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A spiro-bifluorene based 3D electron acceptor 

with dicyanovinylene substitution for solution 

processed non-fullerene organic solar cells 

Debin Xia, Dominik Gehrig, Xin Guo, Martin Baumgarten,* Frédéric Laquai,* and 

Klaus Müllen* 

A novel electron acceptor, namely 2,2’-(12H,12'H-10,10'-spirobi[indeno[2,1-b] fluorene]-12,12'-
diylidene) dimalononitrile (4CN-spiro), exhibiting three-dimensional molecular structure was 
synthesized and its thermal, photophysical, electrochemical, crystal, and photovoltaic properties were 
investigated. The novel acceptor exhibits excellent thermal stability with a decomposition temperature of 
460 oC, an absorption extending to 600 nm, and a LUMO level of -3.72 eV. Solution processed bulk-
heterojunction (BHJ) organic solar cells were fabricated using 4CN-spiro as acceptor and 
polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7) as donor polymer. The effect of the donor-to-
acceptor ratio and processing conditions on device performance was investigated. A device processed 
from tetrachloroethane with a donor to acceptor weight ratio of 1:1 yielded a power conversion 
efficiency (PCE) of 0.80 %. 

 

 

Introduction 

Organic photovoltaic (OPV) devices that can be fabricated by 
different techniques, such as vacuum deposition,1-3 solution 
processing and roll-to-roll printing,4, 5 have received a great deal of 
attention. Remarkable progress has been made on solution-
processed, bulk-heterojunction (BHJ) devices,6-13 and the reported 
power conversion efficiency (PCE) has recently exceeded 10 % in 
single junction cells.14 Undoubtedly, fullerene-based electron 
acceptors have played a vital role in achieving high PCEs owing to 
their high electron mobility, strong electron affinity and three-
dimensional (3D) electron transport.15-18 However,  fullerene 
acceptors have a few obvious disadvantages, such as low absorption 
in the visible region, limited energy-level variability, as well as 
tough synthesis and purification, which limit further improvements 
of fullerene-based OPV devices and their commercial application. 

    In the ongoing search for non-fullerene acceptors special attention 
has been paid to small molecule acceptors.19-30 Compared to one-
dimensional (1D) and two-dimensional (2D) analogues, 3D 
acceptors have attracted much more scientific interest because of 
their unique advantages, specifically: The strong self-aggregation 
propensity of acceptors31 might be prevented by the 3D arrangement, 
e.g. perylenediimide substituted spiro-bifluorene, thiophene or 
triphenylamine,32-34 which could avoid undesirable large scale phase 
separation from the donor. Furthermore, 3D isotropic electron 
transport pathways as exhibited by fullerene derivatives are formed 
in BHJ OPVs, enhancing the exciton diffusion/separation 
efficiencies and the PCE of the devices.35, 36    

    Non-fullerene 3D electron-withdrawing materials have shown 
good performance in OPVs including diketopyrrolopyrrole,37 
benzothiadiazole,38 perylenediimide,32-35, 39 naphthalene diimide and 

bifluorenylidene derivatives used as acceptors.40-42 However, to our 
knowledge, there have been no reports on dicyanovinylene-
substituted 3D acceptors for OPVs, even though dicyanovinylene 
derivatives have already proven their potential as n-type organic 
semiconductors.43-46  

Herein, we report the synthesis and characterization of a novel 3D 
small-molecule acceptor 2,2’-(12H, 12'H-10, 10'-spirobi[indeno[2,1-
b]fluorene]-12,12'-diylidene) dimalononitrile (4CN-spiro) (Scheme 
1). We demonstrate its potential as a non-fullerene electron acceptor 
in BHJ solar cells. Using a simple spin-coating fabrication 
technique, with polythieno[3,4-b]-thiophene-co-benzodithiophene 
(PTB7)47 as electron donor, the best device efficiency was obtained 
when processed from tetrachloroethane, while further solvent 
additives like diiodooctane did not improve the performance further. 

