Journal of Materials Chemistry A

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsA

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Facile synthesis of mesoporous Co₃O₄/CeO₂ hybrid nanowire arrays for high performance supercapacitors

Jiewu Cui^{*a,b*}, Xinyi Zhang^{*c*}, Liang Tong^{*b*}, Jinbao Luo^{*a*}, Yan Wang^{*a,b*}, Yong Zhang^{*a,b*}, Kui Xie^{*a,b*} and Yucheng Wu^{**a,b*}

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

The development of porous yet densely packed nanomaterials with high ion-accessible surface area and long cycling life is critical to the realization of high-density electrochemical capacitive energy storage. In this paper, we report a facile hydrothermal method to fabricate Co_3O_4/CeO_2 hybrid nanowire arrays (NWAs). Supercapacitors based on the as-prepared mesoporous Co_3O_4/CeO_2 hybrid NWAs exhibit ¹⁰ excellent pseudocapacitive performance with capacitance of 4.98 F·cm⁻² at 10 mA·cm⁻² (1037.5 F·g⁻¹ at 2.08 A·g⁻¹) and only a small capacitance loss of 5.6% after 5000 charge/discharge cycles. The remarkable pseudocapacitance and superior stability suggest that the mesoporous Co_3O_4/CeO_2 hybrid NWAs are promising candidates for supercapacitor applications.

Introduction

- Supercapacitors (SCs), also known as electrochemical ¹⁵ capacitor, have attracted intensive research interest in the past decade due to their excellent performance such as high power density, long life span and fast recharge features.¹⁻³ As is known to all, the morphology, size and composition of the electrode materials play a significant role in the performances of SCs.
- ²⁰ Among various materials, RuO₂ shows excellent supercapacitive performance, but its high cost and toxic feature impede the commercial applications severely.⁴ Therefore, various metal oxides with low cost and benign environmental compatibility such as NiO, Co₃O₄, MnO₂ and so on have been employed as the
- ²⁵ electrode materials for SCs and investigated extensively to substitute RuO₂.⁵⁻⁸ Especially, CeO₂, a rare earth metal oxide with good redox feature, environmentally benign nature and low cost, has intrigued the research interest in the application of supercapacitors in the past five years.⁹⁻¹¹ However, only part of
- $_{30}$ surface electroactive materials can be effectively utilized to store charge due to the intrinsic poor electrical conductivity of single phase metal oxides, resulting in unsatisfactory SCs. Since T. Y. Wei and his colleagues¹² firstly constructed SCs based on NiCo₂O₄ with different morphologies, different kinds of NiCo₂O₄
- ³⁵ nanostructures, such as nanoneedle arrays,¹³ nanosheets,¹⁴ nanowire¹⁵ and nanorod arrays,¹⁶ have been fabricated and used for the construction of SCs due to their good electrical conductivity, exhibiting excellent supercapacitive performance. In addition, element S was used to replace element O to fabricate
- $_{40}\ NiCo_2S_4$ nanostructures to further seek supercapacitive materials with improved performances. $^{17\text{-}19}$

Recently, binary hybrid nanostructures with improved supercapacitive performance have received considerable attention. $^{20\text{-}23}$ Fan's research group constructed a novel $\mathrm{Co}_3\mathrm{O}_4$

 $_{45}$ nanowire@MnO₂ ultrathin nanosheet core/shell arrays for SCs, a capacitance of 480 $F \cdot g^{-1}$ was achieved at the current density of

2.67 A·g⁻¹. ²⁰ Subsequently, porous CoO@NiHON core/shell arrays were synthesized by the same research group, ²¹ this novel core/shell arrays exhibited specific capacitance of 798.3 F·g⁻¹ at ⁵⁰ the current density of 1.67 A·g⁻¹, meanwhile, both of these novel electrodes presented excellent long cycle stability. In general, it takes two procedures to fabricate core/shell arrays-based electrode for supercapacitors, which is time consuming and costly.

Therefore, it is attractive to get hybrid nanostructure arrays with high supercapacitive performance with a simple process. In this work, we report the synthesis of mesoporous Co_3O_4/CeO_2 hybrid NWAs with hydrothermal method. Impressively, asprepared mesoporous Co_3O_4/CeO_2 hybrid NWAs exhibit remarkable pseudocapacitive performance with capacitance of $60 4.98 \text{ F} \cdot \text{cm}^{-2}$ at 10 mA $\cdot \text{cm}^{-2}$ (1037.5 F $\cdot \text{g}^{-1}$ at 2.08 A $\cdot \text{g}^{-1}$), which is much higher than that of Co_3O_4 nanowire arrays (1.95 F $\cdot \text{cm}^{-2}$ at 10 mA $\cdot \text{cm}^{-2}$ (670 F $\cdot \text{g}^{-1}$ at 3.33 A $\cdot \text{g}^{-1}$)). In addition, Co_3O_4/CeO_2 hybrid NWAs still present mesoporous structure after 5000 cycles and the capacitance loss is only 5.6%, showing excellent cycling 65 stability.

