Journal of Materials Chemistry A

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsA

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

In situ light-assisted preparation of MoS_2 on graphitic C_3N_4 nanosheet for enhanced photocatalytic H_2 production from water

Hui Zhao, Yuming Dong,* Pingping Jiang,* Hongyan Miao, Guangli Wang, Jingjing Zhang

Received (in XXX, XXX) Xth XXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

 MoS_2 -decorated graphitic C_3N_4 (g- C_3N_4/MoS_2) photocatalysts were prepared by a simple and scalable in situ light-assisted method. In this process, the MoS_2 formed from the reduction of $[MoS_4]^{2^-}$ by the photogenerated electrons and then in situ loaded on the electron outlet points of g- C_3N_4 . The g- C_3N_4/MoS_2 composite was well characterized by X-ray diffraction (XRD), Fourier Transform infrared

- 10 spectroscopy (FTIR), Raman spectroscopy (Raman), Transmission electron microcopy (TEM), Energy Dispersive X-Ray spectroscopy (EDX), and ultraviolet visible diffuse reflection spectroscopy (UV-DRS). The g-C₃N₄/MoS₂ photocatalysts showed a good photocatalytic H₂ evolution activity. When the loading amount of MoS₂ increased to 2.89 wt% (g-C₃N₄/MoS₂-2.89%), the highest H₂ evolution rate (252 µmol g⁻¹ h⁻¹) was obtained. In addition, g-C₃N₄/MoS₂-2.89% presented stable photocatalytic H₂ evolution
- 15 ability (no noticeable degradation of photocatalytic H_2 evolution was detected in 18 h) and good natural light driven H_2 evolution ability (the H_2 evolution rate was 320 µmol g⁻¹ h⁻¹). A possible photocatalytic mechanism of MoS₂ cocatalyst on the improvement of the photocatalytic activity for g-C₃N₄ is proposed that MoS₂ can efficiently promote the separation of photogenerated electrons and holes of g-C₃N₄ consequently enhancing the H_2 evolution activity, which is supported by the photoluminescence

20 spectroscopy and photoelectrochemical analyses.

1. Introduction

With increasing awareness of the importance of energy crisis and environmental pollution, the development of green renewable energy has been greatly promoted. Hydrogen is regarded as a

- 25 potential fuel to solve the fossil fuel shortage problem and environmental issues. Photocatalytic water decomposition into hydrogen is a valuable approach to utilize solar energy, which is recognized as a green and promising way to produce clean energy.¹⁻³ During the past years, many photocatalysts have been
- 30 developed, such as TiO₂, CdS and Zn_xCd_{1-x}S.⁴⁻⁶ At the same time, various drawbacks, such as low visible-light adsorption ability and fast recombination rate of photogenerated electron-holes pairs, and high toxic for human health and harmful to the environment greatly limit practical application for solar hydrogen
- 35 generation. To address these limitations, development of novel visible-light responsive photocatalysts with high efficiency and good durability has become a hot topic in the photocatalysis field. As a novel metal-free polymer n-type semiconductor, layered C₃N₄ with a graphitic structure (g-C₃N₄) revealed good visible
- 40 light absorption property ($E_g = 2.7 \text{ eV}$) and photocatalytic stability for water splitting.⁷⁻¹³ In comparison with the most studied semiconductor materials (e.g. TiO₂, CdS, Zn_xCd_{1-x}S), g-C₃N₄ combines the advantages of low cost, nontoxicity and visible-light activity. Hence, g-C₃N₄ should be a good candidate
- 45 for photocatalytic solar energy conversation.¹⁴ However, the

photocatalytic activity of pure g-C₃N₄ is low due to its fast recombination of photogenerated electron-hole pairs. Cooperating g-C₃N₄ with cocatalyst has been proved to be an effective way to facilitate the charge separation of the photogenerated 50 electron-hole pairs by lowering the activation barriers of water splitting.^{15,16} To date, the reported cocatalysts are mainly noble metals Pt, Au and Pd,¹⁷⁻¹⁹ which are rare and expensive. Accordingly, there is an increasing interest in introducing low-cost non-noble metal cocatalysts into g-C₃N₄.