 
Scheme 1 Synthetic route towards 4CN-spiro. 
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Fig. 1 Thermal, photophysical and electrochemical properties of 2O-spiro and 4CN-spiro. (a) TGA curves ; (b) UV-vis absorption spectra in 
dichloromethane solution and in thin film; (c) cyclic voltammograms in dichloromethane/0.1 M nBu4NPF6 at 100 mV s-1
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Results and discussion 

Synthesis and characterization 

The synthetic route towards 2,2’-(12H,12'H-10,10'-spirobi[indeno [2,1-b]fluorene]-12,12'-diylidene)dimalononitrile (4CN-spiro) is shown in 

Scheme 1. 9,9-Spiro-bifluorene was acylated by 2-iodobenzoyl chloride to yield 9,9’-spirobi[fluorene]-2,2’-diylbis((2-

iodophenyl)methadone) (1) in 82 %. The intermediate compound 12H,12’H-10,10’-spirobi[indeno[2,1-b]fluorene]-12,12'-dione (2O-spiro) 

was synthesized by a cyclization reaction using palladium acetate as catalyst and sodium acetate as base. Finally, the target product 4CN-

spiro was obtained in 99 % yield by Knoevenagel condensation of 2O-spiro with the Lehnert reagent48, 49 (TiCl4, malononitrile, pyridine). 

2O-spiro and 4CN-spiro were fully characterized by FD-Mass, HRMS, 1H NMR, and 13C NMR. The molecular structures were further 

confirmed by single crystal X-ray analysis (see crystallography section below). Thermogravimetric analysis (TGA) of  2O-spiro and 4CN-

spiro revealed excellent thermal stability, with 5 % weight loss occurring at 423 °C and 460 °C, respectively (Fig. 1a). 

Optical and electrochemical properties  

 

 

Fig. 1b shows the absorption spectra of 2O-spiro and 4CN-spiro in dichloromethane solution and as thin solid film. The absorption bands of 

2O-spiro and 4CN-spiro in the thin film spectra are only slightly  red-shifted compared to those in solution. This is different from the 

previously reported 3D star-shaped materials34, 37, whose absorption bands are significantly red-shifted in solid state, which might be due to 

the different electron donating and electron withdrawing groups (push-pull effect) The optical gap (Eg) estimated from the absorption edge of 

the solution spectrum is 2.56 eV for 2O-spiro and 2.08 eV for 4CN-spiro, respectively.   

    The electrochemical properties of 2O-spiro and 4CN-spiro were investigated by cyclic voltammetry (CV) in dichloromethane solution 

with 0.1 M nBu4NPF6 as supporting electrolyte.  As shown in Fig. 1c, both 2O-spiro and 4CN-spiro exhibit reversible reduction waves. No 

oxidation waves could be observed in the measured potential range.  The half-wave potential of 2O-spiro is -1.29 V. Upon dicyanovinylene 

functionalization, the reduction potentials of 4CN-spiro shift to more positive values with the E1/2 potentials at -0.72, -1.31 and -1.44 V, 

respectively. The overlapping second and third reduction waves of 4CN-spiro with a lower associated current are similar to those of 

dicyanovinylene-functionalized(bis)indenofluorenes.43 The LUMO energy level of 2O-spiro and 4CN-spiro estimated from the equation 

ELUMO = - [Ered1/2 – EFc1/2 + 4.8] eV are -3.09 eV and -3.63 eV, respectively. The strong electron-withdrawing character of the 

dicyanovinylene causes a low LUMO level of 4CN-spiro, which guarantees sufficient driving force for exciton dissociation in OPV devices. 

The HOMO energy of 2O-spiro and 4CN-spiro are virtually identical to the value of -5.80 eV, calculated from the optical gap according to 

the equation HOMO = LUMO – Eg. 

 
Fig. 2 Crystal packing diagrams of 2O-spiro (a) and 4CN-spiro (b) projected along a axis. C, black; O, purple; N, red. 
 
Crystallography 

Single crystals of the new compounds 2O-spiro and 4CN-spiro were grown by slow evaporation of the solvent mixture 

dichloromethane/hexane, and pure dichloromethane, respectively. The crystal structure determined by X-ray diffraction is presented in Fig. 
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2. The functionalized 9,9-spiro-bifluorene consists of two identical fluorene π-systems, which are perpendicular to each other via a common 

sp3-hybridized carbon atom. Crystal packing of the two molecules is dominated by π-π stacking interactions. The π-stacking of 2O-spiro 

obviously extends into three dimensions in the single crystal, as it can clearly be seen from the packing structure (Fig. 2a). Three π-stacking 

axes are almost perpendicular to each other. To the best of our knowledge, this is the first example of an organic semiconductor that can 

adopt a 3D isotropic π-stacking. In case of the acceptor 4CN-spiro π-stacking with interplanar distances of ca. 3.48 and 3.40 Å along the a 

axis and b axis (Fig. 2b) was observed. Therefore, the packing geometry of the two compounds indicates the possibility of π-π interaction, 

implying that isotropic electron transport pathways as in fullerene derivatives could potentially be formed in donor-acceptor BHJ solar cells. 

