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and a relative humidity of 35% (±5%). The experimental set-up

(Fig. 1) consists of two parallel steel wires of diameter 250µm

(Gauge 10 guitar strings, JD’Addario and Co) placed at a distance

of W = 2 mm from each other and strung in the middle of micro-

scope’s sample holder (Olympus IX71). Two plastic blades were

placed gently on the opposite ends of the wires. The edges of the

two blades were brought within 1mm of each other and a fixed

volume of dispersion (4-30 µL) was placed between them. Trans-

lating the blades gently in opposite directions along the wires cre-

ates thin, free-standing films of varying lengths (6-10mm).
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Fig. 1 (a) The experimental set-up. (b) Schematic of the experimental

set-up. Here, the length of the colloidal film is L, and the width of the film

is W.

As the wet film dried, tensile stresses in the film bend the wires.

The blades being thick and rigid experience negligible deflection.

No deflection was observed at the two ends of the wires which

were in contact with the blades. For small displacements, the

deflection of a stretched wire subjected to a transverse load is

given by21,

T
d2Yw

dx2
=−q, (1)

where T is the tension in the wires, Yw is the deflection of the wire

along the y direction at any point x along its length, and q is the

force acting per unit length on the wire. Note that d2Yw

dx2 is the in-

verse radius of curvature of the wire. As will be shown later, the

thickness does not vary significantly along the length of the film

(i.e., along x) so that q can be assumed to be a constant. Inte-

grating the equation between the blade ends (L), gives the force

per unit length acting on the wire, which is equal and opposite to

that acting on the film and is equal to the transverse stress in the

film multiplied by its thickness,

σ(y) =
2TYw

L2h(y)
[

x
L −

(

x
L

)2]
, (2)

where h(y) is the thickness of the sheet that varies along the y di-

rection, and σ(y)h(y) = q. Note that σ refers to the normal stress

in the y direction (σyy). Determination of the critical cracking

stress requires measurements of the tension in the wire, the max-

imum wire deflection (Yw has the maximum value at x = L/2) and

the sheet thickness at the crack edge.

3 Experiments

3.1 Measurement of wire tension

Before the start of the experiment, the blades were raised and

each wire was plucked at the middle, which made it vibrate at its

fundamental frequency. The vibrations of the wire were recorded

using a high speed camera (Hamamatsu sCMOS C11440-22CU)

at 1000 frames per second. The images were analyzed to get the

frequency of vibrations. Each frame was divided into two bins,

so that when the wire enters that bin, its intensity is lower than

without the wire. The intensity of each bin was measured as a

function of time. The vibrations in the wire cause the intensity of

each frame to be different. The intensity fluctuates with the same

frequency as the wire. Fast Fourier Transforms of the intensities

were taken, and plotted against the frequency. The peak of the

intensity corresponds to the fundamental frequency of vibration

of the wire. One such result is shown in Fig. 2. The tension of a

wire vibrating at its fundamental frequency is given by22

T = 4 f 2Lw
2µ, (3)

where T is the tension in the wire, f is the frequency of vibration

of the fundamental mode, Lw is the length of the vibrating wire,

and µ is the mass per unit length of the wire. The latter was

determined independently by measuring the weight of different

lengths of wire. For our experiments, Lw = 9.2 cm, µ = 2.9×10
−4

kg/m, and f ∼ 390 Hz, gave T ∼ 1.5 N.

3.2 Measurement of wire deflection

After the start of the experiment, the deflection of the wire due

to the drying stress was measured at the center of the wire (Fig.

3). In order achieve this, the film was cast, and then the center of

one wire was focused under the microscope. To make an accurate

measurement of the wire deflection, a 20X objective (0.50 NA)

was used. The deflections were of the order of tens of microns.

