Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsA

1	Chemical Activation of Boron Nitride Fibers for Improved Cationic Dye Removal	
2	Performance†	
3	Jie Li ^{a,b} , Yang Huang ^{a,b} , Zhengya Liu ^{a,b} , Jun Zhang ^{a,b,*} , Xiaoxi Liu ^{a,b} , Han Luo ^{a,b} , Yuanhui	
4	Ma ^{a,b} , Xuewen Xu ^{a,b} , Yang Lu ^{a,b} , Jing Lin ^{a,b,c,*} , Jin Zou ^{c,d} , Chengchun Tang ^{a,b,*}	
5	^a School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130,	
6	P. R. China	
7	^b Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Tianjin 300130, P.R.	
8	China	
9	^c Materials Engineering, The University of Queensland, QLD 4072, Australia	
10	^d Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, QLD 4072,	
11	Australia	
12		
13	*Corresponding author. Tel.: +86-22-60202660; fax: +86-22-60202660	
14	E-mail address: junnano@gmail.com (J. Zhang), dr.linjing@gmail.com (J. Lin),	
15	tangcc@hebut.edu.cn (C. Tang).	
16 17	<i>† Electronic Supplementary Information (ESI) available. See DOI: 10.1039/b00000x/</i>	
18		
19		

21 Abstract: Adsorption represents an efficient and economical approach for water purification and 22 substantial research are being performed to developing effective sorbent materials. Porous boron 23 nitride (BN) composed of light elements is considered as a promising candidate for pollution 24 treatment due to its unique polarity of B-N bonds, high specific surface area, numerous structural 25 defects, chemical stability, and oxidation resistance. However, adsorption performance based on 26 porous BN is hindered by either few activated sites or low degree of crystallinity. In this work, 27 we have developed a simple chemical method to activate pre-obtained well-crystallized porous 28 BN fibers in acid solution. The successful chemical activation has been identified by FTIR 29 spectra and zeta potential measurement. Benefiting from these advantageous features, the 30 activated BN fibers with high stability exhibited enhanced cationic dye removal performance 31 compared to the un-activated ones. The effects of pH value, contact time, temperature and 32 adsorbent amount on the methylene blue (MB) adsorption properties were analyzed. The 33 adsorption equilibrium data were interpreted in terms of the Langmuir and Freundlich models 34 and the results showed that Langmuir isotherms best represent the adsorption system. The 35 maximum adsorbed amount for MB was high up to 392.2 mg/g at pH 8.0 and 30 °C. The 36 adsorption rate was sharply enhanced after chemical activation. The excellent reusability of the 37 activated BN was also confirmed. It is shown that the chemical activation plays a key role in 38 enhanced dye adsorption performance. Therefore, our developed chemical activation method for 39 porous BN fibers opens the door toward to the practical activated BN for drinking water 40 purification.

41

42 **1. Introduction**

Environmental pollution problem has attracted great attention because many industries such as 44 dye manufacturing and printing have produced highly coloured effluents, and disposal of these 45 wastes into water has resulted in larger volume of dve wastewaters¹. The coloured effluents not 46 only lead to organic load and toxicity to the environment, but also impede light penetration to 47 affect aquatic ecosystems². The adsorption has been found to be superior as compared to other 48 49 traditional treatment methods for wastewater treatment due to its low-cost, easy availability, simplicity of design, high efficiency, ease of operation and ability to treat hazardous dyes and 50 metal ions ^{3, 4}. Various adsorbents have been applied for the hazardous dyes removal from 51 aqueous solution, including activated carbon ⁵, fly ash and red mud ⁶, mesoporous 52 aluminophosphate⁷, free-standing carbonaceous nanofiber membranes⁸, magnetic powder 53 MnO-Fe₂O₃ composite ⁹, and porous CeO₂¹⁰. However, the high-quality adsorbents with high 54 55 removal capacity and reusability are still required. Compared with the traditional carbon material, BN can be considered as promising adsorbent due to their highly stability in harsh conditions, 56 which enables more treatment technique for recycled usage^{11, 12}. 57

58 Very recently, several kinds of porous BN nanostructured materials have been successfully 59 fabricated, and their applications in water purification and treatment have been extensively investigated due to their high specific surface area, numerous density defects and large void 60 volume¹³⁻¹⁵. Specially, activated BN has also been developed by our group to improve their 61 62 adsorption performance, in which more crystal defects and hydroxyl or organic surface groups have been introduced via the presence of P123 (poly(ethylene glycol)-poly(propylene glycol)-63 poly(ethylene glycol)) as a activating reagent ¹⁶. Note that the obtained activated BN is not only 64 65 short of stability in very harsh conditions due to their poor degree of crystallinity, but also

