This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Preparation and properties of thermostable well-functionalized graphene oxide/polyimide composite films with high dielectric constant, low dielectric loss and high strength via in situ polymerization

Xinliang Fanga, Xiaoyun Liua, Zhong-Kai Cuib, Jun Qiana, Jijia Pana, Xinxin Lia, Qixin Zhuanga

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX

DOI: 10.1039/b000000x

This study proposes a novel and facile method to synthesize high-quality NH\textsubscript{2}-functionalized and carboxyl-functionalized graphene oxide (PPD-CFGO)/polyimide (PI) composite films with high dielectric constant (\(\varepsilon\)), low dielectric loss, high-temperature resistance and outstanding mechanical properties by in situ polymerization. In addition to partial carboxyl groups located at the edges, the ample hydroxyl and epoxy groups bonded on the basal plane of graphene sheets were exploited to covalently bond to the amines. GO was modified by oxalic acid to obtain carboxyl-functionalized GO (CFG0) before amidation. NH\textsubscript{2}-functionalized CFGO (PPD-CFGO), dispersing well in dimethylacetamide (DMAc), was the initial platform for polymer grafting to improve CFGO dispersion in the polymer matrix. Partially reduced graphene nanosheets are formed during the imidization process. The PPD-CFGO/PI composite films exhibit high tensile strength (up to 848 MPa) and Young’s modulus (18.5 GPa). The thermogravimetric analyses results indicate that the PPD-CFGO/PI composites have good thermal stability below 500 °C. The dielectric constant increases up to 36.9 with increasing amount of PPD-CFGO, higher than that of the pure PI polymer by a factor of 12.5, while the dielectric loss is only 0.0075 and the breakdown strength still remains at a high level (132.5±9.3 MV/m).

Introduction

With the development of solar and wind power, energy storage technologies are essential for efficient utilization of electricity generated from these renewable sources.1, 2 Compared to other energy storage technologies, capacitors possess the intrinsic advantage of high power density due to their fast charge and discharge capability. Advances in capacitors are highly dependent on the development of dielectric materials with high permittivity (\(\varepsilon\)).3 Polymers are more applicable than inorganic ceramics in higher electric fields.4 However, further development of polymer dielectrics are challenged by high operating temperature. For instance, the limit of working temperature of biaxially oriented polypropylene polymer is 105 °C.5 Therefore, high-temperature resistance materials with high dielectric constants are desirable for applications at high temperature. Polyimides (PIs) are considered to be one of the most important high performance materials due to their superior mechanical properties, high glass transition temperature, excellent thermal stability and good resistance to solvents.6-8 PI starts to decompose at approximately 600 °C. Thus, PI is suitable to be employed in the dielectric field as a high-temperature resistant polymer matrix.

Usually there are two approaches for increasing the dielectric constant of the polymer. One is introducing high-k ceramic fillers, such as nano-TiO\textsubscript{2},9 Al\textsubscript{2}O\textsubscript{3},10 BaTiO\textsubscript{3},11-13 and CaCu\textsubscript{3}TiO\textsubscript{12},14, 15 into the polyimide matrix. However, to get a higher dielectric constant, the mechanical properties and the process ability of composite films will be dramatically reduced, owing to the too much introduction of ceramic fillers. The other approach for raising the \(\varepsilon\) value is to incorporate electrically conductive particles into polymers to form percolated composites based on percolation theory.16, 17 This strategy involves the creation of the so-called microcapacitor networks in the matrix at the percolation threshold to gain a distinctly enhanced \(\varepsilon\) \(_p\) value.18 Chen et al.19 added multi-wall carbon nanotubes (MWNT) into polyimide to obtain MWNT/PI composite films with high dielectric constant (31.3) at a relatively high percolation threshold (\(m_p = 10\%\)).

