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Traditional approaches for improving the photovoltaic performance of dye-sensitized solar cells (DSSCs) have mainly relied on
judicious molecular design and device level modif cations. Such schemes, however, are bound by costly and time-consuming
synthesis procedures. In this paper, we demonstrate the eff cacy of an alternative approach based on in silico evolutionary de
novodesign of novel dye structures with improved DSSC power conversion eff ciency (PCE) values. Because the PCE, cannot as
yet be directly computed from f rst principles, the evolutionary f tness function utilizes predictive structure-property relationship
(QSPR) models calibrated from empirical data. Our design approach is applied to phenothiazine-based dye sensitizers. The
chemical structure space is explored using a genetic algorithm that systematically assembles molecules from fragments in a
synthetically tractable manner. Five novel phenothiazine dyes are proposed using our approach where all have predicted PCE
values above 9%.
1 Introduction

The f eld of photovoltaics has seen signif cant developments in
the recent years with a wide variety of solar photovoltaic tech-
nologies emerging that range from those based on crystalline
silicon and thin f lms to organic and polymer cells1. Among
these, dye sensitised solar cells (DSSCs) have attracted con-
siderable attention owing to their use of cheap materials and
short energy payback time2,3. The cell primarily consists of
(i) a photosensitive dye that is bound to a wide band gap semi-
conductor photoanode (typically TiO2), (ii) a redox electrolyte
(such as iodide/tri-iodide ((I−/I−3 ))) and (iii) a platinized pho-
tocathode. The dye, upon excitation (absorption of incoming
light), injects electrons into the conduction band of the TiO2,
that are then transported (through diffusion) to the back col-
lecting electrode. The oxidized dye is regenerated by electron
donation from the electrolyte while the resulting triiodide is
reduced back to iodide ions at the counter-electrode4,5. The
overall eff ciency of conversion of solar-to-electrical energy
of the cell PCE is given by:

PCE(%) =
Jsc·Voc ·FF

Pinc
× 100 (1)

where Jsc is the short circuit current (measured in mA cm−2),
Voc is the open circuit voltage (measured in mV), FF is the

† Electronic Supplementary Information (ESI) available: [details of any
supplementary information available should be included here]. See DOI:
10.1039/b000000x/
a Department of Chemistry, Norwegian University of Science and Technology
(NTNU), 7491 Trondheim, Norway. E-mail: alsberg@ntnu.no
b Department of Chemistry, University of Bergen, Bergen, Norway

f ll factor and Pinc = 100W/cm2 is the intensity of the incident
light (for the AM1.5 simulated solar illumination).

Although a number of ruthenium-based dye sensitizer6,7
with eff ciencies of up to 10% have been reported, concerns
over the availability of the expensive rare earth metals has
led to research on ruthenium-free alternatives. For instance,
zinc-porphyrin dyes exceeding 12% conversion eff ciency8
have been seen as promising substitutes. Interest has also
been increasing in metal-free organic dyes which have poten-
tially lower production costs and easily tunable absorption and
electrochemical properties9. Highest eff ciencies reported for
these organic dyes are around 10.2%10,11. However, further
improvements in terms of performance are required in order
to make DSSCs more commercially viable and competitive
with existing technologies.

In DSSCs, the functions of electron transport, light ab-
sorption and hole transport are handled by separate materi-
als that make it fairly modular5. Improvements in the de-
vice eff ciency can be obtained through optimisation of the
component materials. For example, the use of alternative
metal oxides such as SnO2

12 and ZnO13 as the photoanode
have been investigated while other studies have focused on
iodide-free systems and counter electrode materials14. The
majority of the efforts are largely centered on the dye sen-
sitizer since it governs the photon harvesting and inf uences
many of the key electron transfer processes that impact pho-
tovoltaic performance5,9,15. To this end, several metal-free
organic dyes such as squaraines16, hemicyanines17, triph-
enylamines18,19, coumarins20,21 and phenothiazines22–24 have
been analyzed9,25,26. For optimal performance, dyes are re-
quired to have a wide absorption in the visible region, high
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molar extinction coeff cients, photochemical stability and ox-
ide surface anchoring, to name a few27,28. The ease of design
and modif cation has enabled a number of molecular conf gu-
rations such as D−π −A and D−A−π −A to be studied9,25.
To date, most dyes have generally been discovered through

experimental means, which are often time-consuming and ex-
pensive. While there is a need for new molecules with novel
and desirable attributes, current materials discovery that is
largely guided by chemical intuition and serendipity, cannot
simultaneously explore and optimise relevant parameters in
the vast structure space. In this article, a new approach based
on in silico evolutionary de novodesign is presented, wherein
molecular structures are systematically assembled and itera-
tively ref ned in a computer according to principles of evo-
lution29,30. Central to this scheme is the computation of the
value of the property (to be optimised) for each molecule, also
referred to as the fitness. Given the interest in high perfor-
mance devices, we focus our attention onmaximizing thePCE
(see Eqn. 1) as f tness in our evolutionaryde novoscheme. Al-
though physical characteristics such as charge collection eff -
ciency31, charge recombination and device dependent internal
resistances32 can inf uence the DSSC performance, we show
that improvements can be made through structural modif ca-
tion of the dye sensitizer alone33.

