This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Heterostructured Cu$_2$O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction

Amare Aregahegn Dubale1,†, Chun-Jern Pan1,†, Andebet Gedamu Tamirat1, Hung-Ming Chen1, Wei-Nien Su2,†, Ching-Hsiang Chen2,†, John Rick1, Delele Worku Ayele1, Belete Asefa Aragaw1, Jyh-Fu Lee3, Yaw-Wen Yang3 and Bing-Joe Hwang1,3,*

1 NanoElectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
2 NanoElectrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
3 National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan.
† These authors contribute equally
* Corresponding authors: bjh@mail.ntust.edu.tw; wsu@mail.ntust.edu.tw; bluse@mail.ntust.edu.tw

Abstract:
Here we report the design, synthesis and characterization of a novel Cu$_2$O/CuO heterojunction decorated with nickel cocatalyst as a highly efficient photocathode for solar hydrogen production. The heterojunction structure was shown and examined by X-ray absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman Spectroscopy and Tip-enhanced Raman spectroscopy (TERS). Due to the heterojunction synergism, the Cu$_2$O/CuO gave a remarkably improved photocurrent density (~2.1 mA/cm2), i.e. 3.1 times higher than a Cu$_2$O photoelectrode. Additionally, the Cu$_2$O/CuO heterojunction, when decorated with nickel cocatalyst, showed six-fold and two-fold increases in photocurrent density (~4.3 mA/cm2) respectively when compared to Cu$_2$O and bare Cu$_2$O/CuO at 0 V vs. RHE under AM 1.5 illumination (100 mW/cm2). Interestingly, the Ni decorated Cu$_2$O/CuO photocathode showed an impressive solar conversion efficiency of 2.71% at ~0.4 V vs. Pt, i.e. 467% higher compared to bare Cu$_2$O/CuO. After 20 minutes of standard solar illumination, 87.7% initial photocurrent density was remained for the nickel decorated Cu$_2$O/CuO heterojunction. This is more than 1.5 times that of bare Cu$_2$O/CuO (53.6%), suggesting surface modification with Ni not only effectively promotes water splitting but also stabilizes the photoelectrode. The enhanced
photoelectrochemical performance is attributable to the efficient charge transfer and protective role of Ni, the improved crystallinity and the synergism effect of the heterojunction in light absorption and charge separation. This inexpensive photocathode with increased photocurrent density and photostability offers a higher promise for solar hydrogen production.

Keywords: Photoelectrochemical water splitting, Cu$_2$O/CuO, heterojunction, nickel, cocatalyst, photocathode, hydrogen production
1. Introduction

Due to global warming, finite fossil fuel resources and the exponential increase in world population, the need to develop renewable resources is being brought into ever sharper focus. One almost unlimited renewable energy resource is the sunlight reaching the earth’s surface.\(^1\) Converting incoming photons from the sun into storable chemical energy, such as hydrogen, is an attractive ‘alternative’ way to alleviate existing energy related problems that has attracted much attention.

Currently, many processes e.g. steam reforming\(^2\) to\(^4\) coal gasification,\(^5\) biomass derivatives,\(^6\) thermochemical\(^7\) and biological processes\(^8\) are being explored with the goal of generating hydrogen for world consumption. However, most of these processes require a lot of energy and generate a significant carbon footprint. An alternative way to produce hydrogen is to use solar energy to carry out a water splitting reaction. Photoelectrochemical (PEC) water splitting is a potential route towards environmentally friendly hydrogen production as it requires only semiconductor electrodes, water, and sunlight.\(^9\) Semiconductor materials with favorable band alignments for water reduction/oxidation, narrow band gaps and stability under reaction condition are promising candidates for solar energy harvesting – thus, InP,\(^10\) GaP,\(^11\) Si,\(^12, 13\) CuGaSe\(_2\),\(^9\) CdTe\(^14\) and WSe\(_2\)\(^15\) already find application as hydrogen generating water reduction photocathode materials. However, availability, cost and synthesis procedures still pose severe limitations to their use.\(^12\) Cu\(_2\)O, is a non-toxic p-type semiconductor with a direct band gap of 2.0 eV and high theoretical photocurrent density of \(-14.7 \text{ mA/cm}^2\),\(^16\) that has attracted much attention for use in solar H\(_2\) generation from water,\(^17, 18\) lithium ion batteries\(^19, 20\) and for the degradation of organic dyes under visible light.\(^21, 22\) In addition, copper is inexpensive and naturally abundant and thus offers the potential for cost-competitive large-scale Cu\(_2\)O photoelectrode fabrication.\(^23\) However, poor photostability in aqueous electrolytes combined with fast recombination of minority carriers still severely limits the practical utilization of Cu\(_2\)O in solar hydrogen production.

Recently, several reports have purported to show various ways of overcoming the above problems associated with Cu\(_2\)O. For instance it has been reported that photocorrosion inhibition
and photostability improvements have been achieved by loading cocatalytic Pt, RuO$_x$ and MoS$_{2+x}$ on the thin-film hetrostructured surfaces, obtained from layer-by-layer deposition of n-type semiconductors with more positive conduction bands (e.g. ZnO, TiO$_2$) than Cu$_2$O.17, 18, 24 Coating Cu$_2$O nanowire arrays with a thin protective graphene layer25 and carbon layer26 could also offer a promising way to combat the Cu$_2$O photocorrosion problem. Furthermore, \textit{in situ} spin coating of the metal oxide co-catalyst (NiO-Ni(OH)$_2$)27 on pre-synthesized Cu$_2$O has also resulted in enhanced photostability and reduced recombination losses.

To-date, due to synthetic method limitations, little research has been carried out on the fabrication and cocatalytic surface activation of Cu$_2$O/CuO based nanostructures. CuO is a promising p-type semiconductor with a narrow band gap i.e. 1.3 eV to 1.8 eV with strong absorption in the solar spectrum region.28 In addition, CuO has been used as a component to build heterojunction photoelectrodes with other semiconductors, e.g. ZnO29, 30, while the high conductivity of CuO makes it a good candidate for clean solar energy applications.31, 32 Since the conduction band minimum (CBM) of Cu$_2$O is a little higher than the CBM of CuO; and the valance band maximum (VBM) of CuO is lower than the VBM of Cu$_2$O, it is reasonable to expect CuO to have electron accepting properties for the Cu$_2$O/CuO hetrostructure. This suggests that the Cu$_2$O/CuO heterojunction should have valuable applications in electronics, optoelectronics and in many other nanotechnology fields.

Copper oxides (Cu$_2$O or CuO) can be synthesized using a number of methods, e.g. metalorganic chemical vapor deposition (MOCVD/CVD),33-35 electrodeposition,36, 37 sputtering,38, 39 and template-based sol–gel approaches.40, 41 However, none of these methods are suitable for the preparation of Cu$_2$O/CuO hetrostructures for water splitting. A few groups have recently attempted to synthesize Cu$_2$O/CuO hetrojunctions: for instance, Huang \textit{et al.}, found that Cu$_2$O/CuO heterojunctions can be prepared on a gold substrate by the electrodeposition of Cu nanowires using anodic aluminum oxide (AAO) templates, followed by the thermal oxidation of the Cu nanowire.32 In another recent study, Wang \textit{et al.}, synthesized Cu$_2$O/CuO heterojunctions on copper foil by embedding anodized Cu$_2$O thin films with CuO nanowires.42 Despite this progress, maintaining photoelectrode stability remains challenging; while additionally, existing synthesis strategies require templates, high vacuum conditions, higher potentials and longer
deposition times from aqueous and non-aqueous electrolytes containing hydroxide, chloride and/or fluoride ions at room temperature. As a result, a facile, scalable, template free, cheap, and environmentally friendly alternative strategy for fabricating heterostructured Cu$_2$O/CuO remains elusive.

CuO grown on top of Cu$_2$O (Cu$_2$O/CuO) improves the photoresponse of the photoelectrode while also serving as a protective layer against Cu$_2$O photocorrosion. 31 Other studies have shown a limited Cu$_2$O/CuO photocathode stability enhancement can be achieved (probably due to self photocorrosion of the CuO layer) during the photocatalytic reaction. 32 Here we also examine the effect of cocatalyst loading on the Cu$_2$O/CuO heterojunction’s surface with respect to its photoelectrochemical (PEC) performance. To the best of our knowledge, this is the first report focused on the effects of cocatalyst loading on the Cu$_2$O/CuO surface and the fabrication of a Cu$_2$O/CuO based electrode for water reduction on a conductive substrate (fluorine doped tin oxide). Pt, when deposited on semiconductors, is a well known electrocatalyst; however, Pt is extremely scarce, making it costly to use on a large scale for hydrogen production. 43 A more earth-abundant alternative to Pt is Ni, which has been shown to be an effective co-catalyst for solar-driven H$_2$ generation when deposited as nanoparticles on a graphene oxide sheet 44, or on crystalline Si electrodes, 45 where mechanistically it is assumed to act as a trap for photogenerated electrons into the electrolyte solution, thereby retarding charge recombination, while also stabilizing the photoelectrode.