55 Molybdenum sulfide (MoS_2) has emerged as a promising electrocatalyst due to its high activity, earth-abundant composition, low cost and robustness.^{20,21} There have been reported studies on the modification of semiconductor with MoS_2 cocatalyst to accelerate the photocatalytic hydrogen

60 evolution.²²⁻²⁴ Hence, employing MoS₂ as an alternative cocatalyst for g-C₃N₄ in photocatalytic H₂ generation is very attractive. In this connection, the effective combination of g-C₃N₄ and MoS₂ is vital for quick transfer of electrons, which is among the keys for catalysis efficiency. Desirable g-C₃N₄/MoS₂

- 65 photocatalysts depend greatly on the preparation methods. Recently, thin-layered MoS_2 was cooperated with $g-C_3N_4$ by a thermal deposition process and high photocatalytic activity for H_2 production was obtained.²⁵ MoS_2 loaded $g-C_3N_4$ prepared via an impregnation method has been found to be highly efficient in H_2
- 70 production.^{26,27} MoS_2 decorated g-C₃N₄ through a hydrothermal preparation exhibited a high photocatalytic activity and good stability.²⁸ However, among these methods, the thermal

deposition process involved a relatively harsh preparation condition of high temperature and high pressure and toxic H₂S gas used as co-precursor; In the impregnation method, MoS₂ was first prepared under the condition of high temperature and high

- 5 pressure, and the following heated treatment was necessary for combination of MoS₂ and g-C₃N₄; In the hydrothermal preparation, complicated reaction steps were necessary and toxic NH₂OH HCl was needed to take part in the reaction. Obviously, these methods are complicated, environmentally harmful or
- 10 energy-hungry. In addition, the connective point between MoS_2 and $g-C_3N_4$ is difficult to control by these methods. Therefore, to design novel and facile preparation strategy for g-C₃N₄/MoS₂ hybrid photocatalysts is still urgent and of great significance.
- Herein, MoS₂ modified g-C₃N₄ (g-C₃N₄/MoS₂) hybrid 15 photocatalysts were prepared by a simple and scalable in situ light-assisted method in photocatalytic H₂ evolution system, where (NH₄)₂[MoS₄] was used as the source of MoS₂. In this process, the MoS_2 formed from the reduction of $[MoS_4]^2$ by the photogenerated electrons and then in situ loaded on the electron
- 20 outlet points of g-C₃N₄. The formation method of MoS₂ decided that the obtained structure is favorable for transfer of photogenerated electrons, which could be helpful for highly robust and stable hydrogen evolution.

2. Experimental section

25 2.1 Preparation

The graphitic C_3N_4 (g- C_3N_4) nanosheets were synthesized by a modified thermal oxidation etching method using thiourea as the starting material.^{29,30} Briefly, thiourea (Sinopharm, > 99%) was heated at 550 °C for 2 h in static air at a ramp rate of 2 °C/min.

- 30 The resultant yellow bulk g-C₃N₄ was milled into fine powers. After that, 400 mg of bulk g-C₃N₄ was placed in an open ceramic container and then heated at 500 °C for 2 h at a ramp rate of 2 °C/min. Finally, a light yellow power of g-C₃N₄ nanosheets was obtained. The image could be found in Electronic Supplementary 35 Information (ESI) Fig. S1.
 - The g-C₃N₄ nanosheets based MoS₂ composite photocatalysts were prepared by a photodeposition method in catalytic H₂ evolution. In this process, ammonium tetrathiomolybdate $((NH_4)_2[MoS_4])$ were necessarily added as the resource of MoS₂.
- 40 The deposition content of MoS_2 can be varied by changing the amount of $(NH_4)_2[MoS_4]$. The resultant products were denoted as $g-C_3N_4/MoS_2-X$ (X = 0.75%, 1.47%, 2.18%, 2.89% and 3.57%), where X referred to the theoretical weight percent of loading MoS₂.