As in the case of films cast on substrates, the film begins to dry

first along its boundaries. As the edges dry, the solvent flows

from the center of the film towards the edges. There is very little

deflection in the wires at this time. With time, sufficient solvent

moves to the boundaries and evaporates, depositing the particles

at the edges. This makes the central part of the film much thinner

compared to the boundaries. During this time, the wires begin

to show notable deflection. The deflection continues to increase

till the point of fracture. Once the film cracks, the stresses in

the film decrease thereby reducing the deflection in the wires.
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Fig. 2 Power spectrum of intensity gives the frequency of vibration of

the wire. The peak frequency value of 390.6 Hz corresponds to a

tension of 1.53 N.

In many cases, the wires did not relax to their stress-free state,

indicating that some residual stress remains in the film. We could

not capture the deflection of the wires and the cracking of the

film in the same experiment as it compromises with the accuracy

of the measured deflection. However, the sudden reduction in

the deflection of the wires from the point of highest deflection

suggests nucleation and growth of the first crack.
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Fig. 3 Wire deflection at x = L/2 is plotted as a function of time, which is

rendered dimensionless by the time at which the deflection is maximum.

3.3 Measurement of film thickness

After each experiment, the cracked films were collected on clean

glass cover slips and their thickness measured using a profilome-

ter (Veeco Dektak 150) both across the width starting from the

crack edge and along the crack edge. Figures 4(a) and (b) show,

respectively, the thickness profile of one such film along its width

and its length. The thickness varies across the width of the film,

being the thinnest at the crack edge, and nearly equal to the

wire diameter at the edges. The film is roughly uniform along

its length (±10%), confirming the assumption of a uniform load

(q) acting along the film.
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Fig. 4 (a)Thickness profile of a part of the dried film along its width (i.e.,

along y). The thickness of the film at the crack edge is approximately 22

µm (indicated by an arrow). The film is thinnest near the center, and

nearly as thick as the wire at the edge (nearly 240 µm). The flat region

to the left of the arrow corresponds to the surface of the cover slip. (b)

Thickness profile along the length (i.e., along x) of a part of the film

shows little variation, implying a constant load acts along the length of

the film.

3.4 Cracking stress

The knowledge of wire tension, the maximum deflection and the

crack edge thickness allows determination of the critical cracking

stress (σc) at the crack edge using Equation 2. Figure 5 presents

the measured critical stress (filled squares), which scales approx-

imately with the inverse two-thirds’ power of the sheet thickness

and is similar to those reported for cracking in films cast on sub-

strates2,4,6. The constitutive relation for a saturated colloidal film

can be approximated by the form23, σ ∼ Gε2, where G is the

shear modulus of the particles and ε is the affine strain. The elas-

tic energy recovered on the opening of a crack of length ‘c’ in

a packing of unit thickness is, ∼ σεc2. Equating this to surface

energy per unit thickness of the sheet (γc) as per the Griffith’s cri-

teria17 gives the critical cracking stress, σc,gc2/3
∼ G1/3γ2/3. The

exact expression following detailed calculations is given by15,

(σc,gR

2γ

)( c

R

)
2

3

= A′

(GMφrcpR

2γ

)
1

3

, (4)

where γ is the surface tension of the solvent, M is the number of

nearest neighbors, φrcp is the volume fraction at random closed

packing and A′ is a constant equal to 0.45 for plane stress defor-

mation. Experiments of Sarkar and Tirumkudulu24 have shown

that a capillary bridge of drying colloidal dispersion crack due

to spherical voids/flaws trapped inside the drying bridge. The

critical stress was found to follow a similar scaling with the cap-

illary bridge diameter. Since the the flaw size was found to be

a constant fraction of the bridge diameter, the theoretical scaling

of σc ∼ c−2/3 was approximately followed. If an analogous as-
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sumption of the nucleating flaw size being a fraction of the film

thickness (h) is made for the present case, the experimental data

can be fit by substituting c = 0.864h in equation (4) (dashed line

in Fig 5). This suggests that the ideal Griffith’s flaw size is of the

same order as the film thickness. However, unlike the capillary

bridge case, the observed flaws appear to penetrate the entire

thickness and there is no constraint on the size of such a flaw in

a flat film. In other words, the flaw can be many times of the

film thickness. Indeed, as reported in the next section on crack

dynamics, the measured sizes of the flaws which nucleate cracks

were much larger, suggesting that the films crack at stresses much

higher than the Griffith’s stress. This is because the critical crack-

ing stress predicted by the Griffith’s criteria applies to station-

ary cracks under equilibrium conditions. For a flaw to increase

in length, the stress must be greater than the Griffith’s stress3.

