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Active fluidization in dense glassy systems†

Rituparno Mandal,a† Pranab Jyoti Bhuyan,a† Madan Rao,b,c and Chandan Dasgupta ∗a

Dense soft glasses show strong collective caging behavior at sufficiently low temperatures. Using
molecular dynamics simulations of a model glass former, we show that the incorporation of activity
or self-propulsion, f0, can induce cage breaking and fluidization, resulting in a disappearance of
the glassy phase beyond a critical f0. The diffusion coefficient crosses over from being strongly
to weakly temperature dependent as f0 is increased. In addition, we demonstrate that activity in-
duces a crossover from a fragile to a strong glass and a tendency for clustering of active particles.
Our results are of direct relevance to the collective dynamics of dense active colloidal glasses and
to recent experiments on tagged particle diffusion in living cells.

1 Introduction
Disordered assemblies of particles approaching the glass transi-
tion, either by lowering the temperature or by increasing the
density, exhibit increasingly slow dynamics and strong caging of
tagged particle movement. Recently, there has been a lot of inter-
est in the collective behavior of dense assemblies of hard-sphere-
like active or self-propelled particles close to the glass transi-
tion 1–4. In these systems, the glass transition is approached
on increasing the packing fraction and the introduction of activ-
ity tends to fluidize the assembly by shifting the glass transition
to higher packing fractions. The corresponding behavior in ther-
mally controlled systems in which the glass transition occurs upon
decreasing the temperature at constant density has not been ex-
plored till now.

Recent experimental studies of tagged particle diffusion in liv-
ing cells make this question most pertinent. For instance, stud-
ies on tagged particle diffusion of cytoplasmic constituents5 re-
veal that bacterial cytoplasm exhibits characteristic glassy fea-
tures such as caging, non-ergodicity and dynamical heterogeneity
in the absence of metabolic activity, and shows liquid-like features
when subjected to activity through cellular metabolism. Like-
wise, microrheology studies of particles embedded in the cell nu-
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cleus show cage-hopping dynamics driven by active stress fluc-
tuations arising from ATP-dependent chromatin remodeling pro-
teins (CRPs) and complete caging in ATP-depleted conditions (or
when the activity of CRPs is perturbed)6. Recent microrheol-
ogy work on probe particles attached to cytoskeleton-motor com-
plexes shows the effects of non-thermal fluctuations in transport-
ing particles over large scales7,8. Such activity driven fluidiza-
tion could play a significant role in transporting molecules over
large scales, thereby regulating a variety of biochemical signal-
ing reactions within the cell9. Signatures of glassy behavior have
also been observed in collective cell migration10,11, embryonic
tissues 12 and active transport on disordered landscapes13. The
importance of understanding the effects of activity on the collec-
tive dynamics of particle systems has motivated several experi-
mental investigations involving biological14,15 or artificially con-
structed16–19 self-propelled objects.

We have studied the effects of activity on the dynamics of a
thermally controlled glass-forming liquid - the Kob-Andersen bi-
nary mixture20 - using molecular dynamics (MD) simulations.
Activity is introduced in the model by assuming that a fraction
ρa of one kind of particles in the binary system experiences a ran-
dom active force f0 that is correlated over a persistence time τp.
In contrast to models21,22 in which the constituent objects have
fixed directions of self-propulsion, the directions of active forces
in our model are not determined by the orientations of the active
particles.

Our MD simulations in three dimensions were carried out us-
ing a modified leap-frog integration scheme23. This scheme uses
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velocity rescaling to simulate the behavior of systems of particles
in the canonical (NV T ) ensemble. The validity of this scheme
has been demonstrated in many simulations (see, for example,
Ref.24) of equilibrium glass-forming liquids. The temperature T
is not well-defined in systems with activity 25,26. In simulations
of such systems, the temperature-like parameter T in the inte-
gration scheme provides an approximate measure of the average
kinetic energy of the particles27. The dynamics generated by this
integration scheme is analogous to overdamped Langevin dynam-
ics28,29 with the parameter T playing the role of the temperature
associated with the noise in the Langevin equation. We shall refer
to the parameter T as the temperature in the rest of the paper,
although it may not be possible to define a temperature in an
unique way in systems with activity.