45 2.2 Characterization

X-ray diffraction (XRD) patterns were recorded on a D8 X-ray diffractometer (Bruker AXS, German). Transmission electron microscopy (TEM) image was collected on a JEM-2100 transmission electron microscope (JEOL, Japan).

- 50 Energy-dispersive X-ray spectroscopy (EDX) was taken on the 105 TEM. Fourier Transform infrared (FTIR) spectra were recorded over the 4000~800 cm⁻¹ range by averaging 32 scans with a resolution of 4 cm⁻¹ using a Nicolet 6700 (Thermal, USA) infrared spectrometer with a DLaTGS detector. Raman spectra
- (Renishow In-Via, USA) with a 785 nm laser light irradiation

from 200 to 1600 cm⁻¹ at a duration time of 10 s. UV-vis diffuse reflectance spectra were measured on a UV-3600 (Shimadzu, Japan) spectrophotometer.

60 2.3 Photocatalytic hydrogen production

The photocatalytic experiments were performed in a 37 mL flask at ambient temperature using a 300 W Xe lamp equipped with UV cut off filter ($\lambda > 400$ nm). The intensity of the light source was estimated to be 0.6 W cm⁻². 10 mg of g-C₃N₄ nanosheets and

65 a given amount of ammonium tetrathiomolybdate were added in a mixture solution of 9 mL water and 1 ml triethanolamine. Before each experiment, the suspension was purged with a nitrogen/methane gas mixture ($V_{nitrogen}$: $V_{methane} = 4$: 1) for 40 min to remove air. Methane served as the internal standard.

70 Hydrogen gas evolution was measured by gas chromatography (SP-6890, nitrogen as a carrier gas) with a thermal conductivity detector (TCD).

2.4 Photoelectrochemical Measurement

A working electrode was prepared as follows: 20 mg of sample 75 was dispersed in 4 mL water. 150 µL of the resultant suspension was uniformly droped onto a 1×1 cm² indium-tin oxide glass (ITO glass) and then dried at 70 °C for 1 h to obtain the working electrodes. Photocurrents were measured on a CHI600D electrochemical analyzer (Chenhua Instruments Co. Shanghai) in

80 a standard three-electrode system by using the prepared electrode as the working electrode, a Pt net as the counter electrode, and Ag/AgCl as the reference electrode. A 300W Xe-lamp equipped with a band-glass light filter (> 400 nm) served as a light source. The electrolyte was a buffer solution (pH=6) containing 0.30 85 mol/L hexamethylenetetramine and 0.10 mol/L hydrochloric acid.

3 Results and discussion

3.1 Formation and characterization

In this work, the formation of MoS₂ resulted from the reduction of (NH₄)₂[MoS₄] (equation 1), which were consistent with the previous literature.^{31,32} Under visible light irradiation, g-C₃N₄

- 90 nanosheets adsorbed and harvested visible light to generate electrons and holes which were subsequently transported to the nanosheet surface. Due to high specific surface area of g-C₃N₄ nanosheet (260 m² g⁻¹), $[MoS_4]^{2-}$ can be effectively adsorbed on
- 95 the g-C₃N₄ nanosheet surface. Photogenerated electrons in the g-C₃N₄ conduction band possessed enough reductive driving to reduce $[MoS_4]^2$ precursor to $MoS_2 + 2S^2$,²⁴ leading to the production of g-C₃N₄/MoS₂ hybrid photocatalyst. On the other hand, the formative holes were scavenged by the sacrificial 100 electron donor, such as triethanolamine. In this process, because the MoS₂ formed from the reduction of $[MoS_4]^{2-}$ by the photogenerated electrons, and then MoS₂ was in situ loaded on the electron outlet points of g-C₃N₄.