Experimental

Synthesis of mesoporous Co₃O₄/CeO₂ hybrid NWAs

Mesoporous Co₃O₄/CeO₂ hybrid NWAs were synthesized by a hydrothermal process and calcinations process. In a typical ⁷⁰ synthesis, Ce(NO₃)₃·6H₂O with different weight, 1.019 g Co(NO₃)₃·6H₂O and 1.051 g urea were dissolved in 35 mL Milli-Q water. The mixture solution was transferred into a 50 ml Teflon-line stainless steel autoclave. Nickel foam (~2.5 cm×3 cm) rinsed with ethanol and 3 M HCl was immersed into the ⁷⁵ aforementioned mixture solution. Subsequently, the autoclave was kept in a conventional oven for 10 h at different temperatures and the autoclave was cooled down to room temperature naturally. As-prepared pink precursor (as shown in Fig. S1b, ESI[†]) was rinsed with Milli-Q water and ethanol several times and dried

under 80 °C for 24 h. Finally, the pink precursor was calcinated at 350 °C for 2 h and black products (as shown in Fig. S1c, ESI[†]) were obtained. Meanwhile, Co₃O₄ nanowire arrays were also fabricated by the same hydrothermal process with cobalt nitrate

₅ and urea to be taken as the control experiment. The influence of concentration of cerium nitrate in the mixture solution and hydrothermal temperature on the morphology and composition of Co₃O₄/CeO₂ hybrid NWAs was investigated and discussed. The loading masses of Co₃O₄ nanowires and Co₃O₄/CeO₂ hybrid ¹⁰ nanowires were about 3.0 mg·cm⁻² and 4.8 mg·cm⁻², respectively.

Materials characterization

The morphologies and composition of the samples were characterized by field emission scanning electron microscopy (FESEM, SU8020, Hitachi, Japan), transmission electron ¹⁵ microscopy (TEM, JEM-2100F, JEOL, Japan) and energy dispersive spectrometer (EDS, Inca, Oxford, UK). The structures of the samples were measured by X-ray diffraction (XRD, D/MAX2500V, Rigaku, Japan) with Cu-K_a radiation (0.15418 nm) operating at 40 kV, 40 mA. Elemental status of the samples ²⁰ was analyzed by X-ray photoelectron spectrum (XPS, ESCALAB250, Thermo, US) with a monochromatic Al K_a (1486.6 eV) X-ray source.

Electrochemical measurements

The electrochemical measurements were carried out on an ²⁵ electrochemical workstation (Autolab PGSTAT302N, Metrohm, Switzerland) in a conventional three-electrode system in 2 M KOH aqueous solution at room temperature. Ni foam supported active materials (~1 cm² in area) was employed as the working electrode. Pt/Ti electrode and Ag/AgCl (3 M KCl) were used as ³⁰ counter electrode and reference electrode, respectively.

Electrochemical impedance spectrum (EIS) measurements were performed in a frequency range from 100 KHz to 0.1 Hz at an open circuit potential. The areal capacitance and specific capacitance were calculated according to the following equations:

$$_{\rm 5} \rm C_s = I\Delta t/(S\Delta V)$$
 (1)

$$C_{sp} = I\Delta t / (M\Delta V)$$
⁽²⁾

Where C_s (F·cm⁻²) and C_{sp} (F·g⁻¹) represented areal capacitance and specific capacitance. I (A), Δt (s), S (cm²), M (g) and ΔV (V) were discharge current, discharge time, area of the working

⁴⁰ electrode, the mass of active materials and the potential window excluding the IR drop.

Results and discussion

Synthesis and characterization of mesoporous Co_3O_4/CeO_2 hybrid NWAs

⁴⁵ Fig. 1(a) and (b) show the SEM images of as-prepared samples after calcinations at 350 °C for 2 h. Apparently, nanowire arrays grow densely and vertically to the surface of the Ni foam and the average diameter of the nanowire is about 100 nm. In addition, the surface of nanowires is rather rough according to the ⁵⁰ observation in Fig. 1(b), and this is further confirmed by TEM observation and discussed in the following section. XRD patterns of the samples before and after calcinations are presented in Fig. 1 (c), XRD pattern of the sample before calcinations exhibits diffraction peaks of CeCO₃OH (JCPDS 41-0013) and ⁵⁵ Co(CO₃)_{0.5}(OH)·0.11H₂O (JCPDS 48-0083), and diffraction peaks in Fig. 1(b) curve A can be attributed to CeO₂ phase (JCPDS 34-0394) and Co₃O₄ phase (JCPDS 42-1467), indicating crystalline nature of Co₃O₄/CeO₂ hybrid NWAs after calcinations. The microstructural characterization of an individual Co₃O₄/CeO₂

Fig. 1. SEM images of Co_3O_4/CeO_2 hybrid NWAs with (a) low and (b) high magnifications. (c) XRD pattern of as-prepared samples before and after calcinations. (d) and (e) are TEM images of an individual Co_3O_4/CeO_2 hybrid nanowire with different magnification, Inset in Fig. 1(d) is SAED pattern of the corresponding Co_3O_4/CeO_2 hybrid nanowire. (f) HRTEM image of Co_3O_4/CeO_2 hybrid nanowire.