In this work, we report a facile synthetic strategy to make Cu$_2$O/CuO on a fluorine doped tin oxide (FTO) substrate. We prepared the Cu$_2$O/CuO heterojunction in one-step by oxidizing a Cu film deposited on FTO using an electrolysis method. The process used is simple, facile, scalable, template free, cheap, and environmentally friendly. We investigated the effects of annealing time and oxidation temperature on the crystallinity of heterostructured Cu$_2$O/CuO – in order to maximize light absorption. The heterostructured Cu$_2$O/CuO, used as a photocathode for PEC based H$_2$ production, was examined to evaluate its activity and stability; the presence of the CuO layer was found to enhance the photo-response of the electrode. We also demonstrate for the first time that decorating the Cu$_2$O/CuO surface with a robust and cheap nickel cocatalyst is a viable strategy for achieving improved photostability and photocurrent density with suppressed
reduction of the photocathode’s outer CuO layer. In addition to PEC performance measurements, the heterojunction photocathode was investigated with respect to its stability.

2. Experimental section

2.1 Methods

2.1.1 Synthesis of Cu$_2$O/CuO. All chemicals used in this study were of analytical grade and used without further purification. Cu films were prepared by electrolysis of CuSO$_4$.5H$_2$O (99%, Across Organics) at constant applied potentials. The commercial fluorine-doped tin oxide glasses (FTO 15 Ω, 1.5 cm × 3 cm) were cleaned with isopropyl alcohol, acetone, soapy and pure deionized water for 5 min each in ultrasonication bath and quickly dried in N$_2$ flow before using. Cu was deposited in a conventional two electrode cell system using a programmable DC power supply. FTO glasses were used as the cathode and anode electrode. The FTO glasses were dipped into electrolyte solution. The FTO connected to the negative and the positive terminals of the power supply were used as cathode and anode respectively. Cu films were deposited from the aqueous solution containing saturated CuSO$_4$.5H$_2$O with a potential of 5 V for 2 minutes. The Cu$_2$O/CuO heterojunction was obtained in situ by annealing the as prepared Cu film in a cubic furnace in air. That is, the Cu$_2$O/CuO heterojunction was prepared by thermal oxidation of the as synthesized Cu film in air at different temperatures varying from 350 °C to 650 °C for 4 hour. To investigate the effect of annealing time, the as synthesized Cu film was annealed at temperature of 350 °C for 0.5, 1, 2, 3 and 4 hour. For clarity, the Cu$_2$O/CuO photocathodes prepared at 350, 450, 550 and 650 °C for 4 hour are named as Cu$_2$O/CuO-350, Cu$_2$O/CuO-450, Cu$_2$O/CuO-550 and Cu$_2$O/CuO-650.

2.1.2 Deposition of Ni nanoparticles on Cu$_2$O/CuO heterojunction. Deposition of nickel nanoparticles on Cu$_2$O/CuO heterojunction was carried out via the facile hydrothermal route and the spin-coating method. Firstly, nickel nanoparticles were synthesized by the following process. Nickel chloride hexahydrate (0.427 g), sodium hypophosphite (5.27 g) and potassium hydroxide (3.58 g) were dissolved in 64 ml of deionized water. The mixture was vigorously stirred for 30 minutes at room temperature under atmospheric pressure forming suspension solution. The prepared suspension was taken into a Teflon-lined stainless steel with 0.8 filling factor, sealed, and maintained at 200 °C for 10 h. After this the autoclave was
naturally cooled to room temperature, the black products were collected, washed with plenty of distilled water and dried at 50 °C for 4 hr in the air. Secondly, Cu₂O/CuO heterojunctions obtained at 450 °C for 4 hr (hereafter named as Cu₂O/CuO) were decorated by spin-coating an alcoholic solution of as synthesized nickel nanoparticles (0.07 M) onto the surface of Cu₂O/CuO photoelectrode at 1500 rpm for 10 s. By reiterating the above deposition cycle, the desired amount of nickel nanoparticles can be loaded on the Cu₂O/CuO photoelectrode. Now onwards, the Cu₂O/CuO photoelectrode decorated with varying deposition cycle (N= 1, 2, 3, 4 and 5) are named as Cu₂O/CuO/Ni-1, Cu₂O/CuO/Ni-2, Cu₂O/CuO/Ni-3, Cu₂O/CuO/Ni-4 and Cu₂O/CuO/Ni-5 respectively.

2.2 Structure characterization

The photoelectrodes were characterized by XRD, SEM, DRS UV-Vis, Raman, XPS and XANES/EXAFS. X-ray diffraction (XRD) pattern were acquired with a D2 phaser XRD-300 W, with measurements taken using Cu Kα radiation at 40 kV and 100 mA. Spectra were obtained with a linear silicon strip 'Lynx Eye' detector from 20° to 80° at a scan rate of 3° min⁻¹. The morphology of the electrodes were characterized using Field Emission Scanning electron microscopy (EDX JSM 6500F, JEOL) The diffuse reflectance UV-vis adsorption spectra were obtained using a JASCO (ISV-469) V 560 UV-Vis spectrometer with fine BaSO₄ powder as reference. Raman measurements were performed on a ProMaker confocal Raman microscope system as integrated by Protrutech Co., Ltd. A solid state laser operating at λ= 532 nm was used as the excitation source with a laser power of 20 mW to circumvent degradation with 10 s exposure times and 15 accumulations. X-ray photo-electron spectra (XPS) (PHI, 1600S) were recorded at the National Synchrotron Radiation Research Centre (NSRRC), Taiwan with 24A XPS beam line station. In order to obtain the near field Raman signal on the surface of the Cu₂O/CuO, atomic force microscope (AFM) was applied to combine with microscope Raman spectroscopy. The AFM tip was coated by Au as to enhance the Raman signal as called tip enhanced Raman scattering (TERS). This characterization was performed on 632.8nm laser excited light source UniRAM microscope Raman system (UniNanoTech) combined with MV4000 AFM scanning stage (Nanonics). To prevent degradation, the exposure time was 5 seconds with 10 accumulations. An objective lens 50×/0.55 N.A. was used and the measurement was carried out at room temperature and dark condition. Before measurement the Raman band of
a silicon wafer at 520 cm\(^{-1}\) was used as the standard reference to calibrate the spectrometer. The hard X-ray absorption spectra (XAS) were collected at the beam line BL17C1 of National Synchrotron Radiation Research Center (NSRRC) in Hsinchu, Taiwan. The storage ring of the electronic accelerator can supply the electronic energy of 1.5 GeV and the operation current at 360 mA. A Si double crystal monochromator was used to perform energy scan, of which the parallelism can be adjusted to eliminate the high order harmonics. All XAS data were recorded using the fluorescence mode. The Ni content in the residue of the electrolyte was analyzed by using ICP-AES (inductively coupled plasma – atomic emission spectrometry) JY 2000 2 model from HORIBA Scientific.

2.3 Photoelectrochemical measurement

The photoelectrochemical performance of the electrodes was assessed in a three electrode system using an aqueous solution of 1M Na\(_2\)SO\(_4\) buffered at pH 5 with potassium phosphate (0.1 M). The three-electrode configuration consists of Ag/AgCl in saturated KCl as reference electrode, a Pt wire as the counter electrode and the prepared Cu\(_2\)O/CuO or Cu\(_3\)O/CuO/Ni as working electrode. The photoresponse of the synthesized electrode was acquired under chopped illumination from a 300 W Xenon lamp equipped with AM 1.5 filter. The intensity of light source was calibrated with a Si diode (Newport) to simulate AM 1.5 illumination (100 mW/cm\(^2\)). For all the samples, a scan rate of 10 mV/s was used for the current versus potential measurements (LSV). Photocurrent stability tests were performed by measuring the photocurrent produced under chopped light irradiation (on/off cycles of 10 s) at a fixed biasing potential of 0 V vs. RHE. During the PEC tests, the electrolyte was constantly purged with N\(_2\) for 30 minutes. The electrochemical impedance spectroscopy (EIS) was performed using an electrochemical impedance analyser with an AC amplitude of 10 mV and frequency range between 100 kHz to 0.1 Hz. The measured EIS data were obtained at an applied bias of 0 V vs. RHE at 25 °C.