$$[MoS_4]^{2-} + 2e^- \rightarrow MoS_2 + 2S^{2-} \quad (1)$$

XRD was used to investigate the phase structure of the prepared pure g-C₃N₄ and hybrid g-C₃N₄/MoS₂ photocatalysts. Fig. 1 showed the XRD patterns of pure g-C₃N₄ nanosheets and $g-C_3N_4/MoS_2$ hybrid photocatalyst with different content of MoS₂. Both pure g-C₃N₄ and g-C₃N₄/MoS₂ had two distinct 55 were recorded on a confocal microscopic Raman spectrometer 110 diffraction peaks at 28.0° and 13.1° which can be indexed to graphitic materials as the (002) and (100) planes of JCPDS

40

87-1526. These results illustrated that the $g-C_3N_4$ nanosheet structure maintained unchanged with MoS_2 modification. However, the diffraction intensity of peak at 28.0° became weaker with increasing MoS_2 content, which indicated that MoS_2 5 species to some extend restrained the growth of crystal structure

of $g-C_3N_4$. No obvious MoS_2 peaks were observed from XRD patterns possibly due to the low content of MoS_2 and the well dispersed MoS_2 particles on $g-C_3N_4$ surface.

 $\begin{array}{ll} 10 & \mbox{Fig. 1 XRD patterns of g-C_3N_4 and g-C_3N_4/MoS_2$ with different MoS_2 contents.} \end{array}$

FTIR spectra were used to study of chemical functional groups, and the result of pure $g-C_3N_4$ and $g-C_3N_4/MoS_2-2.89\%$ were presented in Fig. 2. The broad band located in 3100-3300 cm⁻¹

- 15 involving residual N-H components and O-H bands were associated with uncondensed amino groups and surface-adsorbed H₂O molecures. A broad adsorption band in the region between 900 and 1800 cm⁻¹ was related to the ploycondensation structure of $g-C_3N_4$ which were attributed to the vibration characteristic of
- 20 s-striazine ring units and heptazine heterocyclic ring units.³³ Both pure $g-C_3N_4$ and $g-C_3N_4/MoS_2-2.89\%$ had similar absorption bands which indicated that the introduction of MoS_2 did not change the structure of $g-C_3N_4$ nanosheet structure. There was no MoS_2 peak was detected according to IR spectra. These results
- 25 were in good accordance with XRD analysis.

Fig. 2 IR spectra of $g-C_3N_4$ and $g-C_3N_4/MoS_2-2.89\%$.

As depicted in Fig. 3, Raman spectroscopy was performed for the investigation of vibrational properties of pure g-C₃N₄ and 30 g-C₃N₄/MoS₂-2.89%. Both pure g-C₃N₄ and g-C₃N₄/MoS₂-2.89% had the similar Raman bands mainly corresponding to surface defects and disorders located at the edges of graphite platelets.³⁴ However, the intensity of these peaks for g-C₃N₄/MoS₂-2.89% increased, which was attributed to eliminated surface defects of

35 g-C₃N₄ after MoS₂ modification.³⁵ In comparison with Raman bands of pure g-C₃N₄, two new Raman bands at 392 cm⁻¹ and 407 cm⁻¹ appeared for g-C₃N₄/MoS₂-2.89%, which can be assigned to the representative modes of E_{2g}^{-1} and A_{1g} of MoS₂, respectively.³⁶ These results indicated the formation of MoS₂ on g-C₃N₄ surface.

Fig. 3 Raman spectra of g-C₃N₄ and g-C₃N₄/MoS₂-2.89%.

TEM and EDX were used to observe the morphology and composition of g-C₃N₄/MoS₂-2.89% photocatalytst, and the results were given in Fig. 4. MoS₂ particles with size of several 45 nanometers were deposited on the surface of g-C₃N₄ nanosheets (Fig. 4a). According to EDX patterns (Fig. 4b), C, N, Mo and S were observed (The Cu signal resulted from Cu grid for TEM characterization), and the EDX analysis results showed that the atomic ratio of S and Mo was about 2. These results further 50 confirmed the uniformly deposition of MoS₂ particles on the surface by such in situ photoreduction method.

40

Fig. 4 TEM image (a) and EDX spectrum (b) of g-C₃N₄/MoS₂-2.89%.