- s hybrid nanowire is carried out in detail by TEM and HRTEM observation as shown in Figs. 1(d)-(f). Co_3O_4/CeO_2 hybrid nanowire exhibits porous structure and the pore size in the Co_3O_4/CeO_2 hybrid nanowire is between 2 and 10 nm. The mesoporous structure is further confirmed by the desorption data
- ¹⁰ using the Barret-Joyner-Halenda (BJH) model as shown in Fig. S2 (a) and (b) (ESI[†]). BET surface area of as-prepared Co_3O_4/CeO_2 hybrid NWAs is calculated to be 88.15 m²·g⁻¹. The mesoporous structure of Co_3O_4/CeO_2 hybrid NWAs is totally different from the smooth texture of their corresponding the meson
- ¹⁵ precursor as presented in Fig. S3 (ESI[†]), favouring the mass transport in the electrochemical reactions. Fig. 1(f) shows HRTEM image of an individual Co_3O_4/CeO_2 hybrid nanowire, the lattice fringes with lattice spacing of about 0.163 nm and 0.229 nm correspond to the (311) plane of CeO₂ and (222) plane
- $_{\rm 20}$ of Co_3O_4, indicating the co-existence of CeO_2 phase and Co_3O_4 phase.

The chemical bonding states of samples are further investigated by XPS analysis as seen in Fig. 2. Fig. 2(a) shows Ce species is evidently detected in the Co_3O_4/CeO_2 hybrid NWAs.

- $_{25}$ The O 1s spectrum in Fig. 2(b) exhibits three peaks centered at 529.4 eV, 530.3 eV and 530.9 eV, respectively. The two peaks centered at 529.4 eV and 530.9 eV are consistent with oxygen species in Co₃O₄ and adsorbed OH⁻ species on the surface of the samples. 24 Interestingly, the oxygen peak at 530.3 eV is ascribed
- ³⁰ to the oxygen bonded to cerium in CeO₂. In addition, the oxidation states of Co and Ce are determined by Co 2p and Ce 3d XPS spectra. As shown in Fig. 2(c), the Co 2p spectrum presents two main Co $2p_{3/2}$ and Co $2p_{1/2}$ peaks at 779.2 eV and 794.3 eV together with two shake-up satellite peaks, which are fitted with ³⁵ the chemical bonding states of Co₃O₄.^{25, 26} Fig. 2(d) depicts the

³⁵ the chemical bonding states of Co₃O₄.^{25, 26} Fig. 2(d) depicts the Ce 3d spectrum. The peaks centered at 881.6 eV, 888.5 eV, and 898.5 eV belong to Ce 3d_{5/2}, and peaks at 900.7 eV, 903.6 eV, 907.2 eV and 916.4 eV correspond to Ce 3d_{3/2}. Only the peak centered at 903.6 eV belongs to Ce³⁺, and the other peaks are ⁴⁰ ascribed to Ce^{4+.27-29} XPS analysis is in agreement with the XRD pattern and HRTEM results shown in Fig. 1.

This journal is © The Royal Society of Chemistry [year]

Fig. 2. (a) XPS survey spectra of Co_3O_4/CeO_2 hybrid NWAs, (b) O 1s, (c) Co 2p and (d) Ce 3d spectra of Co_3O_4/CeO_2 hybrid NWAs.

Energy dispersive X-ray spectroscopy (EDX) elemental mapping technique is employed to scrutinize compositional distribution of the hybrid nanowires. As shown in Fig. 3, Co, Ce and O elements distribute uniformly in an individual hybrid nanowire and the amount of Ce is less than that of Co, which is in 50 agreement with the EDS analysis result (As shown in Fig. S4, ESI[†]). EDS result reveals the amount of Co and Ce is 48.0 wt.% and 3.5 wt.%, respectively. Interestingly, Co and Ce cannot form single phase compound like NiCo₂O₄^{15, 16, 30} or MnCo₂O₄³¹ in one-pot hydrothermal synthesis probably due to the significant 55 chemical property differences between elements Ce and Co. In addition, the influences of cerium nitrate concentration and hydrothermal temperatures on the morphology, microstructure and composition of Co₃O₄/CeO₂ hybrid NWAs are also investigated systematically as shown in Fig. S5-S7, (ESI[†]). It is 60 clearly observed in Fig. S5 that the morphology of Co₃O₄/CeO₂ hybrid NWAs is prone to be irregular if cerium nitrate concentration is beyond 100 mM and Co₃O₄/CeO₂ hybrid NWAs break and collapse when cerium nitrate concentration is more