2.4 Photoelectrocatalytic hydrogen measurement

The photostability measurement equipped with hydrogen quantification experiment on bare Cu\(_2\)O/CuO and Cu\(_3\)O/CuO/Ni-3 was carried out at an applied potential of 0 V vs. RHE under AM 1.5 irradiation. The evolved gas during the reaction was collected above the water through a tube connected to a separate burette equipped with septum as head cap. The change in volume of water displaced by the generated gas was taken as total volume of evolved gas. The evolved gas
sample was taken from head cap of the burette with a gas-tight syringe and analyzed using a YANGI–LiN gas chromatograph equipped with PDHID detector. Generated H₂ was carried out following the GC calibration curve made with known concentration of H₂ (5% H₂/Ar)

3. Results and discussion

The fabrication of the host substrate (Cu film) on FTO for the growth of the Cu₂O/CuO heterojunction is illustrated in Scheme 1. Fluorine doped tin oxide (FTO) was chosen as a film growing substrate because it is electrically conductive, transparent, highly temperature resistant, chemically inert, relatively stable under atmospheric conditions; additionally, it is less expensive than substrates such as indium tin oxide. A Cu film, uniformly coated on FTO, was first prepared by a simple and facile electrolysis method. A pair of connected FTO films (Scheme 1), immersed in a saturated solution of CuSO₄ electrolyte for 2 minutes with 5 V at 25 °C, resulted in the formation of a dense layer of a uniform reddish orange colored Cu film over the conductive FTO substrate exhibiting exactly the same natural color as a copper substrate e.g. a Cu foil. During the electrolysis of copper sulphate, using FTO as an inert electrode, it is known that CuSO₄ is ionized producing Cu²⁺ and SO₄²⁻ ions (CuSO₄ → Cu²⁺ + SO₄²⁻), and in doing so allows the transfer of copper ions, in preference to H⁺ ions, from the solution to the cathode. This is probably because the reduction potential of Cu²⁺ is more positive than that of hydrogen ions. The migration of positively charged copper ions to the cathode results in the formation of the reddish orange colored copper sheet on FTO upon gaining pair of electrons at the cathodic surface (according to reaction 1 below).

\[
\text{Cu}^{2+}_{(aq)} + 2e^- \rightarrow \text{Cu}_{(s)} \quad (1)
\]

At the anode, of the two anions in solution OH⁻ and SO₄²⁻, OH⁻ is discharged first, as confirmed by the evolution of oxygen gas on the FTO’s surface, see reaction 2 below. The ions remaining in the solution, H⁺ and SO₄²⁻ cause a change in pH from 4 to 1.5. Furthermore, with the complete deposition of Cu²⁺ ions on FTO the same electrolyte solution changes from deep blue to colorless (or pale blue).

\[
4 \text{OH}^-_{(aq)} \rightarrow 2\text{H}_2\text{O}_{(aq)} + \text{O}_2(g) + 4e^- \quad (2)
\]
Scheme 1. Synthetic strategy of: (a) electrodeposition of Cu film on FTO using a saturated solution of CuSO₄ (b) growing Cu film.

This work focused on the Cu₂O/CuO synergism towards PEC performance. A Cu film on FTO was subjected, in a cubic furnace, to thermal oxidation (in air) for various annealing times (0.5, 1, 2, 3 and 4 hours at 350 °C) and annealing temperatures (350, 450, 550 and 650 °C for 4 hours) to optimize the reaction conditions. The XRD patterns of the Cu film and thermally oxidized copper at 350 °C, in air for different times, are shown in Figure 1(a). Well defined peaks at 42.6, 50.3 and 72.5° correspond to diffractions from the (111), (200), and (220) planes of copper (JCPDS card number 04-836, Figure 1(a) red colored curve). This shows that a pure and well crystallized Cu film with no impurities peak, such as cuprous or cupric oxides, was formed on the FTO. This was also confirmed from the X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) characterizations shown in Figures 1(b) and 1(d) respectively. As shown in Figure 1(b), the XANES spectra of the synthesized Cu film is similar to that of the XANES spectra of Cu foil. The Cu-Cu bond length of the Cu film, centered at 2.4 Å in the EXAFS spectra is also in agreement with the Cu-Cu bond length of Cu foil (Figure 1(d)).

Annealing the Cu film at 350 °C for durations ranging from 0.5 to 4 hours (Figure 1(a)), revealed changes in composition of the film. In all the cases, annealing the film created new peaks at 36.4, 42.3 and 61.5°, matching reflections from the (111), (200), and (220) planes of Cu₂O (JCPDS card number 05-0667). It is observed that (Figure 1a) the intensity of Cu₂O along the (111) direction get increasing with increased in annealing time, indicating preferential growth of Cu₂O is along the <111> direction on the FTO substrate. Cu film annealed for 3 hr, or more, showed small new emerging peaks at 35.5, 38.9 and 65.8°, corresponding to the CuO phase (JCPDS card number 5-661). The appearance of these peaks is clearly shown in Figure S1 (see supporting information). Oxidation of the synthesized Cu films was also investigated using XANES and
EXAFS measurements, see Figures 1(b) and 1(d) respectively. The features of the XANES spectra (Figure 1(b)) show a slight shift in the edge position from the Cu film or Cu foil ref. As can be seen in Figure 1(c) (enlargement of selected portion in Figure 1(b)), the edge position of heat treated Cu film is shifted to higher energy, indicating that oxidation takes place during 350 °C treatment. We found that the spectrum of the sample after 4 hr treatment under 350 °C is close to that of the Cu₂O reference, indicating the average oxidation of Cu species is close to +1. This is in good agreement with our XRD results. The information from XANES is also supported by the EXAFS spectra given in Figure 1(d). As the annealing time increases, the intensity of Cu metal is supposed to decrease, indicating the increased oxidation of the Cu film. The discrepancy in intensity of Cu during annealing from 2 hr to 3 hr might result from the inhomogeneous sample in XAS measurement, which usually focused only small area of the sample.

Figure 1. (a) XRD patterns (b) XANES (c) enlargement of selected portion in Figure 1(b) and (d) EXAFS spectra of Cu film and Cu film oxidized at 350 °C for 1, 2, 3 and 4 hr.
The surface of the Cu film on the FTO substrate turns black after oxidation, suggesting that the surface oxide is CuO.47 Further examination under an electron microscope (SEM) revealed a clear morphological difference between the as-synthesized Cu film and films subjected to the thermal treatment. The microstructures of the as-synthesized Cu films before annealing and films annealed at 350 °C for 0.5, 1, 2, 3 and 4 hours are displayed in Figure 2. Figure 2(a) shows Field emission SEM images of the Cu film fabricated by the electrolysis method. As shown in the scanning electron microscope (SEM) image in Figure 2(a), the FTO substrate was completely coated with Cu film after it had been immersed in a CuSO₄ solution at 5 V for 2 minutes. The film had a reddish orange color, typical of Cu. As clearly seen in the image (Figure 2(a) and Figures S2 a1-a2), the as-prepared Cu film before annealing has a rough surface and irregular grain size. However, when the films were annealed at 350 °C for ≥0.5 hour, the morphology showed better uniformity in grain size (Figure 2(b) to 2(f) and Figure S2).

SEM images of a Cu film, after it had been heated in air at 350 °C for 0.5 hour (Figure 2(b)), revealed the formation of continuous and homogeneous nanoparticles with little surface remaining uncovered. As seen in Figures 2(c) to 2(f), only small amounts of less packed Cu₂O films were formed at lower temperatures duration annealing. With prolonged calcination times (e.g. for films annealed for 3 and 4 hours, Figures 2(e) and 2(f), respectively), the structure of the films became gradually denser and more closely packed. The images also reveal that increased amounts of films (Cu₂O and CuO) on the FTO substrate were obtained with increasing annealing times. As shown in Figure 2(f), a film oxidized at 350 °C for 4 hours shows a smooth surface with well packed small particles with observable small gaps between the nanoparticles (indicated by small circles in the high resolution SEM image Figure S2 f2), possibly due to incomplete grain growth after the oxidation process (see Figure S2). In our study, the results from XRD, XAS, EXAFS and SEM related to the annealing time suggest a promising route for conducting further experiments.
Figure 2. Scanning electron microscopy images of the as-synthesized Cu film (a) and Cu film annealed at 350 °C for: 0.5 (b), 1 (c), 2 (d), 3 (e) and 4 hr (f).