2 Methods and Materials

2.1 Evolutionary de novo Design

A combinatorial exploration of the space of all possible chem-
ical compounds is impractical, and therefore, an eff cient
method for searching this space is needed. Here, we make
use of a de novodesign strategy based on genetic algorithms
(GA)34 which uses the principles of natural evolution (such as
selection, mutation and crossover) to identify new structures
with improved f tness. Since the stochastic search mechanism
in GAs enables rapid navigation of the chemical landscape,
they have been widely applied in areas such as computer-aided
drug discovery35–37 and materials design29,38,39.
In the framework of the evolutionary design strategy, the

key concepts are the molecular representation and the evalua-
tion of the quality i.e. the f tness of the generated structures.
Here, the molecule is encoded as a metagraph containing ver-
tices that represent small fragments (single atoms, functional
groups, substructures), and edges that specify the relationships
(bonds) between them40.
Each fragment contains one or more attachment points

(AP), i.e. bonding positions (available valences) that may
be substituted. An attachment point is characterized by a so-
called attachment point class: an encoded representation, such
as a kind of functional group or a retrosynthetic rule, of the
chemical context from which the attachment point was gener-

ated upon fragmentation. Attachment points may be used to
connect other fragments to form larger entities. The connec-
tion of fragments is governed by a set of compatibility rules
that are collected in a so-called compatibility matrix. These
user-def ned rules may be used to restrict coupling of attach-
ment points to connections corresponding to known and re-
alistic chemical bonds (see Table S2 in the Electronic Sup-
plementary Information (ESI))41,42. Using this approach di-
verse, yet synthetically accessible sets of compounds can be
obtained. The molecular fragments were generated by apply-
ing the BRICS43 fragmentation algorithm (based on 16 cleav-
age rules) available in the RDKit library44 to a large set of
synthesized dyes compiled from the literature9,25,45,46. Over
200 fragments were generated using this process (a subset of
the fragments is shown in Figure F2 in the ESI).
In the de novoapproach, molecular assembly starts with

the random selection of a seed fragment (i.e., a scaffold, see
Figure F1 in the ESI). The process then loops through the at-
tachment points, randomly adding substituent groups by obey-
ing the constraints def ned by the compatibility matrix. The
molecule may be further grown depending on the availabil-
ity of free attachment points. In order to prevent very large
size structures, the probability of substitution decreases with
distance to the scaffold41. For the molecules so formed, ad-
ditional f lters in the form of molecular weight or number of
rotatable bonds may be applied. As part of the iterative re-
f nement, new offspring structures are generated using genetic
operators such as crossover or mutation that are applied to se-
lected compounds sampled from the population. A mutation
applied to a randomly chosen fragment (graph node) can take
the form of a replacement, deletion or addition (growing the
molecule). A crossover between two parent molecules pro-
ceeds by swapping subgraphs connected to randomly chosen
nodes bearing compatible attachment points. At the graph
level, both operators generally involve removal of the edge
connecting the chosen vertex (at the deletion point) and its
parent and reconnecting with the new fragment.
The fitnessof a proposed structure can be obtained from

mainly three sources: 1) synthesis and experimental testing,
2) quantum chemical computations of relevant properties and
3) quantitative structure-property relationships (QSPR). Each
of these f tness sources have advantages and disadvantages.
Synthesis and experimental testing of new structures will give
very accurate f tness values, however the cost and time re-
quired are too high to be practical in a de novoprocess where
perhaps thousands of structures must be analyzed. For some
cases, quantum chemical calculations may be applicable and
they typically provide medium to high accuracy estimates de-
pending on the level of theory being used. When more ac-
curate calculations are needed, the computational cost often
becomes too high. The third alternative is to use QSPR mod-
els which have medium to high accuracy, but at a very low
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computational cost. The main drawback with QSPR models
is that they are local in nature, which means that their predic-
tions cannot always be trusted when extrapolation outside the
applicability domain (AD) is performed.
Direct computation of the PCE f tness for DSSCs using