65 Fig. 3. (b-d) EDX mapping of (a) an individual Co₃O₄/CeO₂ hybrid nanowire.

than 200 mM. The hydrothermal temperature also plays a key role in controlling morphology, microstructure and composition of Co₃O₄/CeO₂ hybrid NWAs. Experimental results indicate that ⁷⁰ Co₃O₄/CeO₂ hybrid NWAs cannot be formed with hydrothermal temperature at 90 °C. As shown in Fig. S6 (a) microballs with rough surface and different size are obtained. The phase structure of the microballs is characterized by X-ray diffraction analysis in Fig. S7, and as-obtained microballs can be determined as CeO₂ ⁷⁵ (JCPDS 34-0394) after calcinations at 350 °C for 2 h, which

(12)

reflects temperature is a key factor in the fabrication of Co_3O_4/CeO_2 hybrid NWAs. In addition, dependence of the hybrid nanowire composition on temperature is also investigated. Ce amounts in the hybrid nanowires prepared at 100 °C, 110 °C and s 120 °C are 1.8 wt%, 2.4 wt% and 3.5 wt%, respectively. In order

- to further investigate the composition of Co_3O_4/CeO_2 hybrid NWAs, Co/Ce molar ratios of Co_3O_4/CeO_2 hybrid NWAs are also measured by EDS equipped on TEM. Co/Ce molar ratios in Co_3O_4/CeO_2 hybrid NWAs decrease with the increase of ¹⁰ hydrothermal temperature, they are measured to be 83.2, 43.9 and
- 26.3 at 100 °C, 110 °C and 120 °C, respectively.

To compare the difference between Co_3O_4/CeO_2 hybrid NWAs and Co_3O_4 NWAs, a control experiment is carried out by preparing phase-pure mesoporous Co_3O_4 NWAs following the

¹⁵ same experimental procedure as growing the hybrid nanowire arrays. The electrochemical properties of the phase-pure mesoporous Co_3O_4 NWAs are determined as well. Morphology and microstructure information of Co_3O_4 NWAs are presented in Fig. S8 (ESI[†]), revealing that the Co_3O_4 NWAs has similar ²⁰ morphology to that of Co_3O_4/CeO_2 hybrid NWAs.

The main chemical reactions involved in the hydrothermal process and calcinations can be described as follows:³²

 $CO(NH_2)_2 + H_2O \rightarrow 2NH_3 + CO_2$ (3)

 $CO_2 + H_2O \rightarrow CO_3^{2-} + 2H^+$ (4)

 $_{25} \mathrm{NH}_{3} \cdot \mathrm{H}_{2}\mathrm{O} \rightarrow \mathrm{NH}_{4}^{+} + \mathrm{OH}^{-}$ (5)

 $Co^{2+}+0.5CO_{3}^{2-}+OH^{-}+0.11 H_{2}O \rightarrow Co(CO_{3})_{0.5}(OH) \cdot 0.11 H_{2}O$ (6) $Ce^{3+}+CO_{3}^{2-}+OH^{-} \rightarrow CeCO_{3}OH$ (7)

$$3Co(CO_3)_{0.5}(OH) \cdot 0.11H_2O + 0.5O_2 \rightarrow Co_3O_4 + 1.5CO_2 + 1.83H_2O \quad (8) CeCO_3OH + 0.5O_2 \rightarrow CeO_2 + CO_2 + 0.5H_2O \quad (9)$$

- ³⁰ Based on aforementioned results, the formation process of the mesoporous Co_3O_4/CeO_2 hybrid NWAs can be proposed here. Firstly, the $Co(CO_3)_{0.5}(OH) \cdot 0.11H_2O/CeCO_3OH$ hybrid NWAs precursors with smooth texture and compact structure are synthesized in the hydrothermal process, which is observed
- ³⁵ evidently in Fig. S3 (ESI[†]). Secondly, those precursors are converted to mesoporous Co₃O₄/CeO₂ hybrid NWAs *via in situ* decomposition and phase transformation in the calcinations process. During the calcinations process, Co(CO₃)_{0.5}(OH)·0.11H₂O and CeCO₃OH are converted Co₃O₄
- ⁴⁰ and CeO₂ nanoparticles, respectively. The nucleation of the nanoparticles is random, but the growth of the nanoparticles is self-organized, retaining the shape of the nanowires. The weight loss and volume shrinking due to the release of gases such as CO_2 and H_2O in the calcinations process result in the mesoporous
- $_{45}$ feature of Co₃O₄/CeO₂ hybrid NWAs, which is similar to the possibilities of the formation of mesoporous phase-pure Co₃O₄ NWAs reported previously. 33,34

Electrochemical analysis

The cyclic voltammograms of CeO₂ NWAs, Co₃O₄ NWAs and ⁵⁰ Co₃O₄/CeO₂ hybrid NWAs are measured at a scan rate of 5 mV/s under the same condition as shown in Fig. 4(A). For CeO₂ NWAs and Co₃O₄ NWAs, the redox peaks are ascribed to the conversion between different cobalt and cerium oxidation states, the chemical reactions can be described as follows: ^{10, 29, 35}

$$55 \text{ CeO}_2 + e^- + H_2O \leftrightarrow \text{CeOOH} + \text{OH}^-$$

$$Co_3O_4 + \text{OH}^- + H_2O \leftrightarrow 3CoOOH + e^-$$
(10)
(11)