We also investigated the effect of the annealing temperature on the growth of heterostructured Cu$_2$O/CuO. In this study, the as-synthesized Cu films were placed in a cubic furnace and heated for 4 hours at temperatures in the range 350 to 650 °C. The surface of the Cu film became blackened with a reddish hue at the back when heated up to 450 °C (Figures S3b and 3c) and was totally tarnished, both front and back, at higher annealing temperatures (~650 °C) (Figure S3e). These changes probably result from oxidation of the film. Further examination of Cu films (treated at 350, 450, 550 and 650 °C) by Field emission scanning microscopy, see Figure 3, shows that film oxidized at 350 °C for 4 hours has a smooth surface with well packed small particles and observable small inter-nanoparticle gaps as indicated by small circles in the high resolution SEM image in Figure 3(a), possibly due to incomplete grain growth after the oxidation process. More interestingly, the Cu film oxidized at 450 °C (Figure 3(b)) revealed a highly dense, rough surface with a few nanowires emerging from the inner surface of the film (see marked areas in Figures 3(b) and 9(c)) in later section. Similar features (surface roughness) were also revealed by atomic force microscope (AFM) measurements (Figure S4).

Figure 3(c) shows SEM images of the Cu film after it had been heated in air at 550 °C for 4 hours. As can be seen in this figure, the surface of the substrate was completely covered by a
compact and uniform film. Unlike the film treated at 450 °C, nanowire growth on the surface of the film was totally absent. This is probably because, usually CuO nanowires, which have a high density of Cu at the bottom and low density at the top and a reverse O distribution, were grown either from the middle, or at the bottom of the Cu$_2$O layer, and the growing direction of nanowires was consistent with the diffusion of Cu.42,48 Thus, in our study, the absence of nanowires on the film’s surface for the sample annealed at 550 °C is probably due to inhibited growth of CuO nanowires outward from the thicker films. SEM images of the film, annealed at 650 °C, in Figure 3(d) reveal formation of a few pits49 randomly distributed over the compact, flat and homogeneous film surface. The formation of the pits is probably due to plastic deformation caused by film thickness beyond a critical limit,50 implying the existence of crystal dislocation during film growth.51

![Figure 3](image)

Figure 3. Scanning electron microscopy images of the Cu film annealed at: 350 (a), 450 (b), 550 (c) and 650 °C (d).

We further examined the composition, structure, and crystallinity of heterojunctions, obtained at different annealing temperatures; using XRD, Tip-enhanced Raman spectroscopy (TERS) and XAS. The XRD patterns of Cu films annealed at 350 °C to 650 °C for 4 hours are given in Figure 4(a). As mentioned, the Cu film annealed at 350 °C for 4 hours resulted in the formation of relatively intense Cu$_2$O peaks together with slightly weak emerging CuO peaks. It was found that
the intensity of Cu$_2$O along the (111) direction increased with the increase of oxidation temperature from 350 °C to 450 °C (magenta colored curve in Figure 4(a)). The improvement in Cu$_2$O crystallinity at 450 °C, together with the significant intensity of the (111) plane of CuO, confirms the formation of the Cu$_2$O/CuO heterojunction. However, the monoclinic phase of CuO started to dominate the Cu$_2$O peak when the annealing temperature increased to 550 °C (Figure 4(a)). The XRD patterns reveal that the characteristic features of the Cu and Cu$_2$O phases disappear when the annealing temperature increases from 550 to 650 °C. This observation indicates the complete conversion of Cu$_2$O into CuO, due to the higher annealing temperature promoting the oxidation of Cu$_2$O by diffused oxygen resulting in additional CuO phase, i.e. $2\text{Cu}_2\text{O} + \text{O}_2 \rightarrow 2\text{CuO}$ (see further information in supportive information). The phase transformation of Cu film and the effect of the annealing temperature were also studied by Raman spectroscopy. Figure 4(b) shows the Raman spectra of Cu films annealed at 350, 450, 550 and 650 °C. The presence of peaks at 218 cm$^{-1}$ and 635 cm$^{-1}$ (shown by diamonds in Figure 4(b)) is indicative of the existence of the Cu$_2$O phase. The peak at 218 cm$^{-1}$, originating from the second-order Raman-allowed mode of Cu$_2$O, was relatively stronger with 450 °C treatment and then gradually disappeared as the annealing temperature increased. The strong peak feature demonstrates that better crystallization of Cu$_2$O in the heterojunction can be achieved with an annealing temperature of 450 °C, which is consistent with the XRD results. On the other hand, both Cu$_2$O and CuO were observed for Cu film annealed at 350, 450 and 550 °C; however, the Cu film annealed at 650 °C revealed only the CuO phase. As the annealing temperature increases, the characteristic CuO peak, usually centered at 298 cm$^{-1}$ for pure CuO, shifts slightly (low Raman shift), probably because stress and non-stoichiometry affect the peak position and the width at the peak’s half maximum height. The formation of a pure CuO phase at 650 °C also confirms the complete conversion of metallic copper and Cu$_2$O film into the CuO phase. This is probably because once the metallic Cu is consumed, the outward diffusion of Cu$^{2+}$ comes to an end and the whole film becomes pure CuO phase due to the proximity of ambient O$_2$ to film. The complete consumption of metallic copper was also confirmed by XRD results.

The effective oxidation of the Cu film during annealing at different temperatures is also shown by the XANES spectra (Figure 4(c)). Figure 4(d) shows portions of the enlarged XANES spectra in Figure 4(c). For brief comparison we have shown the X-ray absorption near-edge structure
(XANES spectra) of Cu$_2$O, CuO and Cu foil references representing the absorbance peaks of Cu$^+$, Cu$^{2+}$ and Cu respectively. The edge position of Cu is shifted to higher energy (in the direction shown in Figure 4(d)), indicating that further oxidation takes place while the temperature increases. The position of Cu after 4 hr treatment under 650 °C is close to that of the CuO, indicating the average oxidation of Cu is close to +2. From the enlarged XANES spectra (Figure 4(d)), Cu film annealed at 350 °C and 450 °C has a similar feature to the Cu$_2$O reference sample (Cu$_2$O ref), while Cu films annealed at 550 °C and 650 °C share more features in common with that of the CuO reference sample, indicating that lower and higher annealing temperatures resulted in more Cu$_2$O and CuO like components, respectively. The shift in edge position to higher energy after annealing clearly implies that heat treatment changes the Cu film’s oxidation state.

We also studied the variation of Cu film structures with the annealing temperature by extended x-ray absorption fine structure (EXAFS), Figure 4(e). Based on the radial distribution functions obtained by Fourier Transformation, Cu film annealed at 350 and 450 °C revealed similar EXAFS spectra to the Cu$_2$O reference. On the other hand, Cu film annealed at relatively higher temperatures (550 and 650 °C) exhibited similar EXAFS spectra to the CuO reference. If we compare their spectra with the spectrum of the synthesized Cu film or Cu foil, it can be seen that the intensity of Cu–Cu bonding diminishes as the annealing temperature increases. This provides supplementary evidence that annealing the Cu film leads to dramatic changes in the oxidation state. More interestingly, the spectra of Cu films annealed at 450 and 650 °C, resemble those of the Cu$_2$O and CuO references, suggesting Cu$_2$O and CuO respectively are the major species at these temperatures. These results support our XRD characterization.
Figure 4. (a) XRD patterns (b) Raman spectra, (c) XANES spectra (d) enlargement of selected portion in Figure 4(d) and (e) EXAFS spectra of Cu film oxidized at 350, 450, 550 and 650 °C.
To gain more insight into the chemical composition of the photoelectrode, we also carried out XPS measurements on Cu$_2$O/CuO fabricated at 450 °C. The Cu 2p peak XPS spectrum of Cu$_2$O/CuO is shown in Figure 5(a); the two peaks centered at 933.5 and 953.2 eV were assigned to Cu 2p3/2 and Cu 2p1/2 of CuO, respectively, and the two smaller peaks, obtained by deconvoluting the major peaks, appearing at 932.4 and 952.2 eV correspond to Cu$_2$O. The presence of two extra shake-up satellite peaks at relatively higher binding energies, 942.9 and 954.2 eV, also indicate the existence of CuO on the surface. The curve-fit results of the Cu 2p core level XPS measured on the surface of the Cu$_2$O/CuO photocathode reveal that the predominant phase was CuO, constituting about 64% on the surface of the film annealed at 450 °C.