The UV-vis diffuse reflection spectra of pure $g-C_3N_4$ and $g-C_3N_4/MoS_2$ with different MoS_2 contents were recorded in Fig. 5 5. As shown, the pure $g-C_3N_4$ had an absorption edge at about 450 nm which corresponded to a band gap of 2.71 eV. When MoS_2 was introduced, the $g-C_3N_4/MoS_2$ showed the same absorption edge as pure $g-C_3N_4$ indicating neither Mo nor S doping in the $g-C_3N_4$ structure. However, in comparison with

- 10 pure g-C₃N₄, a broader absorption in the visible region was observed for g-C₃N₄/MoS₂ composite. Obviously, the absorption intensity for g-C₃N₄/MoS₂ in the visible region strengthened as the content of MoS₂ increased. Based on the XRD, Raman, TEM, EDX and DRS results, we can draw a conclusion that MoS₂ was
- 15 deposited on the $g-C_3N_4$ surface by such a photoreduction method.

Fig. 5 UV-vis-diffuse reflection spectra of pure $g-C_3N_4$ and $g-C_3N_4/MoS_2$ with different MoS_2 contents.

20 3.2 Photocatalytic H₂ production

Fig. 6a showed the photocatalytic H_2 production activity of typical g-C₃N₄/MoS₂-2.89%. The H₂ production enhanced with the increase of irradiation time. During 6 h, the corresponding H₂ evolution was 1514 µmol g⁻¹. For comparison, the H₂ evolution

25 activities for $g-C_3N_4/MoS_2$ with different MoS_2 loadings were investigated (Fig. 6b). When $g-C_3N_4$ alone was used as photocatalyst for H_2 evolution, the photocatlytic H_2 production rate was negligible because of fast recombination of

- photogenerated electrons and holes. These results indicated that 30 pure g-C₃N₄ was not active for photocatalytic H₂ evolution and that MoS₂ was an effective cocatalyst for g-C₃N₄. As the content of MoS₂ loading increased from 0.75 wt% to 2.89 wt%, the H₂ evolution rate increased from 56 µmol g⁻¹ h⁻¹ to 252 µmol g⁻¹ h⁻¹. However, the H₂ evolution activity for g-C₃N₄/MoS₂ decreased 55 with for the increased MoS
- 35 with further increasing MoS_2 loading content, which was possibly due to the overloading MoS_2 reducing oxidation reaction sites on $g-C_3N_4$ surface.³⁷

Fig. 6 (a) Photocatalytic hydrogen production over sample g-C₃N₄/MoS₂-2.89% during 6 h; (b) Comparison of photocatalytic hydrogen production rate over pure g-C₃N₄ and g-C₃N₄/MoS₂ with different MoS₂ contents.

The ultimate goal of photocatalyst is capable of high-efficiency 45 application of sunlight and solar energy. Therefore, H₂ evolution was also conducted with g-C₃N₄/MoS₂-2.89% photocatalyst under direct sunlight outdoors (ESI Fig. S2). As illustrated in Fig. 7, the H₂ production increased with the prolongation of sunlight irradiation time. During 6 h, the H₂ evolution reached 1921 µmol 50 g⁻¹, which was higher than that under visible light irradiation from Xe lamp. These results indicated that g-C₃N₄/MoS₂-2.89% was also a robust catalyst for sunlight-driven H₂ evolution from water. Such heterostructure may be expected to be promising candidates as effective sunlight photocatalysts and potential 55 technological applications.

55

Fig. 7 Photocatalytic hydrogen production over g-C₃N₄/MoS₂-2.89% during 6 h under sunlight irradiation in Wuxi city on Nov. 18 2014. Outdoor temperature: 9-14 °C, Time: 09:00- 15:00.