Figure 5 includes points that were calculated from (4) using the

measured values of flaw sizes from many experiments for three

thicknesses (2,5 and 8 µm). Comparing them with the measure-

ments indicates that the critical stresses can be ten times larger

than the Griffith’s stress.

Fig. 5 Variation of non-dimensional critical cracking stress with

non-dimensional film thickness. The solid squares represent the

experimentally measured critical cracking stress values, and the empty

squares represent the cracking stress values as predicted by (4) using

the measured values of flaw sizes just before they nucleate crack. The

dashed line is a fit of the experimental data to equation 4, by assuming

the flaw size, c to be a fraction of the film thickness.

3.5 Crack dynamics

Next, we captured the high-speed motion of the crack-tip to de-

termine its time evolution. In these experiments, the camera was

focused on the central sections of the film so as to detect the nu-

cleation of the first crack from a flaw. A lower numerical aperture

objective (4X, 0.13 NA) was used, which enabled visualization of

a large area (about 3.2 mm by 0.5 mm) of the film. On casting

the wet film, the intensity of the entire film is initially uniform. As

drying occurs, the central part appears brighter implying that the

thickness of that region reduces more than its surroundings. We

attribute this to the convection of particles and fluids to the edges

of the film. Eventually flaws begin to appear in the film and the

crack-tip motion of the first nucleating crack was recorded. It is

important to note that in some cases, the crack nucleated outside

the viewing region and such data was discarded.

Figure 6 presents images of a crack which grows very slowly

between 0 and 59 ms, and then progresses rapidly in the next

millisecond. Much of the growth occurs between 60-200 ms, fol-

lowed by a period of slower growth and subsequent arrest. Close

inspection of the crack-tip beyond 300 ms shows accumulation

of water (see inset). The amount of water at the crack-tip is

larger than what would be contained within a region of order R2

suggesting that water flows into the crack-tip. This observation

confirms earlier predictions of a negative pressure at the crack-tip

which draws the liquid from the surroundings15. Detailed record-

ings of the crack motion were performed with films of three differ-

ent thicknesses, namely, 2, 5 and 8 µm. At these low thicknesses,

the first crack invariably occurred near the center of the film and

so was easy to capture. There was significant variability in the

crack evolution. For films of nearly the same thickness, the nucle-

ating flaw size, the length to which a crack grows before stopping

and the maximum value of the crack speed vary although the

corresponding critical cracking stress was highly reproducible -

reasons for which are not clear. The sizes of flaws that nucleate

the first crack were measured from the images and the same were

used to calculate the Griffith’s stress (shown by empty squares in

Fig. 5) using equation 4.

Fig. 6 The images show the time evolution of a crack. Crack speed was

determined by tracking the left side crack-tip. Emergence of a meniscus

at the crack-tip at long times can be seen in the inset. The average

thickness at the crack edge was 8 µm. Scale bar: 200 µm.