 $CoOOH + OH \leftrightarrow CoO_2 + H_2O + e^{-1}$

Among these nanomaterials, the CV curve of CeO₂ NWAs (Fig. S9, ESI[†]) in Fig. 4(A) shows a much smaller enclosed area than ⁶⁰ those of Co₃O₄ NWAs and Co₃O₄/CeO₂ hybrid NWAs. The supercapacitive performances of Co₃O₄ NWAs and Co₃O₄/CeO₂ hybrid NWAs are further evaluated and compared by DC, EIS

Fig. 4. (A) Cyclic voltammograms of different nanowire arrays at scan 65 rate of 5 mV/s. (B) Cyclic voltammograms of Co₃O₄/CeO₂ NWAs at different scan rates. (C) Charge/discharge plots of Co₃O₄ and Co₃O₄/CeO₂ NWAs at the current density of 20 mA·cm⁻², and (D) Nyquist plots of Co₃O₄ and Co₃O₄/CeO₂ NWAs after fitting in 2 M KOH solution.

and cycling stability in the following section. Fig. 4(B) shows the 70 CV curves of Co₃O₄/CeO₂ hybrid NWAs at different scan rates, the cathodic and anodic current peaks shift to both sides and increase with increasing scan rate. However, the capacitances of Co₃O₄/CeO₂ hybrid NWAs calculated from the enclosed areas of the CV curves are not changed significantly, suggesting a good 75 rate capability. The galvanostatic charge/discharge (DC) measurements are performed to evaluate the supercapacitive performance of as-prepared samples. Fig. 4(C) presents the DC plots of Co₃O₄ NWAs and Co₃O₄/CeO₂ hybrid NWAs at the current density of 20 mA cm⁻², the areal capacitance of $_{80}$ Co₃O₄/CeO₂ hybrid NWAs is 4.68 F cm⁻², much higher than that of Co_3O_4 NWAs (1.88 F cm⁻²). This is may be ascribed to the synergistic effect of Co₃O₄ and CeO₂. On the one hand, CeO₂ nanomaterials exhibit more surface defects due to their nonstoichiometric feature at ambient atmosphere.³⁶ The introduction 85 of CeO₂ in Co₃O₄ NWAs further increases the surface defects of Co₃O₄/CeO₂ hybrid NWAs owing to the lattice mismatch between Co₃O₄ and CeO₂, resulting in a great improvement in surface redox properties of Co₃O₄/CeO₂ hybrid NWAs; on the other hand, Co₃O₄/CeO₂ hybrid NWAs demonstrate lower 90 intrinsic resistance compared to phase-pure Co₃O₄ NWAs, reducing charge transfer resistance and leading to fast electron transport within active materials. And this is confirmed by electrochemical impedance spectra (EIS) as seen in Fig. 4(D). Fig. 4(D) shows the Nyquist plots after fitting with equivalent 95 electrical circuit, which contains solution resistance R_s, charge transfer resistance R_{ct}, Warburg impedance, double layer capacitance C_{dl} and pseudocapacitance C_{ps} as shown in inset in Fig. 4(D).^{37,38} In the low frequency portion, the slope of the curve reveals the Warburg impedance, reflecting the electrolyte diffusion in the mesoporous electrode. The slope of Co_3O_4/CeO_2 hybrid NWAs is almost the same as that of Co_3O_4 NWAs in Fig. 4(D), which means electrolyte diffusion at s electrolyte/(Co_3O_4/CeO_2 hybrid NWAs) interfaces is similar to that between electrolyte and Co_3O_4 NWAs. In the high frequency portion, charge transfer resistance R_{ct} shows the charge transfer process between electrolyte and Co_3O_4/CeO_2 (Co_3O_4) NWAs. According to the fitted data, Co_3O_4/CeO_2 hybrid NWAs (0.243 Ω) demonstrate lowure charge transfer projections.

¹⁰ demonstrate lower charge transfer resistance R_{ct} than that of Co_3O_4 NWAs (0.274 Ω). It is believed that a lower charge transfer resistance R_{ct} can contribute to the improvement of supercapacitive performance of Co_3O_4/CeO_2 hybrid NWAs.

¹⁵ Fig. 5. (a) Charge/discharge plots and (b) corresponding areal capacitances of Co₃O₄/CeO₂ hybrid NWAs at different current densities. (c) Specific capacitances of Co₃O₄ NWAs and Co₃O₄/CeO₂ hybrid NWAs at different specific current. (d) Cycling performance of Co₃O₄ NWAs and Co₃O₄/CeO₂ hybrid NWAs at 20 mA·cm⁻².

