ray diffraction (XRD) line broadening using the Scherrer equation. Transmission electron microscopy (TEM) was performed by using JEOL JEM-2100F system at an accelerating voltage of 200 kV. X-ray photoelectron microscopy (XPS) was performed using a Theta Probe AR-XPS System from Thermo Fisher Scientific with monochromated Al Kα (1486.6 eV) as an X-ray source operated at 15 kV. The light absorption properties of the catalysts were found using UV-vis spectroscopy. The UV-vis spectra were recorded on a Shimadzu UV-visible spectrophotometer-3600.

2.3 Photocatalytic activity test

Photocatalytic activities of CeO$_2$ NPs, CeO$_2$/Fe$_2$O$_3$ CNS and Fe$_3$O$_4$ NRs photocatalysts were investigated by photodegradation of EY using a 150 W Xenon lamp under visible light illumination. 1 mg of catalysts was suspended in 30 ml containing 0.1 mM of the EY dye solution. Before illumination, the solution was ultrasonically agitated for 10 min in dark to achieve the equilibrium adsorption on the surface of the catalyst. Then, the solution was irradiated for various time intervals under visible light irradiation. The photodegradation studies were carried out by measuring the maximum absorption of EY at 481 nm using SHIMADZU 3600 UV-Vis-NIR spectrophotometer.

2.4 Electrochemical measurements

In this study, electrochemical measurements were carried out with an electrochemical analyzer (CHI 600C work station, version 5.01) using a three electrode system in 6 M KOH as the electrolyte solution under ambient conditions. CeO$_2$ NPs, CeO$_2$/Fe$_2$O$_3$ CNS and Fe$_3$O$_4$ NRs supported on the carbon paper (purchased from Cabot, USA), a platinum wire, and Ag/AgCl were utilized as the working electrode, counter and electrode, respectively. The cyclic voltammetry measurements were performed at various scan rates in the potential range from -0.3 to 0.3 V. The working electrode was prepared as follows: Initially, a required amount of pure or CeO$_2$/Fe$_2$O$_3$ CNS was dispersed in 5 wt% of nafion and then the mixture was coated on carbon paper with an area and mass of 0.5 cm x 0.5 cm and 2 mg cm$^{-2}$, respectively. The electrochemical impedance spectroscopy (EIS) spectrum was performed in the frequency range between 10 mHz and 1 MHz.

3. Results and discussion

The phase purity and crystal structures of the CeO$_2$ NPs, CeO$_2$/Fe$_2$O$_3$ CNS and Fe$_3$O$_4$ NRs were examined by XRD and the spectra are shown in Fig. 1(a-c). The diffraction peaks (violet and green line) along (111), (200), (220), (311), (222) and (400) planes confirms the cubic fluorite structure of CeO$_2$ which matches well with JCPDS PDF Card No. 34-0394. The XRD pattern of the CeO$_2$/Fe$_2$O$_3$ CNS (green line) reveals several new diffraction peaks emerging, which corresponds to the hexagonal α-Fe$_3$O$_4$ (JCPDS No 33-0664). Furthermore, it rules out the possibility of any third phase formation confirming the formation of CeO$_2$/Fe$_2$O$_3$ composites which are consistent with the TEM images. All the diffraction peaks in the XRD pattern (pink line) of α-Fe$_3$O$_4$ can be indexed to the standard phase of the hexagonal α-Fe$_3$O$_4$.
Fig. 2 TEM and HRTEM images of (a-c) CeO$_2$ NPs, (d-f) CeO$_2$/Fe$_3$O$_4$ CNS, (g-i) Fe$_3$O$_4$ NRs; (j, k, l) EDAX spectra of CeO$_2$ NPs, CeO$_2$/Fe$_3$O$_4$ CNS and Fe$_3$O$_4$ NRs.