Graphene, a uniquely atomically thick 2D nanocarbon material, has attracted considerable attentions due to its extraordinary thermal, electric and mechanical properties.20-23 A lot of relevant studies have been done based on graphene in the matrix of polyaniline,24 poly(vinylidene fluoride),25 Carboxylated nitrile rubber,27 etc. Moreover, the temperature resistance and mechanical properties of the graphene/polymer composites remain the same or even much better, instead of getting worse. Wang et al.28 and Liao et al.29 reported graphene oxide/polyimide composites with low dielectric constant, high-temperature resistance and outstanding mechanical properties. Luong et al.30 also reported graphene/polyimide composites with good mechanical and electrical properties. And Yang et al.31 reported poly(vinylidenefluoride-co-hexafluoro propylene) based nanocomposites filled with fluoro-polymer functionalized RGO.

In order to reinforce graphene/polymer nanocomposites, two basic problems must be considered: (1) dispersion of graphene in...
the polymeric matrix, and (2) the interfacial interactions between graphene and polymer. However, it is hard to gain a good dispersion of graphene in polymeric matrices. Graphene-based materials, such as graphene nanoplatelets (GNPs), graphene nanosheets (GNSs) and graphene oxide (GO), exhibit great potential for improving the properties of polymers due to their extremely high aspect ratio, high conductivity, unique graphitized planar structure and low manufacturing cost.32-34 As a result of its unique chemical structures, GO shows the widest potential for further functionalization among those graphene-based materials.35, 36

In addition to partial carboxyl groups located at the edges, heavily oxygenated graphene oxide sheets possess abundant hydroxyl and epoxy groups bonded on the basal planes. However, most previous studies on graphene-based composites only utilized the edged carboxyl groups to bond amino-groups, leaving plenty of oxygenated groups intact,37, 38 which means that polymer chains are attached at the edges rather than being fixed to the basal planes. In order to make full use of oxygen functional groups, we transformed the hydroxyl and epoxy groups to carboxyl groups by using concentrated hydrobromic acid (HBr) and oxalic acid (HOOC·COOH) and obtained carboxyl-functionalized graphene oxide (CFGO).39 Then, CFGO was modified by p-phenylenediamine (PPD) to gain NH$_2$-functionalized CFGO (PPD-CFGO) with N,N'-dicyclohexylcarbodiimide (DCC) as the catalyst.23 The ultimate functionalized graphene nanoparticles were introduced into the polymeric matrix to form PPD-CFGO/PI composites by \textit{in situ} polymerization. Since the polymer chains are fixed to the basal planes, graphene oxide sheets are separated effectively to prevent irreversible agglomerations, which is beneficial for the dispersion and formation of microcapacitor networks in the matrix, resulting in good dielectric and mechanical properties. To the best of our knowledge, this is the first report of graphene/polyimide composites with high dielectric constant (ε), low dielectric loss, high-temperature resistance and outstanding mechanical properties at a low percolation threshold.

Experimental section

Materials

Graphite powder was purchased from Alfa Aesar (Massachusetts, USA). p-Phenylenediamine (PPD) and 4,4′-diaminodiphenyl ether (ODA) were obtained from Aladdin (Shanghai, China). Reagents including sodium nitrate (NaNO$_3$), sulfuric acid (H$_2$SO$_4$), potassium permanganate (K$_2$MnO$_4$), hydrogen peroxide (H$_2$O$_2$), hydrobromic acid (HBr), oxalic acid, dimethylacetamide (DMAC), N,N-dimethylformamide (DMF) and N,N′-dicyclohexylcarbodiimide (DCC), were supplied by Aldrich Chemical Company (Milwaukee, USA). DMAC was dried with calcium hydride (CaH$_2$) prior to distillation. Other reagents were of high purity and used as received.

Synthesis of carboxyl-functionalized graphene oxide (CFGO)

0.075 g GO, prepared according to the process reported by Hummers and Offeman,40 was dispersed in 30 mL de-ionized water under ultrasonication for 0.5 h. 0.04 mol HBr was added and vigorously stirred for 24 h. Then, 1.50 g oxalic acid was added and stirred for another 4 h. The dispersion was filtrated and dried at 50 °C under vacuum for 24 h.