4 Model

The measured time evolution of crack-tip motivates a model in-

volving an energy-rate balance, akin to the Griffith’s energy bal-

ance criteria. While a detailed model for the dynamics would re-

quire accounting for the non-linear constitutive model along with

detailed calculations for the various energy terms, a simpler ap-

proach of dimensional analysis applicable to a linear elastic sheet

saturated with liquid is expected to provide the essence of the

phenomenon. Further, the thickness varies along the y-direction,
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which complicates the determination of the crack dynamics. We

simplify the analysis by assuming a sheet of constant thickness,

which is equal to that observed at the crack edge, and of lateral

dimensions that stores the same elastic energy as in the actual

film. For the actual film, the energy stored in the thicker regions

will be small suggesting that most of the elastic energy is stored

in the thinner regions located in the center of the film where the

cracks nucleate. Recall that the thickness variations were negli-

gible along the length of the film. The elastic energy stored in

the actual film can be determined as, Eelas =
∫W

0

[σ(y)]2

2E Lh(y)dy. On

substituting the measured values of h(y) (say, from Fig. 4(a)) in

the above expression for a fixed q, the effective width of a film

with constant thickness (and equal to that at crack edge) con-

taining the same elastic energy as that calculated from the above

expression is about 20% of the actual width. With similar thick-

ness variations close to both the blades, the effective area of the

constant thickness film is estimated to be much less than 20% of

the area of the actual film.

It should be noted that the analysis for a film with varying thick-

ness is also possible though it is a bit involved. The thickness-

averaged relation between the stress and strain for a non-uniform

thickness film in the plane stress formulation is given by,25

σ̄xx =
E

1−ν2

[

α11εxx +να12εyy

]

σ̄xx =
E

1−ν2

[

να21εxx +α22εyy

]

τ̄xy = Gα66γxy

where the coefficients, α11, α12 = α21, α22 and α66, are functions

of the thickness variation of the film and the over bar indicates

thickness average. For a constant thickness film, these coefficients

are all equal to one. For the special case of a film with constant

taper, which the present case may be approximated to, Shumin et

al.25 show that these coefficients are constant (but different from

1). Such a case belongs to the class of anisotropic plates of con-

stant thickness, and the expression relating the critical stress to

the crack opening will have the same functional form as that for

an isotropic plate of constant thickness except for a multiplying

factor due to the anisotropy26. The same would be the case for

the kinetic energy term to be discussed later. Since our goal is to

elucidate the main aspects of the crack motion, the detailed anal-

ysis including the non-linearity of the constitutive relation along

with the exact expression for the all the energy terms is postponed

to future work. In what follows, we consider a constant thickness

film with an area, A, equal to 15% of the area of actual film (i.e.,

15% of 2mm×8mm).

The stress versus strain relation for the model linear elastic

sheet containing a crack of length 2c is given by27, σ = εEe f f

where Ee f f = AE/(A+2πc2) is the effective Young’s modulus of

the film containing a crack, and E is the Young’s modulus of

the material. The strain ε applies to the deformation of the en-

tire film as measured at the boundary. The corresponding elas-

tic energy stored in the sheet (per unit thickness) is given by,

Eelas = (ε2Ee f f /2)A. Note that with increase in c, Ee f f decreases

leading to a decrease in Eelas at constant strain, since the film is

held fixed at its boundaries. Combining the above relation with

the Griffith’s criteria for fracture17, σ2
c,g = 2Eγ/πc, gives the lo-

cus of the Griffith’s condition that relates the critical strain (εc)

to that corresponding to Griffith’s critical stress, σc,g. For a fixed

crack size, any stress greater than the Griffith’s stress would make

the system unstable, causing the crack to expand. The expression

for the kinetic energy (per unit thickness of the sheet) due to the

propagating crack on dimensional grounds was first proposed by

Mott28 and is given by,

EKE =
k′ρc2

2

(

dc

dt

)2
A2ε2

(A+2πc2)2
,

while that for the surface energy is, ES = 4γc. Here, k′ is the

Mott’s constant, ρ is the density and t is time. Berry27 equated

the change in the elastic energy to the sum of the kinetic energy

and surface energy to obtain an explicit expression for the crack

velocity. For a fixed deformation case (constant strain case) which

is applicable to the present set-up, the crack velocity increases

reaching a maximum value after which it decreases to zero.