Journal of Materials Chemistry A Accepted Manuscript

66 contains many impurities because of the introduction of P123. Hence these shortcomings such as 67 instability and lack of numerous adsorption sites need to overcome to further improve their 68 performance in wastewater treatment. Herein, we report a kind of novel porous BN fibers with 69 high crystallinity and abundant activated sites via a two-step synthesis route, which exhibited 70 greatly improved cationic dye removal performance. Firstly, BN fibers with high degree of 71 crystallinity were prepared by using boric acid and melamine as the starting reactants in NH₃ 72 flow at a high temperature. Secondly, a new chemical activation pretreatment was utilized to 73 activate as-received BN fibers to obtain numerous surface functional groups and defects, so as to 74 increase their adsorption capacity. The resultant adsorbents were subsequently tested in the 75 removal of cationic dyes in different experimental conditions to confirm the validation of 76 chemical activation to enhance adsorption capacity (up to 392.2 mg/L) and uptake rate. 77 Langmuir and Freundlich isotherms models have been used to further analyze the adsorption data. Furthermore, the removal efficiency of ~ 94 % was still retained even after fifteen 78 79 adsorption-regeneration cycles. A thorough knowledge of activated BN enables the preparation 80 of adsorbents with appropriate characteristic for drinking water purification.

81 **2. Experimental**

82 2.1. Material Synthesis

Analytical grade H_3BO_3 and $C_3N_6H_6$ were used directly without further purification as starting materials to synthesize porous BN fibers. Methylene blue, as a model cationic dye contained the aromatic rings, was used to study the hazardous dye removal nature of activated BN. Table S1 and Figure S1 (Supporting Information) exhibit the property and structure of cationic dye MB. A mixture of H_3BO_3 and $C_3N_6H_6$ at a molar ratio of 1:2 was dissolved in 300

88 ml of the distilled water. The reaction mixtures were heated and kept at a boiling state to 89 completely evaporate of the distilled water. The white precipitate ($C_3N_6H_6 \cdot 2H_3BO_3$, $M \cdot 2B$) was 90 obtained. Subsequently, the precursors were treated through a multi-stage heat process to 91 produce BN fibers in an alumina tube using a resistance-heating horizontal furnace. Firstly, the 92 precursors were calcined at 546°C for 2 h (ramp rate 5°C/min). Secondly, they were heated at 93 1560 °C for 4 h at a heating rate of 10 °C/min. All reaction was carried out in a flow of NH₃ (200 94 ml/min).

The activation process was carried out by adding 3g of above obtained BN fibers into 50% (w/w) of the activating reagent (1 M H_2SO_4 aqueous solution and 8 M HNO_3 aqueous solution mixed together with their weight ratio of 1:1). After sonication for 30 min at room temperature, the obtained slurry was mechanically stirred in an 80 °C water bath for 2 h. After activation, the sample was washed with deionized water for several times until the pH of the rinse became neutral (pH 6.8-7.2), following by drying at 105 °C for 24 h. The sample prepared was labeled as activated BN.

102 2.2. Characterization techniques

The structure of the samples was examined using X-ray powder diffraction (XRD, BRUKER D8 FOCUS) analysis. Fourier transformer infrared (FTIR) spectra were recorded on a Nicolet 7100 spectrophotometer between 400 and 4000 cm⁻¹. Transmission electron microscopy (TEM) experiments were performed on a Tecnai F20 electron microscope (Philips, Netherlands) with an acceleration voltage of 200 kV. The nitrogen physisorption isotherms were measured at -196 °C on an AutoSorb iQ-C TCD analyzer. Prior to the measurement, the samples were activated in vacuum at 300 °C for 3 h. The Brunauer-Emmett-Teller (BET) specific surface area was

Journal of Materials Chemistry A Accepted Manuscript

110 calculated from the nitrogen adsorption data in the relative pressure ranging from 0.01 to 0.3. 111 The pH values of the solutions were measured by pH meter (PHS-25, Hangzhou). A double 112 beam UV/vis spectrophotometer (HITACHI, U-3900H) was used to determine the concentration 113 of dye samples. The thermostability of the products was tested by simultaneous thermal analysis 114 (SDT-Q600). Conventional elemental analyzers (Leco, TC500 and CS230, USA) were applied to 115 analyze the detailed N, O, and C contents of the two adsorbents, respectively. X-ray 116 photoelectron spectroscopy (XPS) measurement was performed in an ultrahigh vacuum with a 117 VG ESCALAB 210 electron spectrometer equipped with a multichannel detector.