 

Photovoltaic properties 

To demonstrate the potential application of 4CN-spiro as acceptor in photovoltaic devices, it was blended with PTB747 as electron donor 

polymer, whose absorption band is more red-shifted than that of P3HT and partially complementary to the absorption of 4CN-spiro. BHJ 

OPV cells of the structure ITO/PEDOT:PSS/PTB7:4CN-spiro/Ca/Al were prepared. In addition, the effects of varying processing solvents 

and blend composition were investigated. Table 1 summarizes the obtained open-circuit voltage (Voc), short-circuit current density (Jsc), fill 

factor (FF), and PCE of the devices. 

Table 1. Photovoltaic parameters of the solar cell devices obtained under AM1.5G-like conditions at 0.7 suns illumination intensity. 

Blend  
ratio(A/D) 

solvent 
Voc  
[V] 

JSC  
[mA/cm²] 

FF 
[%] 

PCE  
[%] 

1:2 TCE 0.87 1.13 0.49 0.64 

1:1 TCE 0.89 1.41 0.48 0.80 

1:1 TCE/DCB 0.89 0.22 0.19 0.05 

1:1 DCB 0.09 0.10 0.09 0.01 

1:1 TCE/3%DIO 0.42 0.03 0.20 0.00 

       TCE: tetrachloroethane    DCB: dichlorobenzene  

 

The device prepared from tetrachloroethane with a donor-acceptor weight ratio of 1:2 exhibited an open-circuit voltage of 0.87 V, a short-

circuit current density of 1.13 mA cm-2, a fill factor of 0.49, and a power conversion efficiency of 0.64 %. Encouragingly, the blend at a 

donor-acceptor weight ratio of 1:1 demonstrated an increased PCE of up to 0.80 % with a Voc, Jsc and FF of 0.89 V, 1.41 mA cm-2 and 0.48, 

respectively. We note, that tetrachloroethane is a rather uncommon solvent in photovoltaic device preparation, however, TCE is also a good 

solvent for the acceptors used in the present study. AFM height images show a homogeneous surface structure of the blend with demixing on 

the length scale of exciton diffusion, which ensures efficient exciton quenching and dissociation (Fig. 4). We have also tried further 

 

Fig. 3 Current density-voltage (J-V) curve of the OPV cell processed from tetrachloroethane with a donor-acceptor weight ratio of 1:1. 
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Fig. 4 AFM height images of a PTB7:4CN-spiro (1:1, w/w) blend processed from tetrachloroethane. 

device optimization including the use of solvent additives. In fact, a small amount of 1,8-diiodooctane (DIO) in a volume ratio of 3 % was 

used as solvent additive to improve the photovoltaicperformance in PTB7:PCBM devices.47 However, in the present case the device prepared 

with the additive exhibited no response to light at all, even though the AFM images indicated a rather uniform surface structure (Fig. S2). 

This implies that other processes such as geminate recombination of interfacial charge-transfer (CT) states or insufficient charge carrier 

transport due to a lack of charge carrier percolation pathways limit the photovoltaic performance. Furthermore, we have also investigated the 

device performance upon using DCB as solvent or a mixture of DCB and tetrachloroethane. However, in these cases, the AFM images 

indicated the formation of large crystallites as high RMS values were observed. This is detrimental for device efficiency (Fig. S2) as 

demonstrated also by the low PCE value. We note that even for the optimized device only a moderate short circuit current and fill factor were 

obtained compared to devices that use fullerene as acceptor. The latter is a consequence of the pronounced bias dependence of the current 

density, which does not even saturate at high negative bias, as previously also observed by us for a polymer-PDI blends.50 To better 

understand the origin of the former, that is, the moderate short circuit current of the PTB7:4CN-spiro blends spun from C2D2Cl4, transient 

absorption (TA) spectroscopy was performed on the picosecond to nanosecond timescale. The transient absorption spectra shown in Fig. 5 a) 

are dominated by a positive feature in the spectral region from 540 to 830 nm peaking at 685 nm, which we assigned to a combination of the 

ground-state bleaching (GSB) of PTB7, as it coincides with the ground state absorption of the polymer and stimulated emission (SE) of 

PTB7 singlet excitons. The observation of SE points towards inefficient exciton quenching in these blends, in part explaining the lower 

device performance compared to PTB7:fullerene blends. Fig. 5 b) shows the decay dynamics of the GSB at various excitation intensities. 