The analysis predicts crack velocities that scale with the elastic

wave velocity,
√

E/ρ. The Young’s modulus, E, for a colloidal

packing scales as E ∼ Gε, with the exact expression being15, E =

4GMφrcpε/35. The critical strain along with the Young’s modulus

can be calculated by substituting the measured values of critical

stress in the constitutive relation, σc = Eεc. Using G = 10
9Pa,

M = 6 and φrcp = 0.64, we obtain εc ∼ 10
−2 and E ∼ 10

7 Pa. The

latter implies that the crack speeds should be O(10
3) m/s, which

is four orders higher than the observed value. We hypothesize

the cause for the discrepancy to be the large rate of dissipation

caused by flow of liquid in the pores of the colloidal sheet18. The

expression for the viscous dissipation per unit thickness of the

sheet is given by, Φ̇ =
∫

A

µ
kp

V 2
dA , where µ is the viscosity of

the interstitial liquid, kp is the permeability coefficient, V is the

velocity of the liquid, and A is the area over which solvent flows.

Since the rate of dissipation is dependent on the speed of the

crack, we expect Φ̇ ∼ (µ/kp)(dc/dt)2
A .

The area A is equal to the product of the crack length and a

characteristic distance, δ , from the crack face that is determined

by the strength of liquid flow through the pores of the packing.

Assuming that Darcy’s law describes this flow29, the character-

istic velocity would be, V = −(kp/µ)∇P ∼ (kpγ/µRc), where the

pressure, P, in the pores scales with the capillary pressure, γ/R.

However, given the relatively large crack speeds observed in our

experiments (compared to the Darcy’s flow velocity), the fluid

flow during this time, is expected to be restricted to a small re-

gion close to the crack surface. Thus δ should then scale with the

product of the Darcy’s flow velocity and the characteristic time of

crack motion, δ ∼ (kpγ/µRc)/(1/c)(dc/dt). The analysis assumes

that the opening of the crack should significantly alter the pres-

sure close to the crack surface resulting in dominant flow in only

that region. This assumption is in line with the theoretical pre-

dictions of the pressure field for a static crack15 that exhibits a

singularity similar to that for the stresses close to the crack-tip.

The accumulation of water close to the crack-tip at later stages

of crack growth supports such an assumption. Substituting typ-

1–7 | 5

Page 5 of 8 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

t̄

α

 

 

2 µm Exp

2 µm Theory

5 µm, case A Exp

5 µm, case A Theory

5 µm, case B Exp

5 µm, case B Theory

8 µm Exp

8 µm Theory

Fig. 7 Comparison of model predictions with measurements. The

parameter values, (co[µm], n, k′′) for the four cases in order of listing in

the legend are (19, 0.07, 0.9), (26, 0.16, 2.3), (9, 0.7, 0.4), and (392,

0.026, 0.22).

ical values of parameters from our experiments, it is found that

δ ∼O(R). Thus the final expression for viscous dissipation can be

written as, Φ̇ = k′′cR(µ/kp)(dc/dt)2 where k′′ is a multiplicative

constant.

Substituting the relevant expressions in the power balance,

Ėelas = ĖS + ĖKE + Φ̇, gives the equation of motion of the crack

in its dimensionless form,

α̈ +
α̇2

α

(m−2α2)

(m+2α2)
=

2π

k′
1

α

(

1−
n

2α

(m+2α2)2

(m+2)2

)

−
2π

k′
k′′

8

α̇

α

(

coµR

γkp

√

E

ρ

)

n
(m+2α2)2

(m+2)2
, (5)

where α(t̄) = c(t̄)/co with co being the initial crack length (the

flaw size that nucleates the crack), n = 2σ2
c,g/σ2

c < 2 and is calcu-

lated from Fig. 5, m = A/πc2
o, and t̄ = (t/co)

√

E/ρ. In the absence

of liquid flow, we recover the original equations of Berry27. The

above equation is solved with the initial conditions, α = 1 and

α̇ = 0 at t̄ = 0. The strength of the dissipation term depends on

the dimensionless quantity, Q ≡
coµR
γkp

√

E
ρ , which quantifies the

viscous flow timescale over inertial timescale. Thus a large value

of Q signifies large dissipation and therefore slower crack growth.