The crystallite size of CeO$_2$ NPs, CeO$_2$/Fe$_3$O$_4$ CNS and Fe$_3$O$_4$ NRs are estimated by using Williamson-Hall (W-H) plots. The correction for peak broadening (β) of each plane is given as:

$$B^2 = (\beta^2_{\text{experimental}} - \beta^2_{\text{instrumental}})$$

where the width ($\beta^2_{\text{experimental}}$) of each peak is measured as the integral breadth and the instrumental broadening ($\beta^2_{\text{instrumental}}$) is determined from polycrystalline silicon standard.

The Williamson-Hall equation is given as:

$$B \cos \theta = K \lambda / D + 2 \varepsilon \sin \theta$$

where D is the coherent scattering length (crystallite size); K is the shape factor (0.9); λ is the wavelength of X-Ray source (1.54Å), B is the integral width of the sample (in rad) estimated from eq. (1), θ is the angle of reflection (in deg) and ε is the inhomogeneous internal strain (in %). Fig. 1(d-f) shows the W-H plot for the synthesized CeO$_2$ NPs, CeO$_2$/Fe$_3$O$_4$ CNS and Fe$_3$O$_4$ NRs. Thus, the crystallite size calculated from W-H plot is found to be 15.75, 4.47 and 4.62 nm, respectively. It can be seen that, the full-width-at-half-maximum (FWHM) of the diffraction peaks of CeO$_2$/Fe$_3$O$_4$ CNS was found to be substantially larger than those of pure CeO$_2$ NPs implying a decreased crystallite size.

Fig. 2(a) and 2(b) shows TEM images of pure CeO$_2$ NPs with an average diameter of 10 nm. Fig. 2(c) displays a typical high resolution TEM (HRTEM) image of CeO$_2$ NPs with an
interplanar spacing distance of 0.311 nm correspond to the (111) plane of cubic CeO$_2$ (JCPDS 34-0394). TEM images of the CeO$_2$/Fe$_2$O$_3$ CNS are displayed in Fig. 2(d) and 2(e), it can be seen that the CeO$_2$/Fe$_2$O$_3$ CNS have the spindle like nanostructures. The size of nanospindles is about 40-60 nm in diameter and 200-300 nm in length. Fig. 2(f) illustrates the HRTEM image of CeO$_2$/Fe$_2$O$_3$ CNS, it is observed that the CeO$_2$/Fe$_2$O$_3$ CNS is made up of CeO$_2$ nanoparticles with an interplanar spacing distance of 0.310 and 0.263 nm corresponds to (111) and (200) plane of cubic CeO$_2$ and α-Fe$_2$O$_3$ nanoparticles with lattice spacing of 0.270, 0.170 and 0.161 nm attributes to the (104), (116) and (018) planes of α-Fe$_2$O$_3$ (JCPDS No 33-0664). TEM images of the Fe$_2$O$_3$ NRs are shown in Fig. 2(g) and 2(h). It can be observed that the size of the nanorods is about 10-20 nm in diameter and 50-300 nm in length. Besides, few nanoparticles are also observed on the surface of the Fe$_2$O$_3$ NRs with size less than 10 nm. Fig. 2(i) illustrate the HRTEM image of Fe$_2$O$_3$ NRs with lattice fringe of 0.270 nm correspond to (104) lattice spacing of α-Fe$_2$O$_3$.