quantum chemical methods47–49 such as density functional
theory (DFT) and time-dependent DFT (TD-DFT)50,51 is, as
yet, not possible. These methods can only reliably model
some, but not all, of the elementary mechanisms and elec-
tronic properties of the DSSC cell components52. Recently, Ip
et al53 have used quantum chemical calculations to evaluate a
number of molecular properties correlatingwith thePCE. Sta-
tistical modelling based on the calculated variables was then
used to obtain a degree of conf dence for new dyes. Cole et
al54, on the other hand, identify novel classes of dyes using
data-mining procedures (based on semi-empirical computa-
tions and other molecular design criteria) followed by DFT-
level calculations to assess energetic feasibility for application
to DSSCs.
In this article, the third approach to f tness calculation

is chosen where QSPR models based on experimental PCE
values for several molecules are used55. We have recently
demonstrated56,57 that quantitative dye structure-photovoltaic
performance relationship models with high predictive ability
can be obtained. Building on these results, we investigate here
how such QSPR models can be used for fast and accurate ap-
proximations of the PCE f tness in evolutionary de novode-
sign29,58 of new phenothiazine dyes.
Figure 1 outlines the molecular design approach adopted in

this study. Starting with an initial population of molecules
that are generated by a systematic assembly of fragments,
improvements in the PCE are obtained through iterative re-
f nement using evolutionary operations such as selection,
crossover and mutation. The PCE for each proposedmolecule
is assessed using a QSPR model that provides fast quantitative
estimates while adhering to applicability domain criteria es-
tablished for the model. The f nal set of promising candidates
are then further validated using density functional theory ap-
proaches59. In the following sections, we discuss the steps in
more detail.

2.2 QSPR Modelling

A set of 117 phenothiazine-based (see Table S1 in the ESI)
dye sensitizers with PCE ranging between 0.4% and 8.18%
were compiled from the literature. During selection, it was
ensured that the dyes were tested under similar conditions
(same electrolyte, no coadsorber, no cosensitizer and no deag-
gregation agents). In previous studies56,57, we have shown
that vibrational frequency based eigenvalue (EVA) descrip-
tors60 can provide robust predictions of DSSC performance.
For each molecule, a semi-empirical geometry optimisation

Fig. 1Schematic shows an outline of the de novoapproach to
designing new phenothiazine dyes.

at the AM1 level using MOPAC61 is performed and the cal-
culated vibrational frequencies are projected onto a bounded
scale (1− 4000cm1). This range is then sampled at f xed in-
tervals of L and at each sample point x, a Gaussian smoothing
function of f xed standard deviation σ is applied and the de-
scriptor (Dx) is calculated as:

Dx =
3N−6

∑
i=1

1
σ
√
(2π)

exp(
−(x− fi)2

2σ2 ) (2)

where, fi is the ith normal mode frequency of the compound
concerned. Here, we have chosen values of σ = 2 and L = 1.
The available experimental data was divided into separate

training and test sets (50 : 50 split) using the DUPLEX al-
gorithm62. The data were then modelled using partial least
squares regression (PLSR)63. Prior to modelling, all variables
were autoscaled to zero mean and unit variance. The opti-
mal number of latent variables (LVs) was decided based on
the cross-validated (10-fold) root mean square error (RMSE)
averaged over the 50 independent runs. To guard against over-
f tting, y−randomization tests64 (repeated 1000 times) were
also applied. The predictive ability of the model was eval-
uated by the cross-validated correlation coeff cient (R2

cv) and
root mean square error (RMSE):

R2
cv = 1− ∑(yobs,i − ŷcv,i)

2

∑(yobs,i − yobs)2
(3)

RMSE=

√
∑(yobs− ypred)2

n
(4)

where, ŷcv,i is the the predicted value for the excluded
(cross-validated) ith compound, yobs,i is the corresponding ex-

1–12 | 3

Page 3 of 12 Journal of Materials Chemistry A

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
A

A
cc

ep
te

d
M

an
us

cr
ip

t



perimental value and yobs is the mean of the experimental val-
ues.