118 2.3. Adsorption experiment

119 For all adsorption experiments in this work, the studies were carried out in glass flask with a 120 magnetic stirrer. Stock solution (100 mg/L) of MB dye was prepared via adding MB dyes (100 121 mg) into 1 L of distilled water, which acts as the source for dissolution. The mixtures were 122 continuously stirred by a magnetic stirrer at 150 rpm, and then centrifuged and filtered. For the 123 adsorption rate tests, 250 ml of MB solution at the initial concentration of 25 mg/L and 60 mg 124 adsorbents were used. The solution pH was adjusted to 8. The two adsorbents were taken at 125 different time intervals. In order to obtain the maximum removal of MB over the two adsorbents, optimized conditions, such as contact time, adsorbent dosage and contact temperature, and pH 126 127 value, were investigated. In the experiments of equilibrium adsorption isotherm, the solution 128 equilibrium pH was maintained at 8, and 250 ml MB solution was mixed with the dosages of 129 adsorbents ranging from 10 to 100 mg. The temperature effect of adsorption of MB on the 130 activated BN and the BN fibers was measured in the range of 10-50 °C. The pH values of dve 131 solutions were adjusted from 2 to 12 by adding amount of 0.1 M HCl or NaOH solutions, 132 respectively. The solution concentrations (the supernatants) were determined by UV/vis

133 spectrophotometer at the corresponding $\lambda_{max} = 663$ nm. The dye removal percentage of MB over 134 the two adsorbents was calculated by the Equation 1

135
$$\eta$$
 (%)= (C₀-C_e) · 100/C₀ (1)

136 Where C_0 and C_e (mg/L) are the initial solution concentration and equilibrium concentration, η is 137 the dye removal percentage of MB, respectively.

138 2.4. Regeneration

The regeneration of activated BN was carried out by thermal degradation method. After the filtration, the collected adsorbent containing MB was dried at 100 °C, then placed into a muffle furnace and heated at 400 °C for 1 h. the obtained adsorbent was chemically re-activated with the mixed solution of dense sulfuric acid and nitric acid for use in the further test.

143 **3. Results and discussion**

144 3.1. Characterization of activated boron nitride

XRD patterns of the as-growth adsorbents, the activated BN and the BN fibers, are displayed in 145 146 Figure 1a, respectively. Both of them display similar sharp diffraction peaks at $2\theta = -26.7$ ° and ~ 43.8°, corresponding to the (002) and (100) plane spacing of hexagonal BN $^{17, 18}$. When 147 comparing with our previously reported activated BN by P123¹⁶, as illustrated by the XRD 148 149 pattern in Figure S2 (Supporting Information), currently obtained BN fibers exhibits higher 150 degree of crystallinity. The higher crystallinity of as-obtained activated BN endows its better 151 stability during adsorption process as sorbent, which has been further identified by the 152 thermogravimetry measurement as shown in Figure S3 in Supporting Information. Figure 1b 153 shows FTIR spectra of the activated BN and the BN fibers, respectively. Two main peaks at \sim

1400 and $\sim 800 \text{ cm}^{-1}$ are verified to the B-N stretching vibrations and B-N-B bending vibrations 154 ¹⁹⁻²², which can be both detected in the two samples. Moreover, intensity increased vibration 155 band of \sim 3420 cm⁻¹ (B-NH₂) and a new emerging peak located at \sim 3250 cm⁻¹ (B-OH) can be 156 observed in the activated BN^{14, 20}. We deduce it should be ascribed to the chemical activation 157 158 process, which facilitates functionalization of hydroxyl and organic groups (B-NH₂/B-OH) on 159 the BN fibers. Besides, additional surface bonds were also measured on the surface of activated BN, i.e. B-N-O and B-N-O²⁰. In addition, XPS spectra and elemental analysis further suggest 160 161 that the possible functional groups were introduced onto the surface of the as-prepared BN fibers 162 via chemical activation, as shown in Figure S4 and Table S3 (Supporting Information). The 163 external morphology and microstructures of the activated BN and the BN fibers were 164 investigated by TEM, as displayed in Figure 1(c,d). As compared in the rectangle regions in 165 Figure 1c and 1d, BN fibers exhibit smooth edges in the TEM image, whereas the edges of 166 activated BN are rather rough, suggesting numerous surface defects were introduced after 167 chemical activation. Taking into account of the unchanged crystal structures of two kinds of 168 porous BN fibers as shown in Figure 1a, the chemical activation reaction should mainly take 169 place on surface rather than inside.