There are several important differences between this model
and the hard-sphere models of active glass considered in earlier
studies1–4 which make our model more suitable for describing bi-
ological systems with activity and more amenable to experimen-
tal realization. First, Lennard-Jones interactions are more faithful
representations of the soft interparticle interactions in soft cyto-
plasmic or nuclear matter30. Models of active particles with soft
interparticle interactions have been considered in several existing
studies21,22,28,29,31,32. However, the dense phase in some of these
studies28,29 is (poly)crystalline because a monodisperse system of
particles was considered. In contract, we consider a binary mix-
ture that is a well-known glass-former, thereby avoiding the possi-
bility of crystallization. Also, existing studies21,31 in which poly-
dispersity was used to avoid crystallization consider the liquid to
glass transition as a function of the packing fraction, whereas we
are interested in glass formation at fixed density as a temperature-
like parameter that represents the effects of a heat bath is varied.
This parameter would be easier to control in experiments than the
density5,6. Another important difference between our model and
those studied earlier is that the fraction of particles with activity
is tunable in our model, whereas all the particles are assumed to
be active in the models considered earlier1–4. This makes our
model more relevant for describing biological systems such as
bacterial cytoplasm5 or nuclear matter6 in which the fraction of
active constituents can be regulated. Also, our model allows us to
study separately the effects of changing the strength ( f0) and the
persistence time (τp) of the active force. This is not possible for
models1,33 in which all the constituent particles are active and
the persistence time is the only adjustable parameter because in
these models, changing the correlation time of the random active
force affects both the strength and the persistence time of the ac-
tive force. As discussed later, these differences have important
consequences for the dynamics of the system.

Our main results are : (i) Activity tends to fluidize the glass and
dramatically reduces the glass transition temperature; (ii) Tagged
particle dynamics shows cage-hopping resulting in a late-time dif-

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

t

<
∆

r(
t)

2
>

 

 
f
0
=0.00

f
0
=1.00

f
0
=1.25

f
0
=1.50

f
0
=1.75

f
0
=2.00

f
0
=2.50

f
0
=3.00

f
0
=4.00

f
0
=5.00

10
−2

10
0

10
2

10
4

0.4

0.6

0.8

1

t

Q
(t

)

 

 

Fig. 1 MSD for the active Kob-Andersen model for different values of
the self-propulsion force f0 for T = 0.2, ρa = 1.0 and τp = 4.0. Increasing
activity induces cage escape and a crossover to late time diffusive
behavior. Inset: Plots of the overlap function Q(t) for different
self-propulsion forces f0 show a similar behavior.

fusion coefficient that is weakly dependent on the temperature in
the limit of large activity; (iii) The phase diagram in the T − f0
plane shows the complete disappearance of the glass phase be-
yond a threshold value of the activity; (iv) The presence of ac-
tivity decreases the kinetic fragility of the liquid; and (v) Activity
leads to local clustering of the self-propelled particles induced by
the passive particles in the glassy medium.

2 Model
We study the Kob-Andersen binary mixture20 with 80% A-type
and 20% B-type particles interacting via the Lennard-Jones pair
potential,

Vi j(r) = 4εi j

[(
σi j

r

)12
−
(

σi j

r

)6
]
, (1)

where r is the distance between two particles and the indices i, j
can be A or B. The values of σi j and εi j are chosen to be: σAB =

0.8σAA, σBB = 0.88σAA, εAB = 1.5εAA, εBB = 0.5εAA. We set a cutoff
in the potential at ri j = 2.5σi j and shift it accordingly. We set the
unit of length and energy by σAA = 1, εAA = 1 and fix the overall
density ρ at 1.2.

We introduce activity only through a fraction ρa of B-type parti-
cles (0≤ ρa ≤ 1), while all A-type particles and a fraction (1−ρa)

of B-type particles remain passive. Thus, the number of active
particles is 0.2Nρa where N is the total number of particles. The
active B-particles are randomly assigned self-propulsion forces of
the form f0 = f0(kxx̂+ kyŷ+ kzẑ), where kx,ky,kz are ±1, chosen
so that the net momentum of the system remains conserved. Af-
ter a persistence time τp the directions of {f0} are randomized by
choosing a different set of kx,ky,kz, while respecting momentum
conservation. This discrete 8-state clock realization of the random
forces shows the same qualitative features as a continuous O(3)
description and all the results reported here are obtained with

2 | 1–11Journal Name, [year], [vol.],

Page 2 of 11Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



10
−2

10
0

10
2

10
4

10
−6

10
−4

10
−2

10
0

10
2

t

<
∆

r(
t)

2
>

 

 

10
−2

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

t

Q
(t

)

ρ
a
=1.0, f

0
=1.50, τ

p
=1.0

ρ
a
=0.8, f

0
=1.68, τ

p
=1.0

ρ
a
=0.5, f

0
=1.94, τ

p
=1.2

ρ
a
=0.6, f

0
=2.16, τ

p
=0.8

ρ
a
=0.9, f

0
=1.34, τ

p
=1.4

Fig. 2 MSD as a function of time at T = 0.5 for five different sets of
values of the parameters f0, τp, ρa, chosen such that ζ = ρa f0

2
τp

remains constant at 2.25. The plots for different sets of parameter
values collapse into a single curve. In the inset the collapse of the
two-point correlation function Q(t) for the same sets of parameter values
is shown.

this scheme. Our simulations have been performed for a system
with N = 1000 particles (800 A-type and 200 B-type particles).
We have checked from simulations for N = 5000 at a few points
in the ( f0− T ) plane that finite-size effects for the quantities of
interest in our study are negligible for N = 1000.