2.3 Applicability Domain Analysis (ADAN)

However well-trained, there is no guarantee that the obtained
model will be predictive on future datasets65. Every model
therefore, has an applicability domain (AD) which is deter-
mined by the chemical and mechanistic variability associated
with the molecules in the calibration set. A query molecule
can be considered to be inside or outside the AD, and to this
purpose a number of measures have been proposed66. A popu-
lar measure for linear models is the leveragewhich for a given
observation i is calculated as hi = sT

i (S
TS)−1si

67 where the
superscript T refers to the transpose of the matrix/vector, S is
the matrix containing the PLSR scores and si is the scores vec-
tor for compound i overAPLSR components. Compounds for
which hi >

3p
n are generally considered as being outside the

AD. Here, p is the number of model parameters and n is the
number of compounds in the training set.
In a recent article, Carrio et al.,68 have listed six quantita-

tive criteria for assessing the reliability of QSPR predictions.
The values obtained are transformed into qualitative binary
rules (0-inside, 1-outside) by comparing it with the 95% per-
centile of the training set metrics. Reliability of the predic-
tions can thus be evaluated in terms of the rules being vio-
lated. These metrics use Euclidean distances and differences
calculated in the PLSR-score space where very large values
(distances/differences) are indicative of poor predictive abil-
ity. The metrics are:

D1 : Euclidean distance (in the latent variable space of the
PLSR model) between the query molecule and the cen-
troid of the training set.

D2 : Euclidean distance (in the latent variable space of the
PLSR model) between the query molecule and its nearest
neighbour in the training set.

D3 : Distance to model (DModX)69 obtained from the X
residuals of the projection of the new object on to the
PLSR model.

D4 : Difference between the predicted PCE and the mean
PCEvalue of the training set.

D5 : Difference between the predicted PCE and the experi-
mental value for the closest compound in the training set.

D6 : Prediction accuracy based on the standard error of pre-
diction (SDEP) for 5% of the nearest neighbours (in the
training set) of the query compound.

In addition to the leverage and other ADAN measures, we
also calculate the prediction uncertainty70 using a model-
based bootstrapping procedure. Given a training set of size N
(here N = 59), multiple random samples (with replacement)
of the same size are generated. For each such sample a PLSR
model is calculated and applied to the query molecule. In this
study, a total of M = 500 bootstrap PLSR models were gener-
ated and the uncertainty ỹi associated with the prediction for
molecule i is calculated as the standard deviation of the distri-
bution:

ỹi =

√
∑M

j=1(ŷ j − ŷ)2

M− 1
(5)

where M is the number of bootstrap models, ŷ j is the predic-
tion for jth model and ŷ obtained using the full training set
model is taken as the mean of the distribution.

2.4 Quantum Chemical Validation

DFT and TDDFT have become the standard choice for elec-
tronic structure calculations on molecules and solids and have
been increasingly used for theoretical validation of DSSC
properties49,59,71,72. As mentioned earlier, although it is cur-
rently not possible to directly estimate thePCE from f rst prin-
ciples, one can still assess qualitatively or even to some degree
quantitatively, relevant aspects of the proposed dyes.
With reference to Equation 1, the short circuit current Jsc

73

is given by:

Jsc=
∫

LHE(λ )φin j ηcoldλ (6)

where LHE(λ ) is the light harvesting eff ciency at wavelength
λ , φin j is the electron injection eff ciency and ηcol is the charge
collection eff ciency. Since the DSSCs only differ in the dyes
being used, it is reasonable to assume that ηcol is constant.
Thus, the two main factors inf uencing Jsc are the LHE(λ )
and φin j , where the former is given by:

LHE(λ ) = 1− 10− fmax (7)

where fmax is the oscillator strength of the dye correspond-
ing to the maximum absorption wavelength (λmax) of the dye.
The charge injection eff ciency (φin j ) is closely related to the
driving force of electron injection (∆Gin j ) i.e. the free energy
change (in eV) given by:

∆Gin j = Edye∗−ETiO2
CB (8)

where Edye∗ is the excited state oxidation potential of the dye
and ECB is the conduction band edge of the semiconductor
(experimental value of -4.0 eV vs. vacuum is used74,75). Both
φin j and LHE(λ ) have to be as high as possible in order to
maximize the photocurrent.
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In addition to the spectral absorption properties, another im-
portant requirement for donor-acceptor dyes is that of an eff -
cient intramolecular charge separation which facilitates elec-
tron injection from the excited dye into the semiconductor. To
this end, we have quantif ed these charge-transfer (CT) ex-
citations using the approach proposed by Le Bahers et al.76.
The method starts by identifying barycenters of regions (upon
excitation) of electron density depletion (R−) and increment
(R+) given by:

R+ =

∫
rρ+(r)dr∫
ρ+(r)dr

(9)

and

R− =

∫
rρ−(r)dr∫
ρ−(r)dr

(10)

Here, ρ+(r) and ρ−(r) def ne the points in space where an
increase or decrease in density is produced and are calculated
as:

ρ+(r) =

{
∆ρ(r), if ∆ρ(r)> 0
0, if ∆ρ(r)< 0

(11)

and

ρ−(r) =

{
∆ρ(r), if ∆ρ(r)< 0
0, if ∆ρ(r)> 0

(12)

where ∆ρ(r) is def ned as the difference between the total
density of the considered excited (ρES(r)) and ground states
(ρGS(r)):

∆ρ(r) = ρES(r)−ρGS(r) (13)

Based on Equations 9-13, the computed charge-transfer pa-
rameters include:

dCT The charge transfer distance calculated as the difference
between the barycenters dCT = |R+−R−|.

qCT The amount of charge transferred qCT =
∫

ρ+(r)dr.