- Fig. 5(a) depicts the DC plots of Co₃O₄/CeO₂ hybrid NWAs in the potential window between 0 and 0.45 V (vs. Ag/AgCl). Co₃O₄/CeO₂ hybrid NWAs exhibit areal capacitances with 4.98 F·cm⁻² at 10 mA·cm⁻², 4.82 F·cm⁻² at 15 mA·cm⁻², 4.68 F·cm⁻² at 20 mA·cm⁻², 4.59 F·cm⁻² at 25 mA·cm⁻² and and 4.2 F·cm⁻² at 50 mA·cm⁻², and at 4.2 F·cm⁻² at 50
- ²⁵ mA·cm⁻², respectively, as demonstrated in Fig. 5(a) and (b). In addition, the pseudocapacitance loss is only 15.7% when current density changes from 10 mA·cm⁻² to 50 mA·cm⁻² during charge/discharge process, and the areal capacitance recovers to ~4.98 F·cm⁻² when current density turns back to 10 mA·cm⁻²,
- ³⁰ indicating good rate capability of the Co₃O₄/CeO₂ hybrid NWAs. Meanwhile, supercapacitive performances of Co₃O₄ NWAs are also evaluated by charge/discharge measurements under the same condition as Co₃O₄/CeO₂ hybrid NWAs as demonstrated in Fig. S10-S11 (ESI[†]). Areal capacitances of the Co₃O₄ NWAs are
- ³⁵ measured to be 1.95 F·cm⁻² at 10 mA·cm⁻², 1.91 F·cm⁻² at 15 mA·cm⁻², 1.88 F·cm⁻² at 20 mA·cm⁻², 1.84 F·cm⁻² at 25 mA·cm⁻² and and 1.74 F·cm⁻² at 50 mA·cm⁻², respectively. It can be seen that the capacitance of the Co₃O₄ NWAs is much lower than that of Co₃O₄/CeO₂ hybrid NWAs due to aforementioned reasons. Fig.
- $_{40}$ 5(c) shows the specific capacitances of both Co_3O_4 NWAs and Co_3O_4/CeO_2 hybrid NWAs at different current densities, which are calculated according to the areal capacitances and loading

mass of active materials. As for Co₃O₄ NWAs, the specific capacitance achieves 650 F g^{-1} (1.95 F cm^{-2}) at 3.33 A g^{-1} (10 $_{45}$ mA·cm⁻²) and 613.3 F·g⁻¹ (1.84 F·cm⁻²) at 8.33 A·g⁻¹ (25 mA·cm⁻¹) ²), which are much lower than those hybrid nanowires of 1037.5 $F \cdot g^{-1}$ (4.98 $F \cdot cm^{-2}$) at 2.08 $A \cdot g^{-1}$ (10 mA·cm⁻²) and 875.0 $F \cdot g^{-1}$ $(4.2 \text{ F} \cdot \text{cm}^{-2})$ at 10.4 A \cdot g⁻¹(50 mA \cdot cm⁻²) due to synergistic effect of Co₃O₄ and CeO₂ discussed aforementioned. In addition, the 50 capacitances of this novel Co₃O₄/CeO₂ hybrid NWAs are higher than those previously reported Co₃O₄-based hybrid materials, such as Co_3O_4/MnO_2 core/shell hybrid arrays (480.0 F \cdot g⁻¹ at 2.67 A·g⁻¹),²⁰ Co₃O₄@PPy@MnO₂ hybrid NWAs (629.0 F·g⁻¹ at 0.67 A·g⁻¹),³⁹ Co₃O₄/NiO hybrid NWAs (853.0 F·g⁻¹ at 2.0 A·g⁻¹),⁴⁰ $55 \text{ Co}_3\text{O}_4$ (a) Ag hybrid NWAs (1006.0 F g $^{-1}$ at 2.0 A g $^{-1}$).⁴¹ Performances of supercapacitors based on different Co₃O₄-based NWAs are compared and summarized in Table S1(ESI †). Evidently, the synthesis of Co₃O₄/CeO₂ hybrid NWAs with onestep hydrothermal method is facile and cost effective compared to 60 multiple procedures for the fabrication of other Co₃O₄-based NWAs, and high mass loading of Co₃O₄/CeO₂ hybrid NWAs

Fig. 6 SEM images of Co₃O₄/CeO₂ hybrid NWAs after cycling for 5000 65 cycles with low (a) and high (b) magnifications.

The cycling stabilities of both Co_3O_4 NWAs and Co_3O_4/CeO_2 hybrid NWAs are evaluated at the current density of 20 mA·cm⁻² as shown in Fig. 5(d). The results show that 94.4% and 89.9% capacitances of the products are remained after 5000 cycles for 70 Co_3O_4/CeO_2 hybrid NWAs and Co_3O_4 NWAs, respectively. The

Journal of Materials Chemistry A Accepted Manuscript

enhanced electrochemical cycling performance of the Co_3O_4/CeO_2 hybrid NWAs can be attributed to the synergistic effect of Co_3O_4 and CeO_2 , which not only increases the capacitance but also improves the stability. On the one hand, s faradic redox reaction of Ce^{3+}/Ce^{4+} further increases the