- 5 In view of practical applications, besides catalytic activity, the stability and durability are also indispensable to photocatalysts. In order to evaluate the stability of $g-C_3N_4/MoS_2-2.89\%$, we performed the time-circle H₂ evolution experiment. Fig. 8 presented the H₂ evolution as the function of irradiation time. The
- 10 total photocatalytic H₂ amount of g-C₃N₄/MoS₂-2.89% after 18 h reaction is about 4509 μ mol g⁻¹. No noticeable degradation of photocatalytic H₂ evolution was detected in three repeated runs for the whole photocatalytic reaction, indicating the good stability and durability of the g-C₃N₄/MoS₂-2.89% sample. The results
- 15 illustrated that the prepared $g-C_3N_4/MoS_2-2.89\%$ was an stable catalyst for photocatalytic H₂ evolution from water.

Fig. 8 Photocatalytic hydrogen production over g-C₃N₄/MoS₂-2.89% during 18 h with evacuation every 6 h.

20 3.3 Mechanism

Fig. 9 presented the proposed phtocatalytic H_2 production mechanism in g-C₃N₄/MoS₂ composite system. Under visible light irradiation, g-C₃N₄ was excited, the electrons and holes then generated. However, in pure g-C₃N₄, the photogenerated

25 electrons and holes tended to recombine. After the modification of MoS_2 cocatalyst, the photogenerted electrons in conduction band of g-C₃N₄ can be easily transferred to the MoS_2 . The

This journal is © The Royal Society of Chemistry [year]

unsaturated active S atoms existed on exposed edges of MoS_2 and had strong bonds to H^+ in the solution.³⁸ The trapped electrons at

- 30 MoS₂ can easily reduce the bonded H^+ , leading to H_2 generation (equation 2). As a result, the recombination of photogenerated electrons and holes on $g-C_3N_4$ was prevented obviously. To verify the proposed mechanism, photoluminescence (PL) emission spectra and photoelectrochemical (PEC) I-t curves were
- 35 performed to study the charge recombination and transfer behavior of the g- C_3N_4/MoS_2 composite. Fig. 10a gave the PL spectra of pure g- C_3N_4 and g- C_3N_4/MoS_2 -2.89% with an excitation wavelength of 325 nm. Both pure g- C_3N_4 and g- C_3N_4/MoS_2 -2.89% showed an emission peak at about 455 nm
- 40 corresponding to the band gap for the recombination of photogenerated electrons and holes.³⁹ However, the PL emission intensity of $g-C_3N_4$ obviously decreased after loading MoS_2 , suggesting that the charge recombination can be efficiently prevented by MoS_2 modification. Figure 10b presented the PEC
- 45 I-t curves of pure g-C₃N₄ and g-C₃N₄/MoS₂-2.89% electrodes under intermittent visible light irradiation at -0.22 V vs Ag/AgCl. Compared with pure g-C₃N₄, g-C₃N₄/MoS₂-2.89% hybrid photocatalyst showed the higher photocurrent density, which indicated the efficient photogenerated charge transfer between
- 50 MoS₂ and g-C₃N₄ for g-C₃N₄/MoS₂-2.89%. These results confirmed the superior charge transfer and recombination inhibition in the g-C₃N₄/MoS₂-2.89% composite photocatalyst which supported the proposed mechanism. $MoS_2/2H^+ + 2e^- \rightarrow MoS_2 + H_2$ (2)

Fig. 9 Proposed photocatalytic H_2 production mechanism in the g-C₃N₄/MoS₂-2.89% composite systems under visible light irradiation.

Fig. 10 Comparison of photoluminescence spectra (a) and transient photocurrent responses at -0.22 V vs Ag/AgCl (b) of pure g-C₃N₄ and g-C₃N₄/MoS₂-2.89%.