We investigated the chemical composition of the photoelectrode, Cu$_2$O/CuO fabricated at 450 °C, with tip enhanced Raman spectroscopy (TERS) using a 632.8 nm wavelength laser as the excitation source. Figures 5(b) shows TER spectra of the Cu$_2$O/CuO heterojunction at tip in and tip out conditions. Figure 5(c) shows the TER spectrum, obtained from the difference in tip in and tip out results, in Figure 5(b). As can be seen in Figure 5(b), we observed similar peak features corresponding to Cu$_2$O and CuO. The peak located at 212 cm$^{-1}$ corresponds to Cu$_2$O, whereas the most intense peak feature at 280 cm$^{-1}$ matches well with the CuO crystals. The peak intensity of Cu$_2$O was almost the same during the tip in and tip out investigation; however, it shows that the peak intensity signal of CuO is higher during tip in than tip out; thereby indicating that CuO was the surface dominant copper oxide species. This feature is clearly displayed in Figure 5(c), which is the intensity difference between the tip in and tip out measurements. That is, the absence of Cu$_2$O characteristic peak is indicative of its presence in the bulk rather than on the surface. Thus, taken together the TERS, XPS, and XRD results (measurements made on photoelectrode prepare at 450 °C) show that more CuO was present on the surface than in the bulk, which supports our hypothesis that the Cu film on FTO substrate was converted into a thick bottom layer of Cu$_2$O, with a thin CuO film on the top of Cu$_2$O.
Figure 5. (a) XPS spectra of Cu 2p core level of Cu$_2$O/CuO (b) TER spectra of Cu$_2$O/CuO (c) difference curve generated from the TER spectra in Figure 5(b).

Based on the above-mentioned results, we successfully fabricated Cu$_2$O/CuO heterojunction by this simple and easy approach, and the proposed growth mechanisms of Cu$_2$O/CuO heterojunction were shown in Scheme 2. During ambient thermal oxidation of the as synthesized Cu film, Cu$_2$O film is first formed (reaction 3), followed by conversion of parts of Cu$_2$O to CuO (reaction 4). That is, with the optimum annealing temperature and time, layer-by-layer of Cu$_2$O and CuO, in which a dense layer of Cu$_2$O and a thin protective layer of CuO film accompanied with few nanowires on top, are formed.54 The accepted mechanism for such growth involves outward diffusion of Cu atoms in the Cu film deposited on the FTO substrate and inward diffusion of O atoms during annealing in air.42 Thus, the reaction between the out diffused Cu atoms from the Cu film on the substrate with oxygen in the air resulted in formation of a Cu$_2$O layer (reaction 3). The conversion of Cu$_2$O into CuO results from the diffusion of oxygen into
the films. Cu$_2$O starts reacting with O and forms the CuO phase according to reaction 4 below. As a result, the FTO substrate was completely covered with a thicker layer of Cu$_2$O at the bottom and on top of it, a thin protective layer of CuO film. Surface decoration of the Cu$_2$O/CuO heterojunction (in Scheme 1(c)) will be discussed in a later section.

\[
\begin{align*}
4Cu + O_2 & \rightarrow 2Cu_2O \\
\frac{1}{2}Cu_2O + \frac{1}{4}O_2 & \rightarrow CuO
\end{align*}
\]

Scheme 2. (a) FTO covered with Cu film (b) thermal oxidation of Cu film on FTO to Cu$_2$O/CuO heterojunctions and (c) decorating Cu$_2$O/CuO heterojunctions with Ni.

To understand the effect of Cu$_2$O/CuO heterojunctions on light absorption, their optical properties were measured with UV–vis diffuse reflectance spectra (DRS). Figure 6 shows the UV–vis absorption spectra of Cu$_2$O and Cu$_2$O/CuO heterojunctions prepared at 350, 450, 550 and 650 °C, at wavelengths from 350 to 800 nm. An increase in the absorption of light in the short wavelength region (400–600 nm) was observed in all the samples, which can be related to the intrinsic band gap of Cu$_2$O. As also shown in Figure 6, a similar phenomenon was shown by all the heterojunctions in the long wavelength range (620 to 800 nm). That is, the Cu$_2$O/CuO heterojunctions, particularly the heterojunction prepared at 450 °C, showed a highly enhanced optical absorption in the long wavelength range compared to bare Cu$_2$O, implying that the incorporation of the heterojunction is able to effectively enhance the solar absorption spectra when compared to a single semiconductor.
Figure 6 UV–vis diffuse reflectance spectra of Cu film oxidized at 350, 450, 550 and 650 °C.

The PEC performance of the Cu$_2$O/CuO heterojunctions fabricated at different annealing temperatures for 4 hr were also investigated using a conventional three-electrode configuration under chopped AM 1.5 illumination (100 mW/cm2): Table 1 and Figure S5 show the photoresponse and photostability values dependence on the annealing temperature under these conditions. The results show that the photocurrent density of the Cu$_2$O/CuO photoelectrodes, fabricated at 450 °C, is much higher than that of the photocathodes fabricated at other temperatures. Figure S5b1, shows that the Cu$_2$O/CuO-450 photocathode gave a photocurrent density of -2.1 mA/cm2 at 0 V vs. RHE, which is 2, 1.1 and 1.2 times higher than that of a Cu$_2$O/CuO-350, Cu$_2$O/CuO-550 and Cu$_2$O/CuO-650 photocathodes (Figure S5a1, c1 and d1) respectively. The best heterojunction (Cu$_2$O/CuO-450) yielded a photocurrent density 3.1 times higher than the Cu$_2$O photocathode (see Table 1) at 0 V vs. RHE. This photocurrent density enhancement is believed to be due to improved crystallinity, synergistic effects and the protective layer of CuO. More interestingly, the Cu$_2$O/CuO-450 photocathode showed an appreciable enhancement of photocurrent density at higher potentials, indicating the reduction of potential needed by the photoanode in the overall water splitting using the PEC system.

To make the difference more clear, the stability of the photocathodes within 20 minutes of chopped illumination at 0 V vs. RHE was evaluated by comparing the ratio of J/J_0, where J and J_0 are the percentages of the photocurrent density at the end of the last light cycle and at the end of the first light cycle respectively.18 The photocurrent density of Cu$_2$O/CuO fabricated at 450
˚C (Table 1 and Figure S5b2) at the end of 20 minutes showed a 2.8, 2.2 and 6.5 fold higher photostability (53.6%) compared to the Cu₂O/CuO electrodes fabricated at 350 ˚C (19%), 550 ˚C (24.7% and 650 ˚C (8.3%) respectively (see further information about photostability in the supporting information).

Despite the maximum PEC performance improvement, especially with the Cu₂O/CuO-450 heterojunction having an optimized CuO layer, the stability test still showed photocurrent density decay within 20 minutes (Figure S5b2), indicating CuO alone did not provide sufficient protection for the Cu₂O photocathode. The reason for the observed photocurrent density decay was presumed to be because the CuO Fermi level was not energetic enough for electrons to rapidly transfer to the aqueous electrolyte solution, resulting in the self-reduction of CuO to Cu₂O.

To further improve the photoelectrochemical performance of this system, we examined synergistic effects and cocatalytic surface modification. This is because surface modification with cocatalyst not only effectively promotes water splitting, but also stabilizes the photoelectrode.\(^5\) In photocatalytic systems, it is well known that employing inexpensive, earth abundant cocatalysts e.g. Ni reduces costs, thereby facilitating large scale production. In this study, cocatalytic Ni nanoparticles were used to decorate the Cu₂O/CuO photocathode fabricated at 450 ˚C. Ni nanoparticles prepared by a facile hydrothermal method were dissolved in an alcoholic solution, and deposited on Cu₂O/CuO by spin-coating. The optimum amount of Ni nanoparticles for stable and improved PEC water splitting can be achieved by controlling the number of cycles. Here, the Cu₂O/CuO-450 photocathode decorated with Ni is named as Cu₂O/CuO/Ni-x, where x refers to number of deposition cycle, and the Cu₂O/CuO-450 photocathode is named as bare Cu₂O/CuO or sometimes simply Cu₂O/CuO.