- capacitance of the Co_3O_4/CeO_2 hybrid NWAs compared to phasepure Co_3O_4 NWAs,¹⁰ on the other hand, reduced charge transfer resistance R_{ct} also favours the capacitance improvement of Co_3O_4/CeO_2 hybrid NWAs. In addition, the incorporation of
- ¹⁰ CeO₂ in the Co₃O₄/CeO₂ hybrid NWAs improves the cycling stability due to the superior chemical stability of CeO₂, and this is further confirmed by the SEM characterization of Co₃O₄/CeO₂ hybrid NWAs after 5000 cycles as observed in Fig. 6. Figs. 6 (a) and (b) show SEM images of Co₃O₄/CeO₂ hybrid NWAs after
- ¹⁵ 5000 cycles with different magnifications. The images reveal that the morphology of Co_3O_4/CeO_2 hybrid NWAs after 5000 cycles is well-preserved. In addition, the crystallinity and mesoporous structure of Co_3O_4/CeO_2 nanowire remains undamaged as well in the charge/discharge process with long time. The BET surface
- $_{20}$ area (83.46 m²·g⁻¹) decreases and the pore size increases slightly of Co₃O₄/CeO₂ hybrid NWAs after 5000 cycles, which can also be evidenced in Fig. S2 (c).

Conclusions

- In summary, we have developed a facile and effective ²⁵ approach for the fabrication mesoporous Co_3O_4/CeO_2 hybrid NWAs on Ni foam. This novel hybrid nanostructure combines the merits of two active materials (Co_3O_4 and CeO_2) and exhibits excellent pseudocapacitive performances. Mesoporous Co_3O_4/CeO_2 hybrid NWAs are superior to Co_3O_4 NWAs in terms
- ³⁰ of specific capacitance and cycling stability. The cost-effective synthesis and remarkable supercapacitive performance makes this novel hybrid an excellent active material in the applications of supercapacitors.

Acknowledgements

- The authors acknowledge the financial supports of National Natural Science Foundation of China (Grant Nos. 51302060 and 51402081), financial supports of the National Key Fundamental Research Development Program (Grant No. 2014CB660815). Financial supports of Natural Science Foundation of Anhui
- ⁴⁰ Province (Grant No. 1408085QB42) and Scientific and Technological Project of Anhui Province (1301b042011) are also gratefully appreciated. J. W. Cui thanks the staff in the Analytical and Testing Center of HFUT for their assistance in the materials characterization.

45 Notes and references

- ^a School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China; E-mail:ycwu@hfut.edu.cn
- ^b Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei, 230009, China
- ⁵⁰ ^cSchool of Chemistry, Monash University, Clayton, VIC 3800, Australia † Electronic Supplementary Information (ESI †) available: [Optical photograph of as prepared samples, SEM, TEM, EDS, XRD, EDX mapping of the samples are presented. DC plots and corresponding areal capacitances of Co₃O₄ NWAs at different current densities are shown ⁵⁵ here]. See DOI: 10.1039/b000000x/
- 1 P. Simon and Y. Gogotsi, Nat. Mater., 2008, 7, 845-854.