The energy stored in the deformed wire is about three orders of

magnitude lower than the elastic energy stored in the film and

is thus not considered in the power balance. In our calculations,

E = 10
7 Pa, µ = 10

−3 Pa s, R= 92×10
−9 m, γ = 0.072 N/m, ρ = 10

3

kg/m3 and k′ = 1. The coefficient of permeability is given by,

kp = (1−φrcp)
3R2/(45φ 2

rcp). With these values, the value of Q var-

ied over more than an order of magnitude from 3.6×10
5 to about

9×10
6. Note that the particles are hydrophilic and so the surface

tension of water is taken for the calculations.

The distance of the crack tip from the center of the initial flaw

was recorded as function of time and compared with the predic-

tions. Recall that in Fig 6, the flaw increased by a very small

length from 0 to 59 ms followed by a rapid rise. We believe that

for all times beginning from when the flaw is sighted during the

drying process (which could be as far back as few minutes before

0 ms in Fig 6) to just before the rapid increase (59 ms in Fig 6),

the stress remains below the critical stress value. As soon as the

critical value is reached, the flaw propagates rapidly. Thus in all

our calculations, the initial flaw length is taken as that just before

the rapid increase in crack size. The model predictions compare

well with measurements where the film thickness is taken from

thickness measurements while the value of n is obtained from the

critical stress measurements (Fig. 7). Further, k′′ ∼ O(1) suggest-

ing the correctness of the model assumptions. In all cases, the ini-

tial flaw size was obtained from experiments and corresponded to

the size just before it propagated. The capillary stresses generated

in the drying film drive its fracture. The physical picture is anal-

ogous to the fracture of solid sheets at constant strain27. Once

the tensile stress exceeds the Griffith’s stress for a static crack

and reaches a critical value, a flaw nucleates a crack and starts

expanding. The effective elastic modulus and hence the tensile

stress and the corresponding elastic energy reduce. As the crack

propagates, the kinetic energy associated with the propagating

crack and the surface energy increase at the expense of the elas-

tic energy. The predicted crack-tip increases rapidly suggesting

the dominance of inertia during this early phase (Fig. 7). Sub-

sequently, the length increases steadily. The crack-tip decelerates

eventually due to increasing dissipation and surface energy, and

stops moving.

At large times, there are differences in some cases since the

measured crack-tips decelerate faster than predicted. We at-

tribute the difference to the increasing accumulation of water at

the moving crack-tip that further retards the motion via viscous

dissipation. Experiments performed by inserting a wetting liq-

uid between two glass strips and rupturing the film by driving in

a wedge, showed significant decrease in wedge-tip speeds with

viscosity30. The proposed model is only an approximate analy-

sis and a more comprehensive model that also accounts for the

non-linearity in the constitutive relation and thickness variation

is expected to capture such effects.

5 Conclusions

The dynamics of cracking of free-standing colloidal sheets has

been investigated. The critical stress which cracks such sheets

has been measured experimentally, and compared with an exist-

ing theory. The motion of a crack has also been studied. There

is a complex interplay of the elastic energy, surface energy, ki-

netic energy and viscous dissipation in crack propagation. An

approximate model, including inertial effects has been developed

to explain the nature of crack evolution. A more rigorous theory

is required to understand the variability in crack dynamics.
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GRAPHICAL ABSTRACT

Dynamics of cracking in drying colloidal sheets

Rajarshi Sengupta & Mahesh S. Tirumkudulu

Figure 1: The images show the time evolution of a crack in a thin sheet of
colloidal particles. The motion of the crack has been modeled as a competi-
tion between the release of the elastic energy stored in the particle network,
the increase in surface energy as a result of the growth of a crack, the rate of
viscous dissipation of the interstitial fluid and the kinetic energy associated
with a moving crack. There is fair agreement between the measured crack
velocities and predictions. Scale bar: 200 µm.
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