Five Ni modified Cu₂O/CuO photoelectrodes were prepared by repeating the spin-coating deposition cycles with 0.07 M alcoholic solution of nickel nanoparticles. As shown in Figure 7(b), under chopped illumination, the Cu₂O/CuO heterojunction decorated with optimum Ni deposition (Cu₂O/CuO/Ni-3) provided the maximum photocurrent density, –4.3 mA/cm\(^2\) at 0 V vs. RHE, i.e. more than two times higher than the photocurrent density of the undecorated
Cu$_2$O/CuO photoelectrode (–2.1 mA/cm2, Figure 7(a)). The promotional effect is more pronounced in the higher potential region than in the lower potential region. Specifically, the photocurrent densities obtained at higher biases for example in the applied potential range of 0.2–0.4 V vs. RHE are 0.95–0.24 mA/cm2 and 3.2–1.2 mA/cm2 for bare Cu$_2$O/CuO and Cu$_2$O/CuO/Ni-3 photocathode respectively. This means that the Cu$_2$O/CuO, decorated with Ni (Cu$_2$O/CuO/Ni-3), shows a photocurrent increase of ca 330–500% with respect to the undecorated Cu$_2$O/CuO photocathode. The observed small anodic currents at more positive potentials (from +0.42 V vs. RHE onwards in Figure 7(b)) during light off cycles are presumably due to the oxidation of hydrogen during the illuminated phase of light chopping. It is also noted that the Cu$_2$O/CuO/Ni-3 photocathode showed a photocurrent onset potential of about 0.61 V vs RHE, which was slightly more positive than the undecorated Cu$_2$O/CuO (0.55 V vs. RHE) photocathode. The observed shift of the photocurrent onset potential can be attributed to the presence of Ni cocatalyst. This is advantageous in lessening the voltage requirement from the photoanodes and significantly improves the water splitting efficiency. It seems convincing that the enhancement of photocurrent density is due to the synergistic effect of CuO and the incorporated Ni which serves as an efficient cocatalyst for Cu$_2$O/CuO photocathodes creating a fast transfer of the photogenerated electron from the Cu$_2$O/CuO surface to the aqueous electrolyte solution, while stabilizing the CuO layer.

Figures 7(c) and (d) show chronoamperometric features related to the photocatalytic stability of the bare Cu$_2$O/CuO and Cu$_2$O/CuO/Ni-3 photocathodes under illumination at 0 V vs. RHE in light on/off cycles respectively. As can be seen in Figure 7(c), the bare Cu$_2$O/CuO showed the maximum photocurrent density (–2.1 mA/cm2) for the first few seconds with the response gradually decreasing under chopped illumination at 0 V vs. RHE for 20 minutes. However, depositing an optimum layer of Ni on the Cu$_2$O/CuO photocathode surface (Cu$_2$O/CuO/Ni-3) revealed a noticeable increase in photocurrent density and photostability (Figure 7(d)). 87.7% initial photocurrent density of Cu$_2$O/CuO/Ni-3 remains after 20 minutes of standard solar irradiation at 0 V vs. RHE, which is more than 1.5 times compared to the bare Cu$_2$O/CuO (53.6%), suggesting that surface modification with Ni not only effectively promotes water splitting but also stabilizes the photoelectrode. As shown in Figure S6 and Table 1, the photocurrent density as well as photostability gradually increased as we successively deposited
Ni on Cu$_2$O/CuO (up to 3 deposition cycles): we found that the Cu$_2$O/CuO/Ni-3 heterojunction had the highest photocurrent density (−4.3 mA/cm2) while effectively retaining its photostability. However, the PEC performance of the photocathode decreases when the electrode is decorated beyond 3 cycles of Ni deposition. The observed decrease in photocurrent density was probably due to the blockage of visible light by the Ni layer. As seen in Table 1, the heterostructured Cu$_2$O/CuO decorated with Ni showed a better PEC performance than the bare or decorated Cu$_2$O, or the CuO photocathodes, thus demonstrating the potential advantage of fabricating heterostructured Cu$_2$O/CuO for enhanced light absorption while improving charge carrier transport behavior. Table 1 summarizes the PEC performance using the different photocathodes. The designated photocathode for hydrogen evolution shows remarkable initial photocurrent density of −4.3 mA/cm2 at 0 V vs. RHE under AM 1.5 illumination, which is higher than the Cu$_2$O in the absence of precious co-catalysts. The previous works18,24 to generate hydrogen from water using Cu$_2$O photocathode protected with layer by layer deposited inorganic oxides and overcoated with RuO$_2$ and Pt cocatalysts have shown excellent initial photocurrent density of −5.0 mA/cm2 and −7.6 mA/cm2 at 0 V vs. RHE, respectively. The −7.6 mA/cm2 is the highest value reported in literature. However, the practical application of both systems is severely inflicted by the complexity of the electrodes fabrication as well as the high cost and the scarcity of noble metals. On the contrary, this study demonstrates a comparative performance with Cu$_2$O/CuO heterostructure decorated by non-precious cocatalyst (Ni) prepared by a facile, scalable, template free, cheap, and environmentally friendly process.
Figure 7. PEC performances and stability measurement of (a and c) Cu₂O/CuO and (b and d) Cu₂O/CuO/Ni-3.

Table 1. Summary of PEC performance for the different photocathodes examined

<table>
<thead>
<tr>
<th>Sample</th>
<th>Annealing condition</th>
<th>Deposition cycle</th>
<th>Photocurrent density (mA/cm²)</th>
<th>Stability % (J/J₀) after 20 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu₂O/CuO–350</td>
<td>350 °C for 4 hr</td>
<td>–</td>
<td>1.1</td>
<td>19.1</td>
</tr>
<tr>
<td>Cu₂O/CuO–450</td>
<td>450 °C for 4 hr</td>
<td>–</td>
<td>2.1</td>
<td>53.6</td>
</tr>
<tr>
<td>Cu₂O/CuO–550</td>
<td>550 °C for 4 hr</td>
<td>–</td>
<td>1.9</td>
<td>24.7</td>
</tr>
<tr>
<td>Cu₂O/CuO–650</td>
<td>650 °C for 4 hr</td>
<td>–</td>
<td>1.8</td>
<td>8.3</td>
</tr>
</tbody>
</table>
To confirm whether the generated cathodic photocurrent density is completely due to water reduction, or due to water reduction together with reduction of the photocathode itself (Cu$_2$O/CuO), we determined the faradaic efficiency of H$_2$ production for each photocathode. To evaluate the faradaic efficiency of the photocathodes, the generated H$_2$ was quantified using a gas chromatograph and the corresponding charge, Q$_{H2}$, was compared to the total charge, Q$_{tot}$, obtained by integration of the photocurrent density (Figure S7a), measured at 0 V vs. RHE under AM 1.5 illumination. After passing 2.7 C (Figure S7a) through the Cu$_2$O/CuO/Ni-3 photocathode at 0 V vs. RHE under AM 1.5 illumination, 0.0118 mmole H$_2$ was detected, corresponding to a faradic efficiency of 84%. This faradic efficiency is lower than unit, revealing that the current due to photocatalytic hydrogen evolution might include a contribution from the reduction of the protective layer, i.e. CuO, to Cu$_2$O. However, detailed characterization (SEM, XRD, XPS and XANES in the next section) of the photocathode after photoelectrochemical tests for 20 minutes at 0 V vs. RHE under AM 1.5 illumination reveals almost no corrosion of the electrode. Thus, the H$_2$ evolution efficiency was less than 100%, possibly due to unwanted
backward reactions between H₂ and O₂, or dissolution in the electrolyte solution. We also determined the faradaic efficiency of a bare Cu₂O/CuO photocathode under the same conditions: the bare Cu₂O/CuO photocathode evolved four orders less H₂, i.e. 0.0035 mmole, after passing 1.2 C, equivalent to a faradaic efficiency of 57%; thereby indicating that the photoreduction of the protective layer is more serious with bare photocathodes. In spite of these limitations, the present study shows that the Cu₂O/CuO photocathode decorated with nickel has a better PEC performance with suppression of photocorrosion property compared to the bare Cu₂O/CuO photocathode.