Scheme 1 shows the possible growth mechanism of the synthesized nanostructures. Firstly, possible growth mechanism of α-Fe$_2$O$_3$ NRs is as follows: (a) tiny primary nanocrystals were produced due to the presence of excess OH$^-$ and (b) agglomeration and coarsening of α-Fe$_2$O$_3$ primary nanocrystals tends to grow into rod-like nanostructures, which might be attributed to an oriented attachment. Secondly, TEM images of CeO$_2$/Fe$_2$O$_3$ composites (Fig. 2(d),(e)) displays the formation of spindles like nanostructures where the nuclei grow into primary nanocrystals leads to the agglomeration and coarsening of CeO$_2$/Fe$_2$O$_3$ primary nanocrystals tends to grow into rod-like nanostructures, which might be attributed to an oriented attachment. Furthermore, the nanospindle architecture is obtained from the abundant nanorod-like building blocks and their corresponding geometrical illustration is denoted in Scheme 1, Left corner.
Thus, the observation suggests that the formation of spindle-like nanostructures appears to be driven by minimization of the overall surface energies through orientation attachment determined by the self-assembly of the nanorods. The elemental compositions of CeO₂ NPs, CeO₂/Fe₂O₃ CNS and Fe₂O₃ NPs were also determined by EDAX profile, as shown in Fig. 2(j-k). The inset of Fig. 2(j-k) displays the elemental composition of the CeO₂ NPs and is found to be 72.15 wt% of Ce, 16.82 wt% of O and 11.04 wt% of C (Carbon). Inset of Fig. 2(l) shows the elemental composition of the CeO₂/Fe₂O₃ CNS and is found to be 20.99 wt% of Fe, 54.89 wt% of Ce, 16.45 wt% of O, 7.67 wt% of C (Carbon). Thus, the EDAX spectra of pure CeO₂ and CeO₂/Fe₂O₃ CNS are consistent with XRD and TEM results. The inset of Fig. 2(l) shows the elemental composition of the Fe₂O₃ NPs and is found to be 89.18 wt% of Fe, 8.63 wt% of O and 2.19 wt% of C (Carbon).

The XPS analysis was utilized to investigate the chemical states of Ce, Fe and O in CeO₂/Fe₂O₃ CNS. The wide survey spectrum in Fig. 3(a) illustrates the binding energy peaks at 287.2, 530.6, 710.5 and 885.8 eV, which are attributed to C 1s, O 1s, Fe 2p and Ce 3d, respectively. Fig. 3(b-d) shows the high-resolution XPS spectra of Ce 3d, O 1s and Fe 2p peaks. The Ce 3d core level spectrum is shown in Fig. 3(b), exhibits both Ce⁴⁺ and Ce³⁺ oxidation state due to the splitting of spin doublets (3d₃/₂ and 3d₅/₂ orbit). The main peaks of Ce⁴⁺3d₅/₂ and Ce³⁺3d₅/₂ lie at the binding energies of 916.14 and 894.43 eV, respectively. The Ce³⁺3d₅/₂ appears at 886.85 eV with a shakeup satellite peak at about 907.1 eV and Ce⁴⁺3d₅/₂, allocated at 903.8 eV with two satellite peaks at 883.11 and 889.37 eV, respectively. The Ce 3d spectrum is consistent with earlier reports. The high resolution Fe 2p peak of the CeO₂/Fe₂O₃ CNS is depicted in Fig. 3(c). The binding energies of 711.23 and 725.23 eV are indicative of Fe 2p₃/₂ and Fe 2p₅/₂, which is in good agreement with the earlier reports. The existence of shakeup satellite features for Fe⁴⁺ rules out the possibility of the standard Fe₂O₃ phase presence in the CeO₂/Fe₂O₃ CNS. The broad O 1s peak at 529.75 and 532.24 eV is assigned to surface adsorbed oxygen, oxygen from Ce₂O₃, oxygen from CeO₂, Ce(OH)₂, and Ce(OH)₄, respectively. The XPS data indicate that the Fe₂O₃ nanoparticles are successfully incorporated into the CeO₂ nanoparticles, which is consistent with XRD and EDAX results. The UV-visible absorbance spectroscopy of CeO₂ NPs, CeO₂/Fe₂O₃ CNS and Fe₂O₃ NPs was shown in Fig. 4. The band gap E₉ was calculated by using the equation, E₉ = 1240/λₜₜₜ, where E₉ is the band gap (eV) and λₜₜₜ is the wavelength of the absorption edge in the spectrum. It can be observed that the CeO₂/Fe₂O₃ CNS can absorb UV and visible light with wavelength less than 600 nm, corresponding to the band gap energy of 2.11 eV and while the absorption band edge of pure CeO₂ NPs and Fe₂O₃ NPs were located at 440 nm and 565 nm, respectively, the absorption of CeO₂/Fe₂O₃ CNS shows broad light-absorption, which might be favorable for the photocatalytic efficiency.