5 Conclusions

In conclusion, a novel preparation strategy for $g-C_3N_4/MoS_2$ hybrid photocatalysts was designed and realized by a simple and 70 scalable in situ light-assisted method in photocatalytic H₂ evolution process. The photocatalytic H₂ evolution activity for

- 10 g-C₃N₄ was significantly enhanced after MoS₂ cocatalyst loading. The highest H₂ evolution activity was determined for sample g-C₃N₄/MoS₂-2.89%, and the corresponding H₂ evolution rate was 252 μ mol g⁻¹ h⁻¹. In addition, g-C₃N₄/MoS₂-2.89% presented stable photocatalytic H₂ evolution ability and good natural light
- 15 driven H_2 evolution ability. MoS_2 cocatalyst can efficiently promote the separation of photogenerated electrons and holes of g-C₃N₄ and consequently enhanced the H₂ evolution activity. The work may be significant to provide an insight into preparing g-C₃N₄ based hybrid photocatalytic materials with high activities
- 20 for application in solar energy utilization and conversion.

Acknowledgement

The authors gratefully acknowledge the support from the 90 28 National Natural Science Foundation of China (No. 20903048, 29 21275065), the Fundamental Research Funds for the Central

25 Universities (JUSRP51314B and JUDCF13015), the Postgraduate Innovation Project of Jiangsu Province (CXZZ13-0743) and MOE & SAFEA for the 111 Project (B13025).

Notes and references

Key Laboratory of Food Colloids and Biotechnology (Ministry of 30 Education of China), School of Chemical and Material Engineering,

- Jiangnan University, Wuxi 214122, P. R. China. Fax: (+) 86-510-85917763; E-mail: dongym@jiangnan.edu.cn, ppjiang@jiangnan.edu.cn
- † Electronic Supplementary Information (ESI) available: [details of any 105 36
 35 supplementary information available should be included here]. See DOI: 10.1039/b000000x/ 37
 - 1 Z. B. Yu, Y. P. Xie, G. Liu, G. Q. (Max) Lu, X. L. Ma, and H. -M. Cheng, J. Mater. Chem. A, 2013, 1, 2773-2776.
- Q. Wang, J. Li, Y. Bai, J. Lian, H. Huang, Z. Li, Z. Lei and W. 110 Shangguan, Green Chem., 2014, 16, 2728-2735.
 - Y. P. Xie, Z. B. Yu, Gang Liu, X. L. Ma, and H. -M. Cheng, Energy Environ. Sci., 2014, 7, 1895-1901.