Clearly, the signal decay is independent of the excitation intensity pointing towards geminate recombination of charges that do not manage to 

entirely dissociate into free charges. We note that a substantial fraction of > 80% of the initially created excited states decays on the sub-ns 

timescale and consequently does not contribute to the photocurrent of the device. Thus, we conclude that the devices are limited by both 

inefficient exciton quenching as well as pronounced geminate recombination of bound charges on the sub-ns timescale. 

 

 

Fig. 5 a) ps-ns transient absorption spectra at different time delays after photoexcitation at 650 nm with a fluence of 6.0 µJ/cm2 and b) 

ground-state bleaching (680-700 nm) dynamics at various excitation densities. 
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Conclusions 

In conclusion, a novel 3D acceptor 4CN-spiro containing spiro-bifluorene as core was synthesized and fully characterized. As revealed by 

single-crystal analysis, the new compound presents the possibility of isotropic charge transport, which is similar to the situation in fullerene 

derivatives. The solar cells based on PTB7:4CN-spiro processed from tetrachloroethane yield the highest PCE of 0.80 %. Our results 

demonstrated for the first time that dicyanovinylene substituted 4CN-spiro could be an alternative to fullerene-based acceptors. However, we 

also observed that device performance is limited by incomplete exciton quenching and fast geminate recombination on the sub-ns timescale. 

Further experiments are required to determine whether the bias dependence of the photocurrent is caused by field-dependent charge 

generation or limited by a low charge carrier mobility leading to a competition of charge extraction and non-geminate recombination or a 

combination of both processes. Finally, future work will aim towards new acceptor structures to improve charge separation and to overcome 

the limits set by geminate recombination and the bias dependence observed in the present study. 

 

 

 

Experimental section 

Synthesis 

9,9'-Spirobi[fluorene]-2,2'-diylbis((2-iodophenyl)methanone) (1) 

A 500-mL round-bottomed flask was charged with 2-iodobenzoyl chloride (10.10 g, 37.97 mmol), dichloromethane (400.0 mL), and 

spirofluorene (4.00 g, 12.67 mmol). The reaction mixture was cooled in an ice bath, and aluminum chloride (5.90 g, 44.35 mmol) was added 

in one portion. The mixture was stirred at room temperature for 24 h. Water was slowly added to the reaction mixture while cooled with an 

ice bath. The mixture was extracted with dichloromethane, washed with brine and dried over sodium sulfate, filtered and concentrated. The 

residue was purified by flash chromatography with 10-25 % ethyl acetate in hexanes to give the white product in 85% yield. 1H NMR (500 

MHz, THF-d8): δ 6.29 (d, J = 7.8 Hz, 2H), 6.27 (d, J = 8.0 Hz, 2H), 6.13 (d, J = 8.0 Hz, 2H), 5.91 (dd, J = 8.1, 1.6 Hz, 2H), 5.68 (dt, J = 9.6, 

7.6 Hz, 4H), 5.59 (d, J = 1.5 Hz, 2H), 5.53 (dd, J = 7.6, 1.7 Hz, 2H), 5.46 (t, J = 7.5 Hz, 2H), 5.41 (td, J = 7.7, 1.7 Hz, 2H), 5.01 (d, J = 7.7 

Hz, 2H). 13C NMR (500 MHz, THF-d8): δ / ppm: 194.92, 149.29, 148.50, 147.01, 144.77, 140.46, 139.49, 135.48, 131.65, 130.76, 129.21, 

128.60, 128.18, 127.60, 124.64, 123.89, 121.29, 119.98, 92.08. FD-Mass: calc.: 776.41 found: 775.1. HRMS (TOF MS ES+): m/z calcd for 

C39H23O2I2, 776.9788 found 776.9767. 