According to the Marcus electron transfer theory77, the to-
tal reorganization energy λtot can also affect the kinetics of
electron injection. Therefore, in order to enhance the Jsc

and to minimize energy losses, a small reorganization energy
is favoured. In the calculation of the reorganization energy
which has an inner-sphere contribution λi and an outer-sphere
contribution λs (due to the surrounding dielectric medium),
the latter is often ignored78,79. The internal reorganization en-
ergy λi

80 is therefore calculated as:

λi = [E0(G+)+E+(G0)]− [E+(G+)+E0(G0)] (14)

where E j is the energy of the system in charge state j and
is dependent on Gk which is the geometry of the system in
charge state k. Here, 0 and + correspond to the neutral and
cationic charge state respectively.

2.5 Computational Details

The PLSR modelling was carried out using the pls81 pack-
age available in the R82. The structures emerging from the
de novowere subjected to conformational search using cxcalc
(based on the Dreiding force f eld83). The lowest energy con-
former was then geometry optimised, using the AM1 Hamil-
tonian in MOPAC61. The EVA descriptors were then calcu-
lated using these optimised geometries. The de novoalgo-
rithm and molecular descriptor calculation routines were im-
plemented in an in-house software written in Java using the
CDK toolkit84.
For further quantum chemical analysis, the molecular ge-

ometries were optimised with DFT using the Beckes three-
parameter and Lee-Yang-Parr hybrid (B3LYP) functional85
and a 6− 31G(d) basis set. For the simulation of the ab-
sorption spectra, TD-DFT calculations were carried out in
dichloromethane solution using the CAM-B3LYP functional
with the same basis set. The 30 lowest excitation energies
were considered in these calculations. Solvation effects were
included by means of the conductor-like polarizable contin-
uum model (CPCM)86. Charge transfer parameters were cal-
culated using software provided by Le Bahers et al.76. All cal-
culations were carried out using the Gaussian 09program87.

3 Results and Discussion

3.1 QSPR Models

For the calibration set containing 59 phenothiazine dyes, a 3-
component PLSR model with R2

cv = 0.72 and RMSE= 1.06
was obtained (see Table S1 in the ESI for additional details).
The true test for any model is to check its predictions against
molecules that were not part of the training. The performance
of the proposed model was therefore further verif ed using a
test set of 58 dyes that span an experimentalPCE range (0.4%
to 8%) similar to that of the training set. Table 1 summa-
rizes the test set performance of the model. Overall, the model
exhibits good predictive characteristics with R2

test = 0.68 and
RMSEtest = 1.13 which mirrors the values obtained with the
training data. The table also shows additional model diagnos-
tics that include the leverage and the number of ADAN rules
violated. With respect to the leverage, none of the predictions
exceed the cutoff value of h∗ = 0.15. For predictions with
no violations, the maximum error in the PCE is around 2%
and increases to 3.5% for up to 3 violations. Overall, only
9 dyes have a absolute prediction error greater than 2%. A
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Table 1 Independent external validation set performance for the experimental values of the PCE. Test set molecules have been sorted
(ascending) according to the number of ADAN violations.