The photodegradation experiments were conducted to reveal the photocatalytic activity of the as-prepared CeO₂ NPs, CeO₂/Fe₂O₃ CNS and Fe₂O₃ NPs (catalysts) for the degradation of EY dye. Fig. 5(a-c) shows the absorption curves during the photocatalytic activity of EY with catalysts under visible light irradiation.
Fig. 5 Ultraviolet-visible absorbance spectra of EY dye solutions with (a) CeO$_2$ NPs, (b) CeO$_2$/Fe$_2$O$_3$ CNS, (c) Fe$_3$O$_4$ NRs for various photodegradation time intervals; (d) Degradation efficiency of the blank, EY with CeO$_2$ NPs, CeO$_2$/Fe$_2$O$_3$ CNS and Fe$_3$O$_4$ NRs catalyst versus irradiation time; (e) Experimental and linear plot of ln (A_o/A$_t$) as a function of the irradiation time for CeO$_2$ NPs, CeO$_2$/Fe$_2$O$_3$ CNS and Fe$_3$O$_4$ NRs catalyst and (f) recyclable test of CeO$_2$/Fe$_2$O$_3$ CNS CNS in degrading EY dye under visible light irradiation.

Table 1 Calculated photodegradation parameters of the obtained catalysts (error±0.003)

<table>
<thead>
<tr>
<th>Materials</th>
<th>K</th>
<th>R2</th>
<th>$T_{1/2}$ (min)</th>
<th>E_{EO} (kWh m$^{-3}$ order$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CeO$_2$ NPs</td>
<td>0.046</td>
<td>0.982</td>
<td>6.529</td>
<td>20.85</td>
</tr>
<tr>
<td>CeO$_2$/Fe$_2$O$_3$ CNS</td>
<td>0.116</td>
<td>0.784</td>
<td>2.579</td>
<td>6.588</td>
</tr>
<tr>
<td>Fe$_3$O$_4$ NRs</td>
<td>0.028</td>
<td>0.956</td>
<td>10.415</td>
<td>31.78</td>
</tr>
</tbody>
</table>

The electrical energy per order (E_{EO}) is considered to estimate the electrical energy required to remove unit mass of pollutant.46 The E_{EO} is defined as the number of kilowatt hours of electrical energy required to degrade the concentration of dye by one order of magnitude (90%) in 1m3 of the contaminated water, and the equation is expressed as follows (6):

$$E_{EO} = \frac{P \times t \times 1000}{V \times 60 \times \log (A_o/A_t)}$$

where, P is the rated power (kW) of the advanced oxidation process system, t is the irradiation time (min), V is the volume (L) of the water, ln (A_o/A$_t$) = k_{app}t, A_o and A_t are the initial and final pollutant concentrations. The evaluated E_{EO} value of CeO$_2$ NPs, CeO$_2$/Fe$_2$O$_3$ CNS and Fe$_3$O$_4$ NRs catalysts are found to be 20.85, 6.588 and 31.78 kWh m$^{-3}$ order$^{-1}$, respectively. The low E_{EO} value of CeO$_2$/Fe$_2$O$_3$ CNS catalysts confirms that less energy is enough to attain excellent photo
Fig. 6 Proposed photodegradation mechanism of CeO$_2$/Fe$_3$O$_4$ CNS in degrading EY dye under visible light irradiation.

During photodegradation process, the electrons from the conduction band (CB) and valence band (VB) of the semiconductor can be determined using the equation (17) \[E_{vb} = \chi - E_g + 0.5 E_v \] where \(\chi \) is the absolute electronegativity of the semiconductor (\(\chi_{CeO_2} = 5.57 \) eV and \(\chi_{Fe_2O_3} = 5.87 \) eV), \(E_v \) is the energy gap band of the semiconductor CeO$_2$ (2.8 eV) and Fe$_2$O$_3$ (2.21 eV). The CB position can be deduced by \(E_{cb} = E_{vb} - E_v \). The estimated CB and VB of CeO$_2$ are 2.775 and -0.035 eV and it is beneficial than those of the Fe$_3$O$_4$ are 2.475 and 0.265 eV, respectively.