- 2 J. R. Miller and P. Simon, Science, 2008, 321, 651-652.
- 3 G. Wang, L. Zhang and J. Zhang, Chem. Soc. Rev., 2012, 41, 797-828.
- 60 4 C. C. Hu, K. H. Chang, M. C. Lin and Y. T. Wu, Nano Lett. 2006, 6, 2690-2695.
 - 5 N. S. Liu, J. Li, W. Z. Ma, W. J. Liu, Y. L. Shi, J. Y. Tao, X. H. Zhang, J. Su, L. Y. Li and Y. H. Gao, ACS Appl. Mater. Interfaces, 2014, 6,13627-13634.
- 65 6 X. H. Xia, J. P. Tu, Y. J. Mai, X. L.Wang, C. D. Gu and X. B. Zhao, J. Mater. Chem., 2011, 21, 9319-9325.
 - 7 Y. Z. Zhang, Y. Wang, Y. L. Xie, T. Cheng, W. Y. Lai, H. Pang and W. Huang, Nanoscale, 2014, 6, 14354-14359.
- 8 Z. B. Lei, F. H Shi and L. Lu, ACS Appl. Mater. Interfaces, 2012, 4, 1058-1064.
- 9 Y. Wang, C. X. Guo, J. H. Liu, T. Chen, H. B. Yang and C. M. Li, Dalton Trans., 2011, 40, 6388-6391.
- 10 N. Padmanathan and S. Selladurai, RSC Adv., 2014, 4, 6527-6534.
- 11 S. Maiti, A. Pramanik and S. Mahanty, Chem. Commun., 2014, 50, 11717-11720.
- 12 T. Y. Wei, C. H. Chen, H. C. Chien, S. Y. Lu and C. C. Hu, Adv. Mater., 2010, 22, 347-351.
- 13 G. Q. Zhang, H. B.Wu , H. E.Hoster, M. B. Chan-Park and X. W. Lou, Energy Environ. Sci., 2012, 5, 9453-9456.
- 80 14 G. Q. Zhang and X. W. Lou, Adv. Mater., 2013, 25, 976-979.
- 15 H. Jiang, J. Ma and C. Z. Li, Chem. Commun., 2012, 48, 4465-4467.
- 16 G. Q. Zhang and X. W. Lou, Sci. Rep. 2013, 3, 1470(1-6).
 17 J. W. Xiao, L. Wan, S. H. Yang, F. Xiao and S. Wang. Nano Lett., 2014, 14,831-838.
- 85 18 M. Sun, J. Tie, G. Cheng, T. Lin, S. Peng, F. Deng, F. Ye and L. Yu, J. Mater. Chem. A, 2015, 3, 1730-1736.
 - 19 L. F. Shen, J. Wang, G. Y. Xu, H.S. Li, H. Dou and X. G. Zhang, Adv. Energy Mater., 2014, DOI: 10.1002/AENM.201400977.
- 20 J. P. Liu, J. Jiang, C. W. Cheng, H. X. Li, J. X. Zhang, H. Gong and
 H. J. Fan, Adv. Mater., 2011, 23, 2076-2081.
- 21 C. Guan, J. P. Liu, C. W. Cheng, H. X. Li, X. L. Li, W. W. Zhou, H. Zhang and H. J. Fan, Energy Environ. Sci., 2011, 4, 4496-4499.
- 22 L. Yu, G. Q. Zhang, C. Z. Yuan and X. W. Lou, Chem. Commun., 2013, 49, 137-139.
- 95 23 J. Yang, M. Z. Ma, C. C. Sun, Y. F. Zhang, W. Huang and X. C. Dong, J. Mater. Chem. A, 2015, 3, 1258-1264.
 - 24 D. W. Wang, Q. H. Wang and T. M. Wang, Inorg. Chem., 2011, 50,6482-6492.
 - 25 Y. Tak and K. Yong, J. Phys. Chem. C, 2008, 112,74-79.
- 100 26 D. B. Yu, Y. L. Wang, L. Zhang, Z. X. Low, X. Y. Zhang, F. L. Chen, Y. Feng and H. T. Wang, Nano Energy, 2014, 10, 153-162.
 - 27 F. F. Zhu, G. Z. Chen, S. X. Sun and Y. Sun, J. Mater. Chem. A, 2013, 1, 288-294.
- Z8 T. Wang, L. D. Zhang, J. X. Zhang and G. M. Hua, Micropor.
 Mesopor. Mater., 2013, 171, 196-200.
 - 29 C. Zhang, X. Y. Zhang, Y. C. Wang, S. L. Xie, Y. Liu, X. H. Lu and Y. X. Tong, New J. Chem., 2014, 38, 2581-2586.
 - 30 C. Z. Yuan, J. Y. Li, L. R. Hou, X. G. Zhang, L. F. Shen and X. W. Lou, Adv. Funct. Mater., 2012, 22, 4592-4597.
- 110 31 A. K. Mondai, D. W. Su, S. Q. Chen, A. Ung, H. S. Kim and G. X. Wang, Chem.- Eur. J., 2015, 21, 1526-1532.
 - 32 X. H. Xia, J. P. Tu, Y. Q. Zhang, Y. J. Mai, X. L. Wang, C. D. Gu and X. B. Zhao, RSC Adv., 2012, 2, 1835-1841.
- G. X. Wang, X. P. Shen, J. Horvat, B. Wang, H. Liu, D. Wexler and J.
 Yao, J. Phys. Chem. C, 2009, 113, 4357-4361.
 - 34 F. Zhang, C. Z. Yuan, X. J. Lu, L. J. Zhang, Q. Che and X. G. Zhang, J. Power Sources, 2012, 203, 250-256.
 - 35 H. T. Wang, L. Zhang, X. H. Tan, C. M. B. Holt, B. Zahiri, B. C. Olsen and D. Mitlin, J. Phys. Chem. C, 2011, 115, 17599-17605.
- 120 36 D. S. Zhang, X. J. Du L. Y. Shi and R. H. Gao, Dalton Trans., 2012, 41, 14455-14475.
 - 37 Q. W. Zhou, J. C. Xing, Y. F. Gao, X. J. Lv, Y. M. He, Z. H. Guo and Y. M. Li, ACS Appl. Mater. Interfaces 2014, 6, 11394-11402.
- 38 S. K. Meher and G. R. Rao, J. Phys. Chem. C, 2011, 115, 15646-125 15654.
 - 39 L. J. Han, P. Y. Tang and L. Zhang, Nano Energy, 2014, 7, 42-51.

- 40 X. C. Dong, H. Xu, X. W. Wang, Y.X. Huang, M. B. Chan-Park, H. Zhang, L. H. Wang, W. Huang and P. Chen, ACS Nano, 2012, 6, 3206-3213.
- 41 H. Cheng, Z. G. Lu, J. Q. Deng, C. Y. Chung, K. L. Zhang and Y. Y. 5 Li, Nano Res., 2010, 3, 895-901.
- 42 A. Sumboja, X. Wang, J. Yan and P. S. Lee, Electrochim. Acta, 2012, 65, 190-195.

Mesoporous Co_3O_4/CeO_2 hybrid nanowire arrays are synthesized and employed as the electrode materials for supercapacitors. This nanomaterials exhibit remarkable pseudocapacitance and superior cycling stability.