Molecule PCE QSPR hi ADAN Molecule PCE QSPR hi ADAN
T01 5.60 4.40 ± 0.458 0.047 0 T30 8.07 6.88 ± 0.404 0.022 0
T02 6.02 5.75 ± 0.439 0.046 0 T31 5.23 5.87 ± 0.530 0.032 0
T03 0.80 1.68 ± 0.945 0.093 0 T32 6.29 6.03 ± 0.312 0.035 0
T04 4.56 3.80 ± 0.637 0.034 0 T33 6.02 5.56 ± 0.385 0.026 0
T05 0.60 0.97 ± 0.564 0.103 0 T34 5.60 4.98 ± 0.364 0.013 0
T06 6.85 6.27 ± 0.799 0.047 0 T35 4.53 5.44 ± 0.434 0.040 0
T07 6.70 5.94 ± 0.480 0.084 0 T36 5.36 5.66 ± 0.463 0.065 0
T08 5.73 5.50 ± 0.381 0.014 0 T37 7.98 5.66 ± 0.371 0.004 0
T09 4.80 3.68 ± 0.774 0.052 0 T38 5.39 6.08 ± 0.337 0.039 0
T10 7.30 6.63 ± 0.454 0.021 0 T39 3.94 6.40 ± 0.510 0.043 1
T11 3.56 4.28 ± 0.456 0.031 0 T40 3.60 3.44 ± 0.539 0.021 1
T12 7.38 7.47 ± 0.452 0.042 0 T41 2.10 3.90 ± 0.588 0.028 1
T13 1.90 2.06 ± 0.640 0.037 0 T42 3.54 4.83 ± 0.349 0.012 1
T14 2.48 4.29 ± 0.433 0.004 0 T43 6.40 6.14 ± 0.855 0.026 1
T15 5.12 5.15 ± 0.429 0.013 0 T44 2.24 5.27 ± 0.375 0.005 1
T16 3.91 4.01 ± 0.352 0.031 0 T45 6.82 3.86 ± 0.687 0.019 1
T17 8.08 7.37 ± 0.414 0.035 0 T46 5.22 4.20 ± 0.548 0.033 1
T18 7.13 5.82 ± 0.329 0.005 0 T47 1.30 0.87 ± 0.657 0.078 1
T19 6.32 6.32 ± 0.396 0.018 0 T48 6.13 5.26 ± 0.437 0.017 1
T20 4.40 4.40 ± 0.961 0.032 0 T49 4.07 4.25 ± 0.360 0.024 1
T21 5.53 5.52 ± 0.441 0.022 0 T50 4.39 5.41 ± 0.408 0.020 1
T22 6.80 6.21 ± 0.490 0.040 0 T51 4.80 4.61 ± 0.402 0.032 1
T23 6.37 6.12 ± 0.347 0.011 0 T52 0.40 2.67 ± 0.613 0.066 1
T24 5.12 4.56 ± 0.317 0.012 0 T53 4.43 4.49 ± 0.367 0.022 1
T25 6.80 6.06 ± 0.469 0.010 0 T54 0.50 1.90 ± 1.088 0.093 1
T26 1.30 1.85 ± 0.523 0.097 0 T55 6.44 7.26 ± 0.744 0.108 2
T27 4.79 5.17 ± 0.463 0.016 0 T56 5.40 4.49 ± 0.590 0.013 2
T28 7.44 5.32 ± 0.515 0.036 0 T57 6.72 4.22 ± 0.412 0.035 2
T29 4.41 5.35 ± 0.519 0.003 0 T58 3.88 4.12 ± 0.595 0.043 2

commonly violated rule is that of the distance to the model
DModXwhich provides an indication of the distance from the
observation to the model plane. Unlike the other AD mea-
sures, the uncertainty relies purely on the variability of the pre-
dictions that results from using different training sets drawn
from the same population. Thus, compounds with very small
uncertainties are expected to have relatively small prediction
errors. High uncertainties are generally associated with dyes
containing features that are very sensitive to the training set
composition. However, for the test set observations in Table 1,
the calculated uncertainties do not show any signif cant varia-
tions and are largely below 1.

3.2 QSPR-Guided Design of Dyes

Evolutionary algorithms have shown great promise in the
search for solutions to molecular design problems that can be
highly non-linear88. A central part of this approach consists
of evaluating the f tness of the proposed structures. Although
limited by their domain of applicability, QSPR models typ-

ically obtain quantitative estimates of the PCE at the order
of < 10 seconds (on a Intel Core i5-2400 CPU @ 3.10GHz)
and therefore can be easily integrated into a virtual high-
throughput screening framework89,90. Other aspects relevant
to the design are the fragment database and the genetic algo-
rithm parameters.
For this study, we used a population size of 200 molecules

and the genetic algorithm ran for up to 200 generations with
tournament selection. Crossover and mutation probabilities
were set to 0.50 with f ve offspring produced in each gen-
eration. In order to limit the extent of extrapolation, model
predictions which had more than three ADAN violations were
not allowed to enter the population. An additional constraint
of maximum 1000 Daltons was also imposed to restrict the
size of the molecules. Over ten independent runs were exe-
cuted which yielded around 9000 unique structures with pre-
dicted PCE in the range 5-10%. The score plot based on the
f rst two latent variables in Figure 2 summarizes the PCEval-
ues of the f nal populations of the repeated runs. As can be
seen from the plot, the increasing scores along both LVs cor-
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Fig. 2PLSR scores plot of the f rst two LVs shows the positions of
the training set observations (shown as f lled triangles) and the
molecules produced from multiple de novoruns (shown as ”+”
symbols). The points have been coloured according to the value of
the PCE.

respond to increasing PCE. A clear separation is also seen be-
tween molecules with PCE< 2% (shown as red triangles) and
those that exceed 5%. Although molecules with PCE> 10%
were also identif ed, the number of ADAN violations were
also found to increase. Setting the ADAN violation threshold
to three allows us to exclude molecules that are too dissimilar
or too far from the training set to make reliable predictions of
the PCE.