The possible activated reaction schemes of the BN fibers by the treatment of the mixed acid solution are provided in Figure 2. Because the melamine was selected as one of the stating reactants, the decomposition of melamine resulted in the present of carbonaceous composition in the as-prepared BN fibers ²³. It is known that carbonaceous composition could be removed from the lattice and/or surface of BN via the reaction with dense nitric acid at 80 °C (reaction equation (1) of Figure 2). This reaction is help to improve the number of defects, the specific surface area, and the pore volume, as illustrated in Figure 1d and 2. The addition of sulfuric acid can

accelerate the rate of the reaction 1 by capturing water. A high-concentration acidic solution creates sufficient oxidized radicals on the BN fibers surface, as displayed in reaction equation (2) of Figure 2 ²⁴. The reaction equation (3) of Figure 2 shows that a low-concentration solution results in the formation of functional groups on the BN fibers surface ²⁵. Therefore, chemical activation to the BN fibers via the mixed solution of sulfuric acid and nitric acid is favorable to introducing functional groups and defects onto the surface, which can enhance the adsorption ability of the activated BN.

184 Figure 3 illustrates nitrogen adsorption/desorption isotherms (-196 °C) and the corresponding 185 pore size distributions of the two adsorbents, respectively. The measured isotherms (Figure 3a) 186 can be classified as type I isotherm according to the IUPAC nomenclature, and exhibit a H4 type 187 broad hysteresis loop. Since type I isotherm and Type H4 loops also indicate that the pores 188 contain microporosity and narrow slit-shaped mesopores, we use a Non-Local Density 189 Functional Theory (NLDFT) method to determine the pore widths and size distribution for the activated BN and the BN fibers, respectively ^{23, 26}. Both samples exhibit a broad pore size 190 191 distribution (PSD), as shown in Figure 3b, which are given a bimodal distribution with the main characteristic pore sizes of ~1.3 and ~3.9 nm. Comparing with both curves, we clearly observe 192 that the surface area of the activated BN slightly increased from 1045 to 1104 m^2/g when 193 194 activated by activating reagent. Accordingly, the pore volumes also increased from 0.57 to 0.63 cm^{3}/g . Therefore, the activation process influences its specific surface area and pore volume 195 196 simultaneously without destruction of their integrity.

197 To further identify the validity of activation, their surface charge conditions were monitored 198 by zeta potential. Figure 4 show that the activated BN had an overall negative surface charge at 199 above pH 2, whereas the BN fibers exhibited almost an overall neutral charge even at pH 8. In addition, the zeta-potential of activated BN rise as pH value increase due to protonation of the
hydroxyl and amino groups on the surface. Therefore, one can say that the chemical activation
leads to more negative charge surface, which come from the induced functional groups and
defects. Accordingly, more negative charge results in enhancement of the electrostatic attraction
between the activated BN and the pollution dye molecules.

205 3.2. Adsorption studies

206 Considering its porous structure with high specific surface area also with more negative 207 charges, the as-obtained chemical activated BN fibers should have an excellent adsorption 208 activity when used as a sorbent in wastewater treatment. To demonstration the potential 209 applicability of the present activated BN fibers in these applications, we investigated its 210 adsorption activity for the removal of MB in aqueous solutions relative to that of the untreated 211 one. MB adsorption capacity was observed to be excellently up to 392.2 mg/g. Furthermore, the 212 extremely rapid adsorption was observed that the residual dve was just 1.5 wt % within 5 min 213 and 0.2 wt % within 30 min, respectively, when 20 mg of activated BN was applied in a 250 ml 214 of the dye solution (25 mg/L) at 30 °C and pH value of 8. The effect of removal of MB depends 215 on the experimental parameters, such as the characteristic of the adsorbents, contact time, pH 216 value, adsorption temperature, etc. Therefore, these experimental parameters are optimized with 217 the aim of achieving maximum adsorption.

Figure 5a exhibits the rates of MB adsorption on the activated BN and the BN fibers obtained by batch contact time studies with an initial MB concentration of 25 mg/L and the adsorbents of 60 mg at pH of 8, respectively. It is worthy to note that, for the activated BN, the removal was very fast during the first 5 min, and then the equilibrium was reached within 30 min. In addition,

the adsorption capacities onto the two adsorbents were in the order of the activated BN > the BN fibers. The fast adsorption reveals a high complexation rate between the activated BN and the dye molecules, which is correlated to its surface defects and hydroxyl and organic groups on the surface. More hydroxyl and organic groups and surface defects are favorable for the diffusion of dye molecules onto much more activated sites within a shorter time ²⁷.

227 The MB adsorption as a function of the activated BN dosage (10-100 mg) at pH of 8 is 228 depicted in Figure 5b. The adsorption percentage of MB rise with the increase of activated BN 229 dosage since the increase of adsorbent dosage enlarged the surface area and activated sites for 230 adsorption. The adsorption of MB on the BN fibers is also displayed in Figure 5b as a 231 comparison. It clearly indicates that the removal percentage on the BN fibers was much lower 232 than that of MB on the activated BN under same experimental conditions. The chemical 233 activation process leads to improving number of hydroxyl and amino groups and surface defects, 234 which work as mainly effective sites for adsorption leading higher adsorption capacity.

