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A remarkably simple and effective high-temperature 
mixing method under hydrothermal conditions was applied 
to synthesize well-crystalized V3O7•H2O nanobelts, VO2 (B) 
nanosheets and VO2 (A) nanorods with good performance for 
Li-ion batteries. Especially, V3O7•H2O exhibited excellent 
electrochemical performance. And, outstanding 
electrochemical properties were explained through analysis of 
crystal structures. 

 
Electrochemical energy storage has become a critical technology for 
smart grid storage, electric vehicles (EVs), hybrid electric vehicles 
(HEVs), and portable electronic devices because of the growing 
worldwide energy crisis. Lithium-ion batteries (LIBs) are attractive 
energy storage devices because of their relatively high energy 
density, long cycle life, and good environment compatibility.1-8 
Among various possible electrode materials, layered crystal structure 
transition metal (TM) oxides have the huge potential as electrode 
materials for LIBs because the exited layered structure benefits the 
diffusion of Li-ions, thus results in free and easy insertion and 
extraction.9, 10 As the typical layered TM oxides, vanadium oxides 
have been extensively studied in the past decades, and considered to 
be the high-capacity cathode materials for next-generation LIBs.11-13 
Among them, VO2 (B) is one of the most attractive cathode materials 
because of the double layers of V4O10 with tunnels for rapid Li-ion 
insertion/de-insertion in active materials.  Through the heat treatment 
of vanadium oxide aerogels, Baudrin et al.14 synthesized 
nanostructured VO2 (B) that exhibited as high as 500 mAh/g specific 
capacity of initial cycling. Mai et al.15 synthesized nanoscroll-
buffered hybrid nanostructural VO2 (B) cathodes with high rates and 
long cycling performances through the hydrothermal-driven splitting 

and self-rolled method. Another polymorphic form of vanadium 
dioxide, VO2 (A), exhibits a layered crystal structure similar to that 
of VO2 (B), and is considered to be a new alternative cathode 
material for LIBs.16, 17 Dai et al.18 prepared VO2 (A) nanowires with 
the highest initial capacity of 277.1 mAh/g. However, because the 
synthesis and growth conditions of VO2 (A) are very severe, the 
corresponding reports on the electrochemical performance of VO2 
(A) are very limited. Recently, except VO2 (A), another kind of 
vanadium oxide, V3O7•H2O, has caught our more and more focus 
because it has a typical layered structure and larger interlayer 
spacing than V2O5.

19 So, V3O7•H2O will become another most 
promising cathode material for LIBs. Mjejri et al.20 proved that 
V3O7•H2O possessed electrochemical activity. Mohan et al.21 studied 
the cycling performance of V3O7•nH2O. The initial capacity was 192 
mAh/g, which decreased sharply to approximately 110 mAh/g after 
40 cycles, which is possibly due to weak crystallinity and 
insufficient morphological control of products. 

Although V3O7•H2O, VO2 (B), and VO2 (A) are promising 
candidates as cathode materials for LIBs, their synthesis processes 
are comparatively complex, and synthesis methods are different and 
incompatible with each other, which will extremely increase the cost 
in industrial production because of the introduction of different 
production lines. Thus, an effective and simple method, by which 
different kinds of vanadium oxides with high crystallinity and 
performance can be obtained, is extremely essential for theoretical 
research, industrial production, and practical application. The high-
temperature mixing method (HTMM), which is used under 
hydrothermal conditions, is a modified hydrothermal method.22-25 
The starting solutions and raw materials for HTMM are separately 
heated to a desired reaction temperature in a double-chambered 
autoclave before mixing to initiate a hydrothermal reaction. The 
crystallinity of the obtained powders can be enhanced to improve the 
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through the Rietveld refinement method, the crystal structures of 
vanadium oxides were analysed in detail to explain the differences of 
their electrochemical properties. Importantly, this method can be 
extended to synthesize other vanadium oxides for high performance 
LIBs.  
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