3.3 Quality Assessment

In order to validate the predictions, f ve structures (see Table
2) were subjected to additional calculations at the DFT level
of theory. All selected molecules have predicted PCE above
9% and associated uncertainties around ±2% (see Table 3).
As part of the DFT-based evaluation of the dyes, we focus
on aspects that can be used as a guide to setting performance
expectations. In particular, we examine key features such as
the UV-vis spectra, charge-transfer character, reorganization
energy for oxidation and the free energy of dye oxidation in
solution53.
As can be seen from the ground state density plots in Ta-

ble 2, the HOMO is largely localized over the phenothiazine
moiety (donor) while the LUMO is distributed electron def -

cient groups (acceptor and anchoring groups) that are indica-
tive of an eff cient charge separation5. The presence of these
electron-withdrawing groups (such as dihydrothiazole) have
been shown to improve the spectral response and charge in-
jection92. The computed maximum absorption wavelengths
λmax, oscillator strengths ( fmax) and the light harvesting eff -
ciency LHE(λ ) are listed in Table 3. For all the investigated
dyes, the f rst signif cant transition is calculated at around 450-
530 nm, with oscillator strengths ( fmax) marginally greater
than 1, thus predicting a strong absorption in the visible
region (see simulated absorption spectra in Table 2). The
dyes PTZ1-PTZ3 additionally contain electron-def cient tria-
zole groups which have been shown to have excellent electron
transport93,94 properties. Among the proposed structures, dye
PTZ-1 which also contains a strong electron donating group
(julolidine), exhibits the maximum absorption wavelength at
537 nm that is dominated by a HOMO→LUMO transition.
PTZ-1 also shows the strongest charge transfer character with
a computed qCT value of 0.72 and a dCT of 3.76 °A. The dye
PTZ-4 which is predicted to have the highest PCE= 9.52 and
LHE(λ ) = 0.92, contains a nitrophenyl moiety as an addi-
tional anchoring group. Cong et al.95, have suggested that
such substituents can act as robust anchors by increasing the
electron injection ability of the dye. The largest value of the
calculated injection driving force (∆Gin j ) are associated with
dyes PTZ-4 and PTZ-5. Closer inspection of the reorganiza-
tion energies, LHEλ and ∆Gin j in Table 3 suggests that these
dyes can be expected to have large values of the Jsc.
Compared with the highest PCE of 8.18% (C09 in the ESI)

as reported in the literature, an improvement of more than 1
percentage point has been predicted for the proposed dyes.
This increase may be attributed to the additional anchoring
groups present in these dyes. For instance, as shown by Zer-
vaki et al96, the piperidine moiety in PTZ2 (see Table 2) can
act as an additional anchoring group. It has been observed that
incorporating bulky alkyl chains into the dye structure can pre-
vent aggregation97,98. Furthermore, bulky groups also facili-
tate the suppressing of interfacial charge transfer recombina-
tion33. For example, in PTZ-1, the secondary electron donor
unit i.e. julolidine not only extends the absorption region but
may also limit aggregation99. In C09, this function is typically
performed by the hexyl and hexyloxy groups. To investigate
this effect further, we replaced (manually) the julolidine group
in PTZ-1 with alkyl chains. The results of these substitutions
are summarized in Table 4. Interestingly, for the bulky alkyl
substituents, only a marginal decrease of up to 0.2% in the pre-
dictedPCE is seen. Although a much smaller ethyl substituent
signif cantly increases thePCE to over 11%, the predictive un-
certainties also increase as indicated by the number of ADAN
violations.
It should be pointed out that the whole concept of an appli-

cability domain is heavily inf uenced by the idea of trusting
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Table 4Modif cations to the dye PTZ-1 listed in Table 2. The
julolidine moiety was replaced with different alkyl chains that have
been used in most studies.

Dye PCE ADAN

9.30±2.26 2

9.10±2.23 4

11.18±2.67 5

the predictive ability of a model when the query structures are
similar to those that were used in the calibration data set. In
our case, our objective is to perform an extrapolation(beyond
the region covered by the calibration data) by searching for
new structures that are by def nition different and hopefully
better than those seen before. The ADAN measures that we
have adopted in this study are used to provide warnings when
substantial extrapolation by the model occurs.