To quantitatively evaluate the efficiency of PEC water splitting in terms of applied bias photon-to-current efficiency (ABPE), photocurrent density versus applied potential (J-V) curves of Cu₂O/CuO and Cu₂O/CuO/Ni-3 photocathodes were measured in a two electrode configuration in the dark and under simulated one sun illumination (Figure S7b). The features of observed linear sweep voltammetry curves, measured in two electrode systems, were similar to LSV curves measured in three electrode systems shown in Figure 7. The photoconversion efficiency (ABPE) is calculated using equation 5:

$$ABPE = \left[\frac{|J_{ph}| (mA/cm^2) \times (1.23 - |V_b|) (V)}{P_{total} (mW/cm^2)} \right]_{AM 1.5G},$$ (5)

where J_{ph} is the photocurrent density obtained under an applied bias V_b between the working and the counter electrodes, 1.23 V is the standard water splitting reaction potential and P_{total} is the incident light intensity (which is 100 mW/cm²). As shown in Figure S7b, the photocatalytic activity of the bare Cu₂O/CuO and Cu₂O/CuO/Ni-3 photocathodes was almost negligible when the bias was zero and under dark conditions using a potential scan from 0.10 V to –0.61 V vs. Pt electrode. This indicates that little hydrogen was generated in the absence of solar energy; however, under simulated one sun illumination an enhanced cathodic photocurrent density was observed over the entire potential range, confirming the capability of the photocathode to produce hydrogen. Looking into a potential region for example at –0.4 V and at –0.3 V vs. Pt electrode, the bare Cu₂O/CuO photocathode revealed conversion efficiencies of 0.58% and 0.53% respectively. More interestingly, the Cu₂O/CuO/Ni-3 photocathode revealed corresponding
conversion efficiencies of 2.71% and 2.0% at the same applied bias (−0.4 V and −0.3 V) – indicating a greater than 460% and 370% increase in efficiency with respect to the Cu$_2$O/CuO photocathode. These improvements are attributed to efficient surface charge transfer by Cu$_2$O/CuO/Ni-3, which has the maximum photocurrent densities at more positive potentials. Surface modification of Cu$_2$O/CuO by Ni promotes the transfer of photoinduced charge carriers (electrons) from the Cu$_2$O/CuO surface to the aqueous solution, resulting in a facilitated hydrogen evolution reaction by lowering the hydrogen evolution reaction overpotential. Increased maximum photocurrent density and an anodic shift in onset potential significantly enhanced the photoconversion efficiency of the Cu$_2$O/CuO/Ni-3 photocathode.

To understand the electron transfer activity at the photocathodes/solution interface, we compared electrochemical impedance spectra (EIS) of a photocathode decorated with Ni nanoparticles (Cu$_2$O/CuO/Ni-3) and a bare photocathode (Cu$_2$O/CuO) under simulated one sun illumination and dark conditions (Figure 8) at a potential of 0 V vs. RHE. The semicircular feature of the Nyquist plots (Figure 8) at high frequencies is the defining characteristic of the charge transfer process where the diameter of the semicircle is equal to the charge transfer resistance (R$_{ct}$). As shown in Figure 8, the appearance of semicircular features of EIS measurement both in dark and under illumination was observed, suggesting charge transfer resistance controlling the kinetics at the electrode interface. For both electrodes (Cu$_2$O/CuO and Cu$_2$O/CuO/Ni-3), the arc radii under illumination were much smaller than that in the dark, which is due to the increased electron conductivity of the electrodes when irradiated. The incorporation of Ni as co-catalyst (Cu$_2$O/CuO/Ni-3) caused a significant decrease in the radius of the arc compared with bare Cu$_2$O/CuO under irradiation, suggesting that the deposition of Ni on the Cu$_2$O/CuO surface facilitates the transfer of photo-induced electrons from the Cu$_2$O/CuO surface to the electrolyte solution.
Figure 8. Nyquist plots of Cu$_2$O/CuO and Cu$_2$O/CuO/Ni-3 based photocathodes both in dark and under AM 1.5 illumination in 1.0 M Na$_2$SO$_4$ electrolyte buffered at pH 5.0.

We also used SEM, XRD, XPS and XANES to characterize the composition of the photocathodes after photoelectrochemical test for 20 minutes at 0 V vs. RHE under AM 1.5 illumination. Figure 9 compares the morphology of bare Cu$_2$O/CuO and Cu$_2$O/CuO/Ni-3 before and after the stability test. After 20 minutes illumination the morphology of the Cu$_2$O/CuO/Ni-3 (Figure 9(b)) did not change significantly. A slightly changed distribution of nickel nanoparticles in some areas was observed after 20 minutes, probably due to detached outermost nickel cocatalyst being incorporated into the electrolyte solution. However, as can be seen from the SEM image in Figure 9(d), the bare Cu$_2$O/CuO electrode experienced a significant surface change resulting from the formation of a black sheet like film over the inner film, possibly due to corrosion of the outer CuO layer that directly contacts with the electrolyte solution.
Figure 9. FE SEM images of (a) Cu$_2$O/CuO/Ni-3 before the PEC test; (b) Cu$_2$O/CuO/Ni-3 after the PEC test; (c) Cu$_2$O/CuO before the PEC test and (d) Cu$_2$O/CuO after PEC test for 20 minutes.

Similarly, we also carried out XPS measurements of the Cu$_2$O/CuO/Ni-3 and Cu$_2$O/CuO photocathodes after stability testing. Compared with the XPS results in Figure 5 (before PEC test), the XPS result obtained from the Cu$_2$O/CuO/Ni-3 photocathode (Figure 10(a)) after the stability test, i.e. 20 mins illumination at 0 V vs. versus RHE, showed the presence of binding energy peaks related to Cu 2p3/2 and Cu 2p1/2 of Cu$_2$O and CuO, thereby indicating the preservation of the protecting layer CuO. However, the Cu 2p XPS spectrum of the Cu$_2$O/CuO photocathode after stability test in Figure 10(b) revealed the absence of Cu 2p3/2 and Cu 2p1/2 peaks, thereby indicating corrosion of the CuO protecting layer. Similar information was also obtained from XRD data (Figures S8a and b), demonstrating that the deposition of Ni on Cu$_2$O/CuO not only enhanced the photocurrent density for the hydrogen evolution reaction but also appreciably preserved the photocatalytic stability of the CuO protective layer. Further information about nickel deposition is presented in the supporting information.
To investigate the chemical composition of the photocathodes, XANES and EXAFS were taken for Cu$_2$O/CuO and Cu$_2$O/CuO/Ni-3 samples both before and after the PEC test, see Figure 11(a). The enlarged portion of the area (in Figure 11(a)) from 8977 to 8989 eV is shown in Figure 11(b), which reveals that the XANES spectra of Cu$_2$O/CuO and Cu$_2$O/CuO/Ni before the PEC test are almost the same. However, after the PEC test the edge position of Cu$_2$O/CuO is shifted 0.8 eV to a lower position, indicating the average oxidation state of Cu species is reduced: this reduction was found to be significantly suppressed after incorporating nickel. The nickel decorated photocathode (Cu$_2$O/CuO/Ni-3) showed a relatively smaller shift in edge position (0.3 eV) after the PEC test (in the direction shown in Figure 11(b)), indicating the better stability of the heterojunction. This is in good agreement with our XRD and XPS data. We further checked the Ni K-edge XANES (Figures S11a and b) and found that the oxidation state of Ni is also slightly reduced after PEC measurement, indicating that the Ni can protect the CuO to maintain the heterojunction (see further information in the supporting information).

In agreement with the XANES spectra, the Fourier transform magnitudes or κ^2-weighted Cu-K-edge EXAFS spectra (shown in Figure 11(c), (d)) of Cu$_2$O/CuO/Ni-3 both before and after the PEC test are similar with two main peaks below 3.5 Å. A broad intense peak at 2.4 Å (Figure 11(c)) matches well with Cu–Cu bonds, whereas the second peak centered at about 1.6 Å is due to the Cu–O bonds of Cu$_2$O, consistent with our previous reports. As seen Figure 11(c), the
nickel decorated Cu_2O/CuO photocathode (Cu_2O/CuO/Ni-3) showed stable structure feature after the PEC test, however the intensity of the Cu–Cu bond in Cu_2O/CuO after the PEC test increases significantly compared to its initial state, indicating an increase in the crystalline size of Cu_2O, probably due to the reduction of the CuO layer. A similar feature is observed in Figure 11(d), i.e. after the PEC test, the oscillation change is significant in bare Cu_2O/CuO (blue curve in Figure 11(d)) indicating a bigger crystal size; however only a slight change was observed in nickel modified Cu_2O/CuO, confirming its greater stability compared to bare Cu_2O/CuO. The results displayed here are consistent with the XRD results.