235 The effect of temperature on adsorption of MB is analyzed at temperatures ranging from 10-236 50 °C, which is shown in Figure 5c. The removal percentage of MB using activated BN 237 increased with increasing temperature from 10 to 30°C, suggesting that the adsorption process is 238 endothermic. The temperature has two major effects on the adsorption process. On one hand, 239 increasing the temperature contributes to the decrease of the solution viscosity, and in turn, 240 results in the increase of diffusion rate for the adsorbate molecules across the external boundary 241 layer and the internal pores of the activated BN. On the other hand, changing the temperature 242 also elevates the equilibrium capacity between the absorbent and adsorbate in the solution. 243 However, with the further increase of the temperature up to 50°C, the adsorption percentage of 244 MB quickly decreased. This is mainly because increasing the temperature weakens the

interactions between the activated BN and MB, and hinders the MB adsorption. The temperature effect on the adsorption of un-activated BN fibers also exhibits the similar phenomenon as shown.

248 We also detected the effect of pH value of the MB solution on the adsorption amount of the 249 two sorbents. Figure 5d indicates that the removal ability of MB has been enhanced with the 250 increase of pH value and reaches the maximum point at pH value of 8, which is consistent with 251 the zeta-potential results (Figure 4). In the process of adsorption, the heterocharge between the 252 adsorbate and adsorbent is favorable for adsorbing reaction. More protons are available on the 253 surface of the adsorbents when pH < 7, which lead to decreasing negative charges of adsorbent surface ²⁸. Additionally, the protonate amino groups of MB create repulsive force with the 254 255 electron deficient boron active sites of the activated BN, so the adsorption capacity increases with rise of pH value⁷. A weakly alkaline environment is in favor of the adsorption of MB since 256 257 the surface of activated BN may occupy more negatively charged OH⁻ ions. However, the 258 adsorption amount decreases gradually when pH > 8, owing to the excessive negatively charged OH^{-} ions in the solution blocking the beneficial effects of that of the surface $^{9, 27}$. 259

260 To verify the great advantages of negatively-charged activated BN adsorbing cationic dye 261 molecules by electrostatic interaction, we compare the adsorption performance based on neutral 262 (neutral red) and anionic (methyl orange) dyes. Figure 6 (a,b) shows that the adsorption rate and 263 capacity of methylene blue onto the activated BN is much higher than that of neutral red and methyl orange, respectively. Additionally, after deactivation by ammonia treatment at 900 °C, 264 265 the adsorption rate and capacity of methylene blue of the resultant BN (deactivated BN) is much 266 lower than that of the activated BN, as illustrated in Figure 6c and 6d. We notice that the deactivated BN still exhibits a high surface area of 1100 m^2/g and a large pore volume of 0.62 267

 cm^{3}/g . This deactivation reaction only resulted in less negative charge surface (the zeta-potential of the deactivated BN was almost zero even at pH 7). Therefore, the strong electrostatic interaction between methylene blue and activated BN is believed to be the key point causing the high adsorption rate and capacity.

272 The adsorption isotherm is one of the most useful methods to understand the mechanisms of 273 the adsorption process, to detect how the adsorbent interacts with the adsorbate and to evaluate 274 the application of the process. Figure 7 shows the adsorption isotherms of MB onto the surface 275 of two sorbents at pH 8 and 30 °C. In the entire concentration range from 0.38 to 20 mg/L, the 276 adsorption capacities of MB on the two adsorbents are in the order of activated BN > BN fibers. 277 This order is the same as that of the influences of contact time, adsorbent dosage, contact 278 temperature, and pH value mentioned above. The maximum adsorption capacities are 392.2 279 mg/g for activated BN and 243.2 mg/g for BN fibers, respectively. The different adsorption 280 capacities for activated and un-treated ones might be the overall effects of electrostatic 281 interactions, which have significant difference in surface charges. It worth noting that the 282 maximum value of adsorption capacity for the present activated BN (392.2 mg/g) is remarkably larger than those of most common commercial and state-of-the-art sorbents 7, 11, 14, 15, 29-31. 283 284 Specially, the adsorption capacity and rate of the activated BN for methylene blue are about 2 and 10 times higher than that of the commercial activated carbon, respectively⁸. The improved 285 286 adsorption ability of the activated BN mainly ascribes to the chemical activation via the mixed 287 solution, which is favorable to introducing functional groups and defects onto the surface. The 288 result suggests the excellent adsorption capacity in our newly prepared activated BN material.