4 Conclusions

In this article, we have outlined a computationally eff cient
procedure to identify novel phenothiazine dyes with improved
properties. At the heart of the approach is a QSPR-driven
methodology combined with an evolutionary strategy for dye
design. The nature-inspired approach has been able to identify
a diverse collection of promising alternatives that have been
further verif ed using theoretical studies. A logical extension
of this work would be to apply the scheme to a multi-objective
problem where, for instance, both current, voltage and other
important parameters can be optimized. The approach pro-
posed here is not limited to DSSCs and can be easily expanded
to a wider array of applications.
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10 D. Joly, L. Pellejá, S. Narbey, F. Oswald, J. Chiron, J. N. Clifford, E. Palo-
mares and R. Demadrille, Sci. Rep., 2014, 4,.

11 W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan and
P. Wang, Chem. Mater., 2010, 22, 1915–1925.

12 E. Ramasamy and J. Lee, J. Phys. Chem. C, 2010, 114, 22032–22037.
13 T. Yoshida, J. Zhang, D. Komatsu, S. Sawatani, H. Minoura, T. Pauporté,

D. Lincot, T. Oekermann, D. Schlettwein, H. Tada, D. Whrle, K. Fun-
abiki, M. Matsui, H. Miura and H. Yanagi, Adv. Funct. Mater., 2009, 19,
17–43.

14 M. Wang, C. Grätzel, S. M. Zakeeruddin and M. Grätzel, Energy Environ.
Sci., 2012, 5, 9394–9405.

15 C.-H. Siu, L. T. Lin Lee, P.-Y. Ho, P. Majumdar, C.-L. Ho, T. Chen,
J. Zhao, H. Li and W.-Y. Wong, J. Mater. Chem. C, 2014, 2, 7086–7095.

16 C. Qin, W.-Y. Wong and L. Han, Chem. Asian J, 2013, 8, 1706–1719.
17 Y.-S. Chen, C. Li, Z.-H. Zeng, W.-B.Wang, X.-S.Wang and B.-W. Zhang,

J. Mater. Chem., 2005, 15, 1654–1661.
18 G. Wu, F. Kong, Y. Zhang, X. Zhang, J. Li, W. Chen, W. Liu, Y. Ding,

C. Zhang, B. Zhang, J. Yao and S. Dai, J. Phys. Chem. C, 2014, 118,
8756–8765.

19 C. Sakong, H. J. Kim, S. H. Kim, J. W. Namgoong, J. H. Park, J.-H. Ryu,
B. Kim, M. J. Ko and J. P. Kim, New J. Chem., 2012, 36, 2025–2032.

20 K. D. Seo, H. M. Song, M. J. Lee, M. Pastore, C. Anselmi, F. D. Angelis,
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Table 2Chemical structures of the investigated dyes. Computed isodensity surfaces (0.02 a.u.) of HOMO and LUMO orbitals of dyes.
TDDFT spectra are calculated using Gausssum91 .

Dye HOMO LUMO Absorption Spectra
PTZ-1 (9.34%)

PTZ-2 (9.27%)

PTZ-3 (9.20%)

PTZ-4 (9.52%)

PTZ-5 (9.31%)
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Table 3Calculated TDDFT-CAM-B3LYP/6−31G(d) excitation energies (in dichloromethane) for the lowest transitions, oscillator
strengths( fmax), composition in terms of molecular orbital contributions and the light harvesting eff ciency LHE(λ ) for the free dyes. Also
shown are the charge transfer distance (dCT in °A) and amount of charge (qCT) transferred. The letters ”H” and ”L” in column 7 (Major
transitions) correspond to the HOMO and LUMO orbitals. The last column ∆Ginj is the driving force of charge injection (see Equation 8).

Dye PCE(%) λmax (nm/eV) f LHE λ qCT dCT °A Major Transitions λi (eV) ∆Ginj (eV)
PTZ-1 9.34±1.92 537/2.31 1.06 0.913 0.72 3.76 H-2→L (11%), H→L (77%) 0.14 -1.00
PTZ-2 9.27±2.32 521/2.38 1.00 0.900 0.68 3.54 H-1→L (15%), H→L (77%) 0.13 -0.96
PTZ-3 9.20±1.80 507/2.44 0.92 0.880 0.68 3.43 H-1→L (18%), H→L (72%) 0.20 -0.88
PTZ-4 9.52±2.07 505/2.46 1.10 0.919 0.69 3.47 H→L (86%), H-1→L (8%) 0.27 -1.18
PTZ-5 9.31±2.24 461/2.69 1.02 0.905 0.70 3.57 H-3→L (19%), H-1→L (64%) 0.21 -1.47
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