12H,12'H-10,10'-Spirobi[indeno[2,1-b]fluorene]-12,12'-dione (2O-spiro) 

A mixture of 1 (1.40 g, 1.80 mmol) and palladium acetate (0.16 g, 0.72 mmol) in dry dimethylacetamide (100 mL) was heated to 130 oC 

overnight under argon atmosphere. The mixture was cooled to room temperature and the solvent was evaporated under vacuum . Then, water 

was added. The mixture was extracted with ethyl acetate, and the organic extracts were washed with 2 M HCl, dried over sodium sulfate and 

concentrated. The residue was purified on silica gel with dichloromethane to provide the green product in 65% yield. 1H NMR (500 MHz, 

C2D2Cl2) δ 7.95 (s, 2H), δ 7.94 (d, J = 6.6 Hz, 2H) 7.64 (d, J = 7.4 Hz, 2H), 7.55 (dd, J = 7.2, 1.0 Hz, 2H), 7.52 (dd, J = 7.5, 1.0 Hz, 2H), 7.45 

(td, J = 7.6, 1.1 Hz, 2H), 7.27 (td, J = 7.4, 1.0 Hz, 2H), 7.21 (td, J = 7.5, 1.1 Hz, 2H), 6.95 (s, 2H), 6.80 (d, J = 7.6 Hz, 2H). 13C NMR (500 

MHz, C2D2Cl4): δ / ppm: 193.15, 148.76, 148.63, 148.47, 145.35, 143.98, 140.48, 134.90, 134.74, 134.09, 129.60, 129.28, 128.58, 124.19, 

121.29, 120.50, 120.07, 112.37, 74.18, 65.55. FD-Mass: calc.: 520.59 found: 519.4. HRMS (TOF MS ES+): m/z calcd for C39H21O2, 

521.1542 found 521.1552. Melting point has not been observed below 350 oC. 

2,2'-(12H,12'H-10,10'-Spirobi[indeno[2,1-b]fluorene]-12,12'-diylidene)dimal-ononitrile (4CN-spiro) 

To a stirred mixture of 2O-spiro (0.25 g, 0.48 mmol) and malononitrile (1.59 g, 24 mmol) in 100 mL CHCl3, 1mol/L TiCl4 (9.60 mL, 

9.6mmol) was slowly added, followed by dried pyridine (1.89 mL, 23.45mmol). The mixture was refluxed for 36 hrs under Ar. Every 5 hrs, 

identical amounts of malononitrile, TiCl4 and pyridine were added. After cooling down, the mixture was poured into ice/water and extracted 

with DCM. The combined organic layers were dried with Na2SO4. The solvent was removed under vacuum and the residue was purified by 

column chromatography (DCM as eluent) to give 4CN-spiro as red orange solid. Finally the solid was washed with acetone to give the pure 

product in 99% yield. 1H NMR (500 MHz, C2D2Cl4): δ / ppm:  8.23 (d, J = 7.8 Hz, 2H), 8.01 (s, 2H), 7.96 (d, J = 7.7 Hz, 2H), 7.67 (d, J = 

7.5 Hz, 2H), 7.61 (s, 2H), 7.51 (t, J = 7.6 Hz, 2H), 7.47 (t, J = 7.6 Hz, 2H), 7.28 (t, J = 7.8 Hz, 2H), 7.25 (t, J = 7.6 Hz, 2H), 6.81 (d, J = 7.6 

Hz, 2H). 13C NMR (500 MHz, C2D2Cl4): δ / ppm: 161.22, 148.89, 148.64, 148.34, 143.66, 141.80, 139.83, 134.86, 134.80, 133.83, 130.22, 

129.40, 128.79, 126.61, 124.10, 122.21, 121.64, 120.95, 113.75, 113.50, 112.90, 65.75. FD-Mass: calc.: 616.17 found: 615.4. HRMS (TOF 

MS ES+): m/z calcd for C45H20N4Na23, 639.1586 found 639.1566. Melting point has not been observed below 350 oC. 
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Materials and Characterization 

1H NMR and 13C NMR spectra were recorded in deuterated solvents such as CD2Cl2, using a Bruker DPX 500 spectrometer, with the solvent 

proton or carbon signal as an internal standard. FD mass spectra were performed with a VG-Instrument ZAB 2-SE-FDP. High resolution 

mass spectra (HRMS) were carried out by the Microanalytical Laboratory of Johannes Gutenberg-University, Mainz. UV–vis absorption 

spectra were recorded at room temperature using a Perkin Elmer Lambda 900 spectrophotometer. Fluorescence spectra were recorded on a 