Preparation of PPD-GO and PPD-CFGO

0.05 g GO or CFGO was dispersed in 20 mL DMAC by ultrasonication for 0.5 h before adding PPD (0.05 g, 0.46 mmol) and DCC (0.05 g, 24 mmol). The dispersed solution was stirred for 24 h under nitrogen purge at room temperature. The mixture was filtrated and washed with DMF and ethanol. The sample of PPD-GO or PPD-CFGO was obtained after drying at 60 °C in a vacuum oven for 24 h.

Preparation of PPD-GO/PI films \textit{via in situ} polymerization process

10.45 mg PPD-CFGO was dispersed in anhydrous DMAC (20 mL), using tip sonication (0.5 h), leading to a stable dispersed solution. Then ODA (1.00 g, 5 mmol) was added and the mixture was stirred at room temperature under nitrogen purge. When ODA was completely dissolved in the DMAC, PMDA (1.09 g, 5 mmol) was divided equally into four batches and was added to the mixed solution by batch every 1 h. Once PDMA was completely dissolved in the DMAC, the solutions were stirred for 24 h and then poured into a glass dish. After natural drying for 48 h, the sample was put into an air-circulated oven at 100, 200 and 300 °C for 2 h, respectively and 400 °C for 5 min. Finally, PPD-CFGO/PI composite films containing 0.5 wt%, 1 wt%, 2 wt%, 3 wt%, 4 wt% and 5 wt% of PPD-CFGO were prepared.

Characterization

The thickness of the GO and PPD-CFGO nanosheets was measured by atomic force microscopy (AFM, NanoScope IIIa).
Results and discussion

In Fig. 2, the absorption band at 1724.4 cm\(^{-1}\) is ascribed to the C=O stretching of the –COOH. The peak at 1060.3 cm\(^{-1}\) is attributed to the C=O stretching of the C=O–C–C groups.\(^{41,42}\) Compared to GO (PPD-GO), CFGO (PPD-CFGO) has weaker C=O stretching absorption, due to a ring opening reaction of epoxy groups catalyzed by HBr, while the intensity of the –OH stretching absorption (3412.3 cm\(^{-1}\)) remains constant, indicating the conversion from epoxy to hydroxyl groups. The enhanced C=O absorption of the sample confirms the successful carboxylation of the GO (PPD-GO) and oxalic acid via the esterification reaction. The C=O absorption of PPD-GO is obviously weaker than that of GO while the C=O absorption of PPD-GO is similar, implying that p-phenylenediamine reacted with –COOH but not C=O–C. The characteristic absorption peaks at 1507.8 cm\(^{-1}\) is attributed to secondary amine (–NH–) stretching. The characteristic peak of the C-N stretching in the amide of PPD-GO and PPD-CFGO is found at 1242.2 cm\(^{-1}\). The –NH- and C-N stretching absorption of PPD-CFGO are stronger than that of PPD-GO, suggesting that more –COOH groups on CFGO are available to react with –NH2 groups.

The GO XRD patterns exhibit a peak centered at 11.00° shown in Fig. 3, corresponding to an interlayer spacing of 0.803 nm, larger than that of graphite (26.34°, 0.338 nm) due to the introduction of polar functional groups on carbon sheets.\(^{43}\) After the esterification, the interlayer spacing of the resulting CFGO (10.82°, 0.817 nm) becomes greater than that of GO due to the introduction of -CO-COOH groups on the graphene sheets. The diffraction peak of PPD-GO and PPD-CFGO appears at 8.97° (0.985 nm) and 8.71° (1.014 nm), respectively, larger than that of GO and CFGO due to the introduction of p-phenylenediamine. The XRD patterns suggest that PPD-modification process provided increased interlayer distance and greater structural heterogeneity.\(^{44}\)

GO and PPD-CFGO samples are analyzed by XPS. The XPS survey scans of GO and PPD-CFGO are shown in Fig. 4(c). After functionalization, PPD-CFGO shows a significant increase

Fig. 2 FTIR spectra of GO, CFGO, PPD-GO and PPD-CFGO.