289 Since the surface of the BN fibers is negatively charged, the chosen cationic dye MB can be 290 adsorbed by the electrostatic interactions. The observed high adsorption capacity of activated BN 291 mainly originates from the following several aspects. For BN, the polar B-N bond is suitable for 292 the MB chemisorption, because the BN fibers exhibit the "lop-sided" densities characteristic of a 293 considerable degree of ionic B-N bonding, and the polyelectron nitride can transfer more electron density to cationic dye³². After activation, the activated BN has an overall negative 294 295 surface charge at above pH 2, which can easily adsorb positively charged dye. The porous BN has high specific surface area of 1104 m^2/g and large pore volume (0.63 cm³/g) also facilitates 296 the adsorption ^{33, 34}. Most importantly, much more activated sites in the activated BN can lead to 297 298 a great enhancement of the MB adsorption due to the high density structural defects and 299 numerous hydroxyl and amino groups, which could offer strong binding sites and enhancing the 300 dissociation of MB on BN fibers.

The Langmuir adsorption isotherm has been widely used to investigate the adsorption process of pollutants from the liquid solutions³³. It assumes that the adsorption of pollutants takes place in the specific homogeneous sites within the adsorbents, and many successful monolayer adsorptions have been found. The Langmuir isotherm is represented in the form as (Equation 2)

$$Q_e = Q_m K C_e / (1 + K C_e). \tag{2}$$

Where Q_e is the adsorbed amount of dyes on the equilibrium concentration (mg/g), C_e is the equilibrium concentration in solution (mg/L), Q_m is the maximum adsorption capacity corresponding to complete monolayer covering on the adsorbents (mg/g), and *K* is the equilibrium constant related to the free energy of adsorption.

The Freundlich isotherm is an empirical equation, which has usually been employed to represent the heterogeneous systems⁹. The Freundlich equation is written as (Eq. 3)

312
$$Q_e = KC_e^{1/n}$$
. (3)

313 Where, K and n are the Freundlich adsorption constants, which indicate that the extent of the 314 adsorption and the degree of nonlinearity between adsorption and solution concentration, 315 respectively.

316 Figure 7 reveals that the Langmuir model had well fit with the experimental data for the two adsorbents in the order of activated BN > BN fibers with the correlation coefficients (R²) of 317 318 0.998 and 0.993, respectively (Table S2, Supporting Information). While for the Freundlich model, the correlation coefficients (R^2) of activated BN and the BN fibers were 0.916 and 0.92, 319 320 respectively. This result also reveals that all sites were equal (equal energies and enthalpies). 321 Moreover, we note that the curve for activated BN had a very high slope in the initial portion and 322 then level off, revealing that the activated BN possesses incredible adsorption density even at 323 low equilibrium hazardous dye concentrations and high affinity for MB molecules. Hence, this is 324 suitable for lowering hazardous dye concentration by adsorption in wastewater.

325 3.3. Regeneration of activated boron nitride

326 As known, the feasibility of applying the adsorbent systems in large-scale operations is 327 determined by the cost of their disposal or regeneration. The high-temperature calcination 328 method has been paid extensive attention because it is a feasible disposal and energy-saving 329 process. Due to its high thermal stability, a simple regeneration experiment (calcining at 400 °C 330 for 1 h in air) was carried out for the removal of adsorbed MB and the regeneration of activated 331 BN. Batches of regeneration experiment for 10 activated BN samples were carried out to 332 evaluate their cycle property for MB removal. The removal efficiency of about 94 % was still 333 retained even after 15 runs, as presented in Figure 8, which is higher than that of the activated BN reported in our previous work¹⁶. And then the removal efficiency has no obvious change 334

with further increasing of cycles. It should be noticed that the decrease of adsorption efficiency after several cycles dose not ascribe to the deactivation, due to the low temperature regeneration process. In addition, the activated BN still exhibits excellent removal capacity of methylene blue even when pH < 3 or pH > 11 due to its novel properties, which enables its actual applications in

342 In summary, the activated BN with high adsorption capacity and degree of crystallinity were 343 synthesized by a two-step synthesis route. Chemical activation of the BN fibers via using the 344 mixed solution of sulfuric acid and nitric acid as activating reagent assisted by ultrasonication 345 increases their hydroxyl and organic groups and surface defects. The activated BN exhibited 346 excellent adsorption capacity as high as 392.2 mg/L and adsorption rate (effectively eliminating 347 ~98.5 wt % within 5 min) at 30 °C and pH value of 8 for the cationic dyes. Compared with the 348 BN fibers, the removal of MB on the activated BN was greatly improved. Moreover, only 6% 349 efficiency lost after fifteen cycles. Therefore, we believe that the activated BN is a very 350 promising candidate for hazardous dyes removal from aqueous solution, and open a door for 351 increasing dyes adsorption weight density in the BN system, by more considerations on chemical 352 activation.