Figure 11. (a) Cu-K-edge XANES spectra of Cu_2O/CuO and Cu_2O/CuO/Ni-3 both before and after PEC; (b) enlargement of selected portion of curve a and (c, d) Cu-K-edge EXAFS spectra of Cu_2O/CuO and Cu_2O/CuO/Ni-3 both before and after PEC in r and κ- space respective.
Band alignment and charge transfer between Cu$_2$O and CuO, were studied using Tauc and Mott–Schottky (MS) plot studies on pure Cu$_2$O and CuO samples. Figure S14(a) shows the Tauc plots of pure Cu$_2$O and CuO, obtained from UV-vis spectra based on Tauc equation, which reveal band gaps of 2.01 and 1.54 eV for Cu$_2$O and CuO respectively. These values are in good agreement with existing literature reports. Thus, to illustrate the band alignments of Cu$_2$O and CuO together with Tauc plots, we determined the flat band potential and hole concentration (N$_A$) of pure Cu$_2$O and pure CuO by performing Mott–Schottky measurements. The Mott–Schottky plot relates the inverse of the square capacitance with potential at a fixed frequency of 1 kHz, see equation below:

$$\frac{1}{C^2} = \frac{2}{\varepsilon_0 \varepsilon e N_A A^2} (V - V_{fb} - \frac{k_B T}{e})$$

where C and ε_0 are the space-charge capacitance of the semiconductor and the permittivity in vacuum respectively, ε is the dielectric constant of Cu$_2$O (taken as 7.6) and CuO (taken as 10.26), e is the electronic charge, V_{fb} is the flat-band potential, V is the applied potential, N_A is the number density of acceptors in Cu$_2$O or CuO, T is the absolute temperature, A is area of the electrode and k_B is the Boltzmann constant. The flat band potential (V_{fb}) is determined (using equation 7 below) after the small thermal correction ($k_B T/e$) of the intercept (V_o) which is estimated from extrapolating the linear part of the curve to $1/C^2$ equal to zero on the potential axis.

$$V_{fb} = V_o + \frac{k_B T}{e}$$

The carrier density (N_A), was calculated from the slopes of the Mott-Schottky plots:

$$N_A = \frac{2}{\varepsilon_0 \varepsilon S e A^2}$$

Figure S14(b) and (c) show the Mott–Schottky plots for the Cu$_2$O and CuO in 1.0 M Na$_2$SO$_4$ electrolyte (pH 5). Figures S14(b) and (c), show that besides the p-type behavior (negative slopes of $1/C^2$ vs potential linear plots), the Mott–Schottky measurement gives the flat-band potential of 0.63 and 0.74 V vs. RHE for Cu$_2$O and CuO respectively, while the hole concentration of N_A for...
Cu$_2$O and CuO was 3.4×10^{17} cm$^{-3}$ and 4.1×10^{18} cm$^{-3}$ respectively. More than ten times increase in doping concentration (N_A) in CuO, resulted in a reduced charge depletion layer, implying incorporation of the CuO layer in the Cu$_2$O/CuO heterojunction played a role in suppressing electron/hole recombination within the charge depletion region.32 Since the flatband potentials could be taken as a reasonable approximation to the valence band (VB) edges (≤ 100 mV) for the p-type conductors,$^{44-46}$ one can evaluate the conduction band edge position by using the respective optical bandgaps of Cu$_2$O and CuO.

Based on the above results, a possible PEC water splitting mechanism is proposed in Scheme 3. The relatively poor photocurrent density and photostability of the Cu$_2$O film was ascribed to poor crystallinity and slow charge carrier transfer. Compared to Cu$_2$O, the Cu$_2$O/CuO heterojunction shows not only enhanced photocurrent density but also improved photostability, due to enhanced crystallinity and synergistic effects. Due to their appropriate band alignment, the photogenerated electrons on Cu$_2$O, transfer to the conduction band of CuO and the hole from CuO transfers to the valence band of Cu$_2$O. Therefore, the Cu$_2$O/CuO heterojunction enhances the light harvesting and charge separation efficiency (noted as medium transfer), resulting in an improved PEC water splitting performance. Further improvements in photocurrent density and photostability were made by decorating the Cu$_2$O/CuO photocathode with nickel, resulting in the fast transfer of photoinduced charge carriers (electrons) from the Cu$_2$O/CuO surface to the aqueous solution and surface stabilization. This is probably because, Ni has no band gap and exhibits a high electrocatalytic activity44 that guarantees a very low HER overpotential on Ni. Moreover, Ni has greater tendency to shift its Fermi level to a more negative potential close to the CB level of CuO, due to the transfer of electrons into the Ni cocatalyst.64 As a result, accumulated electrons on metal particles can be transferred to protons adsorbed on the surface to further reduce the protons to hydrogen molecules, while the migrated photo-generated holes at the valence band of CuO to valence band of Cu$_2$O will be transported to the counter electrode (anode) to facilitate oxygen evolution. Thus, the photogenerated electron–hole pairs are effectively separated, which is crucial for the enhancement of PEC activity. We believe that the synergistic effects induced by forming Cu$_2$O/CuO heterojunction and incorporation of Ni cocatalyst greatly accelerate electron transfer and effectively retard the reduction of CuO by photo-generated electrons.
Scheme 3. (a) Proposed mechanism of PEC water splitting and (b) the energy band structure of Cu$_2$O, Cu$_2$O/CuO and Cu$_2$O/CuO/Ni.
Conclusions

In summary, we have developed a highly efficient and promising Cu$_2$O/CuO photocathode decorated with nickel for water reduction using a simple, inexpensive and facile method, comprising electrolysis deposition, thermal annealing in air and spin-coating processes. The highest photocurrent density and stability (−2.1 mA/cm2 and 53% respectively) was recorded using a bare Cu$_2$O/CuO heterojunction fabricated at 450 °C for 4 hour, due to its improved crystalline quality and the synergistic effects conferred by the CuO layer. The photocurrent density improved to −4.3 mA/cm2 at 0 V vs. RHE when using the Cu$_2$O/CuO heterojunction decorated with Ni cocatalyst. The Cu$_2$O/CuO photocathode decorated with nickel maintained ~87.7% of the initial photocurrent density after 20 minutes illumination at 0 V vs. RHE, giving the best resistance to photocorrosion when compared to the bare Cu$_2$O/CuO photocathode under the same condition. More intriguingly, the Cu$_2$O/CuO photocathode decorated with nickel reached a maximum solar conversion efficiency of 2.71% at an applied potential of −0.4 V vs. Pt which accounts to a greater than 460% efficiency improvement with respect to the bare Cu$_2$O/CuO (0.58%) at the same applied bias. To the best of our knowledge, this is first and best report of stability, photocurrent density and solar energy conversion efficiency obtained by a Cu$_2$O/CuO photocathode decorated with Ni in PEC water splitting. As evidenced by XRD, SEM, XPS, XAS and EXAFS, the improved PEC performance is attributed to preservation of the protective layer against photocorrosion, due to surface activation of the heterostructured Cu$_2$O/CuO with nickel nanoparticles. The work in this study reveals a promising strategy for inhibiting photocorrosion problems associated with unstable semiconductors by incorporating an optimum protective layer and a surface decorated with cocatalyst.

Acknowledgments

The financial supports from the Ministry of Science and Technology (MoST)(103-3113-E-011 - 001, 101-3113-E-011-002, 101-2923-E-011-001-MY3, 100-2221-E-011-105-MY3), and the Top University Projects of Ministry of Education (MOE) (100H451401), as well as the facilities supports from the National Synchrotron Radiation Research Center (NSRRC) and National Taiwan University of Science and Technology (NTUST) are acknowledged.
References

19. L. Hu, Y. Huang, F. Zhang and Q. Chen, CuO/Cu$_2$O composite hollow polyhedrons fabricated from metal-organic framework templates for lithium-ion battery anodes with a long cycling life *Nanoscale*, 2013, 5, 4186-4190.
32. Q. Huang, F. Kang, H. Liu, Q. Li and X. Xiao, Highly aligned $\text{Cu}_2\text{O}/\text{CuO}/\text{TiO}_2$ core/shell nanowire arrays as photocathodes for water photoelectrolysiss J. Mater. Chem. A, 2013, 1, 2418-2425.
42. P. Wang, Y. H. Ng and R. Amal, Embedment of anodized p-type Cu_2O thin films with CuO nanowires for improvement in photoelectrochemical stabilitys Nanoscale, 2013, 5, 2952-2958.

coated codoped (Sn, Zr) [small alpha]-\(\text{Fe}_2\text{O}_3\) photoanodes *J. Mater. Chem. A*, 2015, 3, 5949-5961.

The energy band structure of Cu2O, Cu2O/CuO and Cu2O/CuO/Ni