Fig. 3 X-Ray diffraction patterns of graphite (G), GO, CFGO, PPD-GO and PPD-CFGO.

Fig. 4 High resolution C1s XPS spectrum of (a) GO and (b) PPD-CFGO; (c) XPS survey scans of GO and PPD-CFGO.
in the N1s peak intensity compared to that of GO. This increase is due to the grafted PPD compounds, confirming the success of the amine modification. Moreover, the C1s XPS spectrum of GO (a) shows three different peaks at 284.6, 286.6 and 287.7 eV, corresponding to the C–C bonds in the aromatic rings, C-O groups, and C=O groups, respectively. After amine modification, the C1s XPS spectrum of PPD-CFGO reveals a significant additional peaks at 285.8 eV, originating from C–N bonds.

In Fig. 5, AFM topography indicates the thickness of the GO and PPD-CFGO is about 0.904 nm and 1.192 nm. The lateral dimensions of GO and CFGO are around 1 µm. In Fig. 6, ultrathin sheets with wrinkled and silk-like morphology are observed for GO and CFGO. For the PPD-CFGO sample, crumbled and encapsulated morphologies are observed, totally different from that of GO and CFGO, suggesting that the surface properties of the GO sheets are further altered during PPD-modification process, extremely likely PPD monomers covalently bonded to the CFGO sheets. After surface modification, the dispersion of PPD-CFGO in DMAc is much better than that of GO and CFGO, and GO/DMAc (0.2 mg/mL), CFGO/DMAc (1 mg/mL) and PPD-CFGO/DMAc (4 mg/mL) solutions are shown in Fig. 6 (insets).

In the spectrum of pristine graphite (Fig. 7), a prominent G peak at 1575 cm⁻¹ corresponding to an E2g mode of graphite represents the in-plane bond-stretching vibration of sp² hybridized carbon atoms. The D band at 1350 cm⁻¹ is related to the breathing mode of κ-point phonons of A1g symmetric with vibrations of the carbon atoms of dangling bonds in plane terminations of the disordered and defected graphite. The variation of D/G intensity ratio suggests a change in the average size of the sp² domains. The increase of the D/G ratio of GO (0.82) compared to that of graphite (0.23) indicates that many defects are formed and a high level of disorder is introduced, presumably due to the excessive oxidation. In comparison with the GO, CFGO (0.88) and PPD-CFGO (0.91) has higher D/G ratio, which means the introduction of –O–CO–COOH groups and PPD on the graphene sheets led to the formation of other defects. The D peak becomes stronger and broader during the functionalization process, indicating a high level of disorder.

Thermal stability is one of the important properties for PI-based nanocomposites as they are being used as high-performance engineering plastics. As shown in Fig. 8, the weight loss temperatures of PI, 0.5 wt%, 1 wt%, 2 wt%, 3 wt%, 4 wt% and 5 wt% PPD-CFGO/PI films are 576, 584, 588, 594, 598, 602 and 610 °C, respectively. The thermal stability of pure PI and its nanocomposites containing different amounts of PPD-CFGO is improved slightly with increasing the graphene composition. Although -CONH- and -COO- groups are not as stable as imide
groups under high temperature, the thermal stability of the nanocomposites is comparable to that of pure PI. The TGA thermogram of GO includes two stages: first, the weight loss stage starting below 100 °C is attributed to the removal of absorbed water; the second weight loss at around 200 °C is ascribed to the decomposition of labile oxygen-containing functional groups from the GO layers. For PPD-CFGO, there is a significant weight loss stage at around 200 °C, similar to GO, indicating that the PPD-CFGO in the composites is reduced during the imidization.

The dielectric constant and dielectric loss of the PPD-CFGO/PI composites as a function of frequency is plotted in Fig. 9 (a) and (b). As summarized in Fig. 9 (c), the permittivity increases dramatically as the PPD-CFGO content approaches and exceeds the percolation threshold, according to the percolation theory. The enhancement of the dielectric constant has been mainly ascribed to the formation of microcapacitor network.