353

335

336

337

338

339

340

341

harsh conditions.

4. Conclusions

354 Acknowledgements

355 This work was supported by the National Natural Science Foundation of China (51332005, 356 51372066, 51172060, 51202055, 21103056, 51402086), the Program for Changjiang Scholars

and Innovative Research Team in University (PCSIRT: IRT13060), the Australian Research
Council, the Hundred Talents Program of Hebei Province (E2014100011), the Natural Science
Foundation of Hebei Province (Grant No. E2012202040), the Tianjin Research Program of
Application Foundation and Advanced Technology (14JCYBJC42200), and the Innovation Fund
for Excellent Youth of Hebei University of Technology (No.2012001).

362

364 Notes and references

- 365 1. S. J. Allen, G. McKay and J. F. Porter, *J. Colloid Interf. Sci.*, 2004, **280**, 322-333.
- 366 2. C. K. Lee, K. S. Low and P. Y. Gan, *Environ. Technol.*, 1999, **20**, 99-104.
- 367 3. S. Babel and T. A. Kurniawan, *J. Hazard. Mater.*, 2003, **97**, 219-243.
- J. Li, R. Lu, B. Dou, C. Ma, Q. Hu, Y. Liang, F. Wu, S. Qiao and Z. Hao, *Environ. Sci. Technol.*, 2012, 46, 12648-12654.
- 370 5. A. J. Brooks, L. Hyung-nam and E. K. James, *Nanotechnology*, 2012, **23**, 294008.
- 371 6. S. Wang, Y. Boyjoo, A. Choueib and Z. H. Zhu, *Water Res.*, 2005, **39**, 129-138.
- 372 7. C. Kannan, K. Muthuraja and M. R. Devi, *J. Hazard. Mater.*, 2013, **244–245**, 10-20.
- H. W. Liang, X. Cao, W. J. Zhang, H. T. Lin, F. Zhou, L. F. Chen and S. H. Yu, *Adv. Funct. Mater.*, 2011, 21, 3851-3858.
- 375 9. R. Wu, J. Qu and Y. Chen, *Water Res.*, 2005, **39**, 630-638.
- 376 10. X. H. Lu, D. Z. Zheng, J. Y. Gan, Z. Q. Liu, C. L. Liang, P. Liu and Y. X. Tong, J.
 377 Mater. Chem., 2010, 20, 7118-7122.
- 378 11. G. Lian, X. Zhang, S. Zhang, D. Liu, D. Cui and Q. Wang, *Energy Environ. Sci.*, 2012, 5, 7072-7080.
- 380 12. X. Zhang, G. Lian, S. Zhang, D. Cui and Q. Wang, *CrystEngComm*, 2012, 14, 4670 4676.
- 382 13. L. L. Xue, B. Z. Lu, Z. S. Wu, C. H. Ge, P. Wang, R. Zhang and X. D. Zhang, *Chem. Eng. J.*, 2014, **243**, 494-499.
- J. Li, J. Lin, X. Xu, X. Zhang, Y. Xue, J. Mi, Z. Mo, Y. Fan, L. Hu, X. Yang, J. Zhang, F.
 Meng, S. Yuan and C. Tang, *Nanotechnology*, 2013, 24, 155603.
- 386 15. W. Lei, D. Portehault, D. Liu, S. Qin and Y. Chen, *Nat. Commun.*, 2013, 4, 1777.
- 387 16. J. Li, X. Xiao, X. Xu, J. Lin, Y. Huang, Y. Xue, P. Jin, J. Zou and C. Tang, *Sci. Rep.*,
 388 2013, 3, 3208.
- 389 17. F. Cao, Y. Ding, L. Chen and C. Zhang, *Nanoscale*, 2013, **5**, 10000-10006.
- 390 18. W. Meng, Y. Huang, Y. Fu, Z. Wang and C. Zhi, J. Mater. Chem. C, 2014, 2, 10049391 10061.
- 392 19. L. Wang, S. Q. Ni, C. Guo and Y. Qian, J. Mater. Chem. A, 2013, 1, 6379-6387.
- 393 20. C. Tang, Y. Bando, Y. Huang, C. Zhi and D. Golberg, *Adv. Funct. Mater.*, 2008, 18, 3653-3661.
- 395 21. C. Zhi, Y. Bando, C. Tang, D. Golberg, R. Xie and T. Sekigushi, *Appl. Phys. Lett.*, 2005, 86, 213110.
- 397 22. C. Zhi, Y. Bando, C. Tang, H. Kuwahara and D. Golberg, *Adv. Mater.*, 2009, 21, 2889 398 2893.
- 399 23. Q. Weng, X. Wang, C. Zhi, Y. Bando and D. Golberg, ACS Nano, 2013, 7, 1558-1565.
- 400 24. Y. Ide, F. Liu, J. Zhang, N. Kawamoto, K. Komaguchi, Y. Bando and D. Golberg, J.
 401 Mater. Chem. A, 2014, 2, 4150-4156.
- 402 25. K. Possemiers, P. Van Der Voort and E. F. Vansant, J. Chem. Soc., Faraday Trans.,
 403 1996, 92, 679-684.
- 404 26. R. Evans and P. Tarazona, *Phys. Rev. Lett.*, 1984, **52**, 557-560.
- 405 27. B. Gu, J. Schmitt, Z. Chen, L. Liang and J. F. McCarthy, *Environ. Sci. Technol.*, 1994, 28, 38-46.
- 407 28. B. Pan and B. Xing, *Environ. Sci. Technol.*, 2008, **42**, 9005-9013.
- 408 29. S. Wang and Z. H. Zhu, J. Hazard. Mater., 2006, **136**, 946-952.