SPEX-Fluorolog II (212) spectrometer. CV measurements were carried out on a computer-controlled GSTAT12 in a three-electrode cell in a 

DCM solution of Bu4NPF6 (0.1 M) with a scan rate of 100 mV/s at room temperature, with  glassy carbon discs as the working electrode and 

Pt wire as the counter electrode, Ag/AgCl electrode as the reference electrode. Thermogravimetric analysis (TGA) was carried out on a 

Mettler 500 at a heating rate of 10 ºC/min under nitrogen flow. All reagents and starting materials were obtained from commercial suppliers 

and used without further purification. Column chromatography was performed on silica gel 60 (Macherey-Nagel, Si60) with 

dichloromethane, hexane, ethyl acetate or tetrahydrofuran (Sigma-Aldrich). All reported yields are isolated yields. 

Solar cell preparation and measurement 

Solar cells were fabricated on patterned ITO-coated glass substrates (Präzisions Glas & Optik GmbH, Germany). Cleaning included 

successive ultrasonication in detergent, acetone and iso-propanol. Furthermore, the samples were treated with an argon plasma before 

spincoating a ~40 nm thick poly(3,4-ethylene-dioxythiophene):poly-(styrenesulfonate) (PEDOT:PSS) (Clevios P VP al 4083, H.C. Stark) 

layer. The substrates were heated to 120 °C for 30 min in a nitrogen-filled glovebox. The active layer was deposited via spin-coating a 1:1 

mixture of donor poly(3-fluoro-2-[(2ethylhexyl)carbonyl]-thieno [3,4-b]thiophenediyl) (PTB7) and the acceptor (4CN-spiro)  at 800 rpm. 

The total weight concentration was 15 mg mL-1 in 1,1,2,2-tetrachloroethane, 20 mg mL-1 in 1,1,2,2-tetrachloroethane  and dichlorobenzene 

(DCB) mixture (1:1 by volume), 25 mg mL-1 in DCB and 15 mg mL-1 in 1,1,2,2-Tetrachloroethane containing 3vol% 1,8-Diiodooctane. 

Subsequent to the active layer deposition, a bilayer of 5 nm calcium and 100 nm aluminum was evaporated through a shadow mask.  

    IV characteristics were obtained under illumination with a solar simulator (K.H. Steuernagel Lichttechnik GmbH, Germany) using a 

575 W metal halide lamp in combination with a filter system to create a spectrum according to AM1.5G conditions. Yet, the intensity was at 

70 mW cm-2. Current-voltage curves were measured with a Keithley 236 Source Measure Unit (SMU) wihin a glovebox. The light intensity 

was measured with a calibrated silicon photodiode. 

    AFM images were taken with a Dimension Icon FS with ScanAsyst using an Olympus OMCL-AC 240TS-W2 Cantilever Type at F0
 = 

70 kHz in non-contact mode. 

    Transient absorption spectroscopy was described previously by our group. Transient absorption (TA) measurements were performed with 

a home-built pump-probe setup. To measure in the time range of 1-4 ns with a resolution of ~100 fs, the output of a commercial 

titanium:sapphire amplifier (Coherent LIBRA-HE, 3.5 mJ, 1 kHz, 100 fs) was split into two beams that pumped two independent commercial 

optical parametric amplifiers (Coherent OPerA Solo). One optical parametric amplifier (OPA) was used to generate the tunable excitation 

pulses in the visible, while the second OPA was used to generate the seed beam for white-light generation. For measurements in the spectral 

range between 550-1100 nm a 1300 nm seed of a few µJ was focused into a c-cut 3 mm thick sapphire window for white-light generation. 

The variable delay of up to 4 ns between pump and probe was introduced by a broadband retroreflector mounted on a mechanical delay 

stage. Mostly reflective elements were used to guide the probe beam to the sample to minimize chirp. The excitation pulse was chopped at 

500 Hz, while the white-light pulses were dispersed onto a linear silicon photodiode array, which was read out at 1 kHz by home-built 

electronics. Adjacent diode readings corresponding to the transmission of the sample after an excitation pulse and without an excitation pulse 

were used to calculate ∆T/T. 
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