As shown in Fig. 10, the SEM images of the fractured surfaces of the pure PI and 4 wt% PPD-CFGO/PI composite film also prove the excellent dispersion of PPD-CFGO. The fracture surface of pure PI is rather smooth (Fig. 10 (a) and (b)), while rough and ridged for the PPD-CFGO/PI nanocomposite (Fig. 10 c and d), resulting from the 2D geometry of graphene sheets.

For simplification, a mass fraction is used to replace the volume fraction. The percolation threshold can be obtained by equation (1),

$$\varepsilon \propto (m_c - m_{PPD-CFGO})^s$$ \hspace{1cm} (1)

where ε is the permittivity of composites, m_c is the critical mass fraction at the percolation threshold, $m_{PPD-CFGO}$ is the mass fraction of PPD-CFGO and s is the critical exponent. Furthermore, the experimental values of the permittivity in Fig. 9 (c) are in line with equation (1), with $m_c = 0.041$ and $s = 0.61$. As the PPD-CFGO content increases to 0.05, the dielectric constant decreases and the dielectric loss increases simultaneously, mainly due to the destruction of the percolation network and the formation of the conductive network, resulting in the leakage current in the nanocomposites.

For a dielectric materials, in addition to a high dielectric constant, a high breakdown strength is also important, because it determines the operating electric field of the dielectric materials. Fig. 11 presents the breakdown strength of pure PI and PPD-CFGO/PI composite films as a function of the PPD-CFGO content.
between any two sheets is so small that Van der Waals forces become predominant, and the sheets agglomerate, thus reducing the PPD-CFGO reinforcement. At lower percentage content, the exfoliated PPD-CFGO produces a significant improvement on the mechanical properties.

In summary, the superior tensile properties of composite films suggest that in situ polymerization is an effective method to improve the dispersion and compatibility of PPD-CFGO in PI composites, and to take advantage of the synergetic benefits of large aspect ratio, homogenous dispersion of the PPD-CFGO within PI, and strong interfacial adhesion due to chemical bonding between PPD-CFGO and the polymer matrix.

Conclusions

We have demonstrated an effective approach using in situ polymerization to prepare PPD-CFGO/PI composites with superior performances. Due to the excellent dispersion in DMAC, PPD-CFGO is a versatile starting platform for the in situ fabrication of composite films through the grafting of poly(amic acid) onto the PPD-CFGO surface. Combining the ultrahigh contact area and strong interfacial interactions of the PI matrix, the PPD-CFGO nanosheets provide great reinforcement to the PI composites. The PPD-CFGO/PI films, prepared in this work, exhibit a 16.8-time increase in tensile modulus and 800% improvement in tensile strength for a 4 wt% content of PPD-CFGO. The TGA test demonstrated that the composites had good thermal stability below 500 °C. Furthermore, the dielectric constant of the composite increased as the amount of PPD-CFGO increased, and the percolation was \(m_c = 0.041 \). The dielectric constant of the nanocomposite (36.9, \(m_{PPD-CFGO} = 0.04 \)) was about 12.5 times higher than that of pure PI polymer, with ultralow dielectric loss (0.0075) and high breakdown strength (132.5±9.3 MV/m). Consequently, in situ polymerization provides an effective method to produce PPD-CFGO/PI films, therefore to develop freestanding, lightweight, and strong, graphene-based polyimide composite materials with high dielectric constants, showing promise for a wide range of applications.

Acknowledgements

This work was financially supported by the Basic Innovation Research Program of Science and Technology Commission of Shanghai (13JC1402002), the Natural Science Foundation of Shanghai (12ZR1407900) and the China Scholarship Council.

Notes and references

Preparation and properties of thermostable well-functionalized graphene oxide/polyimide composite films with high dielectric constant, low dielectric loss and high strength via in situ polymerization

Xinliang Fang, Xiaoyun Liu, Zhong-Kai Cui, Jun Qian, Jijia Pan, Xinxin Li, Qixin Zhuang

Thermostable well-functionalized graphene oxide/polyimide composites with high dielectric constant and low dielectric loss was obtained at a low percolation threshold.