The area of the CV curve reflects the capacitance and the real active surface area of the materials. Fig. 7(d) displays CV curve of CeO$_2$ NPs, CeO$_2$/Fe$_3$O$_4$ CNS & Fe$_3$O$_4$ NRs at a scan rate of 50 mV s$^{-1}$. A larger area and high current response are observed for CeO$_2$/Fe$_3$O$_4$ CNS electrode than those of bare carbon, CeO$_2$ NPs and Fe$_3$O$_4$ NRs electrodes. Besides, the area of the CV curve for bare carbon electrode is very low and hence its capacitance contribution will be negligible. As well, the specific capacitance (C) and energy density (E) of electrode materials are calculated from the CV curves according to the following formula (15 and 16).

\[C = \frac{(I_e - I_0)}{\Delta V} \] \[E = \frac{1}{2} C V^2 \]

where, C is specific capacitance (F g$^{-1}$), \(I_e \) is the maximum current in the positive scan (A), \(I_0 \) is the maximum current in the negative scan (A), m is the mass of the active material (g), \(\Delta V \) is the scan rate (V s$^{-1}$) and V is initial voltage (V). The CeO$_2$/Fe$_3$O$_4$ CNS shows a high specific capacitance of 142.6 F g$^{-1}$ at 5 mV s$^{-1}$ while for the CeO$_2$ NPs and Fe$_3$O$_4$ NRs exhibited minimum specific capacitance of 28.1 and 82.2 F g$^{-1}$, respectively.

The specific capacitance of electrodes decreases with increase in scan rate and it is evident from Fig. 8. The positive ions (K$^+$) can easily diffuse into the available spaces of electrodes, lead to sufficient insertion reaction at lower scan rates. On the other hand, at higher scan rates, positive ions can approach only the outer surface of electrodes resulting in a slight deviation of CV curve with less specific capacitance.

High energy density of 6.41 Wh kg$^{-1}$ is observed for CeO$_2$/Fe$_3$O$_4$ CNS, while 1.26 and 3.69 Wh kg$^{-1}$ attributes to the low energy density of CeO$_2$ NPs and Fe$_3$O$_4$ NRs electrodes. The enhancement of electrochemical performance can be attributed to the synergistic effect of CeO$_2$/Fe$_3$O$_4$ composite, which accelerates the ion/electron transfer.
The galvanostatic charge/discharge analysis is a reliable method for the evaluation of electrochemical performance of electrodes under constant current conditions. Fig. 9(a) shows the typical charge/discharge curves of bare carbon, CeO$_2$ NPs, CeO$_2$/Fe$_2$O$_3$ CNS and Fe$_3$O$_4$ NRs electrodes at a current density of 0.5 A g$^{-1}$. The charge/discharge curves of CeO$_2$/Fe$_2$O$_3$ CNS at various current densities are given in Fig. 9(b). A slight deviation in symmetric charge-discharge curves is observed from Fig. 9(a) and 9(b), signifying the dual behavior of electric double layer and pseudocapacitance nature of the electrodes.\cite{49,54} The charge/discharge curve of CeO$_2$/Fe$_2$O$_3$ CNS show low IR drop than those of CeO$_2$ NPs and Fe$_3$O$_4$ NRs electrodes, suggesting the large pseudocapacitance nature and less energy dissipated during charge-discharge process.\cite{55} The cycling stability of CeO$_2$ NPs, CeO$_2$/Fe$_2$O$_3$ CNS and Fe$_3$O$_4$ NRs at 50 mV s$^{-1}$ for 1000 cycles is presented in Fig. 9c. It is observed that, CeO$_2$/Fe$_2$O$_3$ CNS electrode possesses large capacitance retention of 94.8 % than those of CeO$_2$ NPs and Fe$_3$O$_4$ NRs, indicating the high stability of the CeO$_2$/Fe$_2$O$_3$ CNS electrode. To further explore the electrochemical behaviors of CeO$_2$ NPs, CeO$_2$/Fe$_2$O$_3$ CNS and Fe$_3$O$_4$ NRs electrodes, electrochemical impedance spectroscopy (EIS) is measured in the frequency range between 10 mHz and 1 MHz. Fig. 9(d) shows the EIS spectra of CeO$_2$ NPs, CeO$_2$/Fe$_2$O$_3$ CNS and Fe$_3$O$_4$ NRs electrodes with a depressed semicircle and a single vertical line observed in the high frequency region. The depressed arc at high frequency attributes to the charge transfer resistance (R_{CT}) occurring at the electrode/electrolyte interfaces.\cite{56,57} The EIS spectra are fitted using the equivalent circuit represented in the inset of Fig. 9(d). The calculated values of R_{CT} are found to be 7.24, 2.83 and 2.74 Ω for CeO$_2$ NPs, CeO$_2$/Fe$_2$O$_3$ CNS and Fe$_3$O$_4$ NRs electrodes, respectively. In addition, the estimated R_{RT} values are 1.287, 0.09 and 0.15 Ω. The lower value of R_{CT} and R_{RT} obtained for the CeO$_2$/Fe$_2$O$_3$ CNS electrode suggesting the fast electron transfer process and improved ionic conductivity at the electrode/electrolyte interface in the CeO$_2$/Fe$_2$O$_3$ CNS electrode.
Fig. 9 (a) Galvanostatic charge/discharge curves of CeO$_2$ NPs, CeO$_2$/Fe$_2$O$_3$ CNS, Fe$_2$O$_3$ NRs and bare carbon electrodes at 0.5 A g$^{-1}$; (b) Galvanostatic charge/discharge curves CeO$_2$/Fe$_2$O$_3$ CNS at different current densities; (c) Capacitance retention of CeO$_2$ NPs, CeO$_2$/Fe$_2$O$_3$ CNS and Fe$_2$O$_3$ NRs electrodes as function of cycle number measured at a scan rate of 50 mV s$^{-1}$; (d) Nyquist Plots, (e) Variation of phase angle with respect to frequency of CeO$_2$ NPs, CeO$_2$/Fe$_2$O$_3$ CNS and Fe$_2$O$_3$ NRs electrodes.