409	30.	X. Zhang, A. Li, Z. Jiang and Q. Zhang, J. Hazard. Mater., 2006, 137, 1115-1122.
410	31.	Q. S. Liu, T. Zheng, N. Li, P. Wang and G. Abulikemu, Appl. Surf. Sci., 2010, 256, 3309-
411		3315.

- 412 32. Z. Zhou, J. Zhao, Z. Chen, X. Gao, T. Yan, B. Wen and P. v. R. Schleyer, *J. Phys. Chem.*413 *B*, 2006, **110**, 13363-13369.
- 414 33. M.-X. Zhu, L. Lee, H.-H. Wang and Z. Wang, J. Hazard. Mater., 2007, 149, 735-741.
- 415 34. V. Vimonses, B. Jin, C. W. K. Chow and C. Saint, J. Hazard. Mater., 2009, 171, 941-
- 416

947.

418 **Figures and Captions:**

419

420

421 Figure 1. (a) XRD patterns and (b) FTIR spectra of the activated BN and the BN fibers, TEM

422 images of (c) the BN fiber and (d) the activated BN.

$$C + 2 HNO_3 \rightarrow CO_2 + 4 NO_2 + 2 H_2O$$
(1)

$$3 \text{ N-B} + 2 \text{HNO}_3 \longrightarrow 2 \text{ N-B-NO}_3 + \text{B-N-H}_2$$
 (2)

$$N-B-NO_3 + H_2O \longrightarrow N-B-OH + HNO_3$$
(3)

425 **Figure 2.** Chemically activated reactions of the BN fibers in the mixed acid solution.

428 Figure 3. Characterization of pore structure of the two adsorbents. a) Nitrogen
429 adsorption/desorption isotherms, b) the corresponding pore size distributions obtained by
430 NLDFT method.

Figure 4. Zeta potential vs. pH values of the activated BN and the BN fibers.

Figure 5. (a) Adsorption rate of MB on the two adsorbents (pH value: 8, adsorbent dosage: 60
mg, adsorption temperature: 30 °C, dye concentration: 25 mg/L). (b) Effect of adsorbent dosage
for adsorption of MB (pH value: 8, contact time: 180 min, adsorption temperature: 30 °C, dye
concentration: 25 mg/L). (c) Effect of temperature for adsorption of MB (pH value: 8, contact
time: 180 min, adsorbent dosage: 20 mg, dye concentration: 25 mg/L). (d) Effect of pH value for
adsorption of MB (Contact time: 180 min, MB concentration: 25 mg/L, temperature: 30 °C,
adsorbent dosage: 20 mg).

435

Figure 6. (a) Comparison of adsorption rates of methylene blue, neutral red, and methyl orange on the chemically activated BN (pH value: 8, adsorbent dosage: 60 mg, adsorption temperature: 30 °C, dye concentration: 25 mg/L, solution volume: 250 mL), respectively. (b) The corresponding comparison of adsorption capacities for the different styles of dye. (c) Comparison of adsorption rates of methylene blue on the activated BN and deactivated BN, respectively. (d) The corresponding comparison of adsorption capacity.

453

454

457

458 Figure 7. Adsorption isotherms of MB on the two adsorbents. Contact time: 180 min, pH: 8,

459 temperature: 30 °C, dye concentration: 25 mg/L.

Figure 8. Reusability of the activated BN regenerated by calcinations.