- 4 X. B. Chen, S. S. Mao, Chem. Rev., 2007, 107, 2891-2959.
- 5 X. B. Chen, S. H. Shen, L. J. Guo, S. S. Mao, Chem. Rev., 2010, 110, 6503-6570.
 - 6 D. -H. Wang, L. Wang and A. -W. Xu, Nanoscale, 2012, 4, 2046-2053.
- J. Zhang, X. Chen, K. Takanabe, K. Maeda, K. Domen, J. D. Epping, X. Fu, M. Antonietti, and X. Wang, Angew. Chem. Int. Ed., 2010,
 49, 441-444.
 - 8 Y. Wang, X. Wang, and M. Antonietti, Angew. Chem. Int. Ed., 2012, 51, 68-89.
 - 9 X. Wang, S. Blechert, and M. Antonietti, ACS Catal., 2012, 2, 1596-1606.
- 55 10 J. Chen, S. Shen, P. Guo, M. Wang, P. Wu, X. Wang, and L. Guo, Appl. Catal. B: Environ., 2014, 152-153, 335-341.
 - L. Ge, C. Han, and J. Liu, J. Mater. Chem., 2012, 22, 11843-11850.
 L. Ge, C. Han, X. Xiao, and L. Guo, Appl. Catal. B: Environ., 2013,
 - 12 L. Ge, C. Hall, X. Alao, and L. Guo, Appl. Catal. B. Environ., 2013, 142-143, 414-422.
- 60 13 C. Han, L. Ge, C. Chen, Y. Li, X. Xiao, Y. Zhang, and L. Guo, Appl. Catal. B: Environ., 2014, 147, 546-553.
 - 14 X. Bai, L. Wang, Y. Wang, W. Yao, and Y. Zhu, Appl. Catal. B: Environ., 2014, 152-153, 262-270.
 - 15 S. Cao, and Jiaguo Yu, J. Phys. Chem. Lett., 2014, 5, 2101-2107.
- 65 16 S. Zhang, J. Li, M. Zeng, J. Li, J. Xu, and X. Wang, Chem. Eur. J., 2014, 20, 9805-9812.
 - 17 D. J. Martin, K. Qiu, S. A. Shevlin, A. D. Handoko, X. Chen, Z. Guo, and J. Tang, Angew. Chem. Int. Ed., 2014, 53, 9240-9245.
 - 18 K. Maeda, X. C. Wang, Y. Nishihara, D. Lu, M. Antonietti, K. Domen, J. Phys. Chem. C, 2009, 113, 4940-4947.
 - 19 Y. Di, X. C. Wang, A. Thomas, M. Antonietti, ChemCatChem, 2010, 2, 834-838.
 - 20 J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, and Y. Xie, J. Am. Chem. Soc., 2013, 135, 17881-17888.
- 75 21 J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. (David) Lou, and Y. Xie, Adv. Mater., 2013, 25, 5807-5813.
 - 22 X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang and C. Li, J. Am. Chem. Soc., 2008, 130, 7176-7177.
 - 23 Q. Xiang, J. Yu, and M. Jaroniec, J. Am. Chem. Soc., 2012, 134, 0 6575-6578.
 - 24 M. Nguyen, P. D. Tran, S. S. Pramana, R. L. Lee, S. K. Batabyal, Nanoscale, 2013, 5, 1479-1482.
- 25 Y. Hou, A. B. Laursen, J. Zhang, G. Zhang, Y. Zhu, X. Wang, S. Dahl, and I. Chorkendorff, Angew. Chem. 2013, 125, 3709-3713;
 85 Angew. Chem. Int. Ed. 2013, 52, 3621-3625.
 - 26 L. Ge, C. Han, X. Xiao, and L. Guo, Int. J. Hydrogen Energy, 2013, 38, 6960-6969.
 - 27 Y. Tian, L. Ge, K. Wang, and Y. Chai, Mater. Charter., 2014, 87, 70-73.
 - 0 28 W. Peng, and X. Li, Catal. Commun., 2014, 49, 63-67.
 - 29 P. Niu, L. Zhang, G. Liu, and H. -M. Cheng, Adv. Funct. Mater., 2012, 22, 4763-4770.
 - 30 W. Wang, J. C. Yu, D. Xia, P. K. Wong, and Y. Li, Environ. Sci. Technol., 2013, 47, 8724-8732.
- 95 31 L. Liao, J. Zhu, X. Bian, L. Zhu, M. D. Scanlon, H. H. Girault, and B. Liu, Adv. Funct. Mater., 2013, 23, 5326-5333.
 - 32 X. Bian, J. Zhu, L. Liao, M. D. Scanlon, P. Ge, C. Ji, H. H. Girault, B. Liu, Electrochem. Commun., 2012, 22, 128-132.
- 33 J. R. Holst, and E. G. Gillan, J. Am. Chem. Soc., 2008, 130, 100 7373-7379.
 - 34 G. X. Wang, X. P. Shen, J. Yao, and J. Park, Carbon, 2009, 47, 2049-2053.
 - 35 X. Bai, L. Wang, R. Zong, and Y. Zhu, J. Phys. Chem. C, 2013, 117, 9952-9961.
 - 36 M. Shen, Z. Yan, L. Yang, P. Du, J. Zhang, and B. Xiang, Chem. Commun., 2014, 50, 15447-15449.
 - 37 X. Wang, G. Liu, Z. -G. Chen, F. Li, L. Wang, G. Q. Lu, and H. -M. Cheng, Chem. Commun., 2009, 3452-3454.
 - 38 K. Chang, Z. Mei, T. Wang, Q. Kang, S. Ouyang, and J. Ye, ACS NANO, 2014, 8, 7078-7087.
 - 39 P. Gomathisankar, K. Hachisuka, H. Katsumata, T. Suzuki, K. Funasaka, and S. Kaneco, ACS Sustainable Chem. Eng., 2013, 1, 982-988.

ournal of Materials Chemistry A Accepted Manuscrip