Fig. 9(e) shows the variation of the phase angle as a function of frequency and lies in the range of 66-75°, which attributes to the partial redox and capacitive nature of the CeO$_2$ NPs, CeO$_2$/Fe$_2$O$_3$ CNS and Fe$_2$O$_3$ NRs materials. Our electrochemical results showed that, the CeO$_2$/Fe$_2$O$_3$ CNS has great potential for use as a supercapacitor electrode material.

4. Conclusions

CeO$_2$ NPs, CeO$_2$/Fe$_2$O$_3$ CNS and Fe$_2$O$_3$ NRs were synthesized by solution processed co-precipitation method and investigated its photocatalytic and supercapacitive properties. Among all, the CeO$_2$/Fe$_2$O$_3$ CNS showed an enhanced degradation efficiency of 98% after 25 min in degrading EY under visible light irradiation. In addition, the calculated electrical energy efficiency (6.588 kWh m$^{-3}$ order$^{-1}$) of CeO$_2$/Fe$_2$O$_3$ CNS confirmed the consumption of less energy in degrading EY. Besides, the CeO$_2$/Fe$_2$O$_3$ CNS exhibited a specific capacitance of 142.6 F g$^{-1}$ at a scan rate of 5 mV s$^{-1}$ and displayed excellent capacitance retention of 94.8% after 1000 cycles. Our results showed that the synthesized CeO$_2$/Fe$_2$O$_3$ CNS with enhanced visible light-driven photocatalytic activity and supercapacitive cycling stability could be a potential candidate for its use in environmental and energy storage applications.

Acknowledgements

This work was supported by the Technology Innovation Program (10041997, Design and Development of fibre-based flexible display) funded by the Ministry of Trade, industry & Energy (MI, Korea) and Civil-Military Technology Cooperation Center (13-DU-EE-13).
Notes and references

31 J. Zhang, F. Huang and Z. Lin, Nanoscale, 2010, 2, 18-34.