The details of the integration scheme used in our work are pro-
vided in Appendix A.1 where we also present representative re-
sults for the dependence of the average kinetic energies of the A
and B-type particles on T for different values of f0.

3 Numerical Results
3.1 Fluidization
To study the dynamics of the system, we measure the mean-
square-displacement (MSD) of tagged particles, 〈|∆r(t)|2〉, as a
function of time t at different temperatures. Simultaneously, we
record the two-point correlation function, Q(t), whose decay in
time provides a measure of the dynamical slowing down in glassy
systems,

Q(t) =
1
N ∑

i
〈w(| ri(t0)− ri(t + t0) |)〉 (2)

where,

w(r) =

{
1 if r ≤ a
0 otherwise

(3)

and 〈· · · 〉 represents an average over the time origin t0. Here, N
is the number of particles and the parameter a is associated with
the typical amplitude of vibrational motion of the particles. For
all of our analysis we have used a = 0.3.

At high enough temperatures, T = 2.0 for example, the MSD
in the absence of activity ( f0 = 0) increases ballistically (∼ t2) at
short time scales, before crossing over to a diffusive (∼ t) regime

at late times. The associated Q(t) decays exponentially to zero,
characteristic of a liquid. On decreasing the temperature, the
MSD begins to show a small plateau at intermediate times which
grows as the temperature decreases further. Simultaneously, Q(t)
starts exhibiting multi-step relaxation, described by a stretched
exponential function at long times. At very low temperatures, e.g.
for T = 0.2, both the MSD and Q(t) remain in the plateau region
over the time scales of the simulation and do not show the late
time diffusive part, indicating that the system has entered a glassy
state. The self-diffusion constant D, calculated from the long-time
data for the MSD using the relation limt→∞〈|∆r(t)|2〉= 6Dt, shows
that in the absence of activity, the diffusion constant decreases
very rapidly as the temperature is decreased below ∼ 0.5.

Introducing activity via self-propulsion leads to a dramatic
change in the dynamical behavior of the system. The behavior
of the MSD and Q(t), as illustrated in Fig. 1, clearly shows that
the system fluidizes as the activity is increased. Detailed examina-
tion of individual trajectories of both active and passive particles
shows evidence for caging at short time scales and cage breaking
at longer times for relatively small values of f0. The frequency of
cage breaking increases with increasing f0. For large f0, caging
is not present and the MSD shows a crossover from ballistic to
diffusive behavior without any sign of an intermediate plateau.
At high enough activity, the diffusion constant shows a large en-
hancement and appears to be only weakly dependent on the tem-
perature (see Fig. 3). While the active forces in our model are
characterized by 3 independent parameters, f0, τp and ρa, we find
that the combination ζ ≡ ρa f02

τp appears to control the dynami-
cal behavior in the fluidized phase for variations of the individual
parameters over a limited range (by factors of ∼ 2). When plot-
ted for a fixed value of ζ with different choices of f0, τp, ρa, many
dynamical quantities show a collapse, as shown in Fig. 2. The
combination ζ appears naturally in a heuristic calculation of the
effects of activity, based on a simple Langevin model discussed in
Appendix A.2.

The time autocorrelation function of the active force on particle
i in our system is given by

〈 fiα (t) fiβ (t
′)〉= 1

3
δαβ f 2

0 (1−|t− t ′|/τp) (4)

for |t− t ′| ≤ τp and zero otherwise, where α,β are coordinate la-
bels. Approximating the dependence on |t − t ′| by a δ -function
and considering the active force to be an additional noise term
in a Langevin description, we can associate an “active tempera-
ture”31,33,34, ( f 2

0 τp)/(6γkB), with the active force. Here, γ is the
friction coefficient appearing in the Langevin description. Taking
account of the fact that only a fraction, 0.2ρa, of the particles in
our system are active, the effective active temperature is given by

Ta =
Cρa f 2

0 τp

γkB
, (5)
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Fig. 3 The diffusion constant (D) has been plotted as a function of
temperature (T ) for different values of f0 for τP = 4.0 and ρa = 1.0. The
plot shows that the dependence of the diffusion constant on the
temperature becomes weaker with increasing f0. The inset shows the
α-relaxation time as a function of temperature (T ) for different f0,
illustrating a qualitative change in the behavior with increasing f0 and a
reduction in the (putative) glass transition temperature.

where the numerical factors have been included in the constant C.
As discussed below, the active temperature, which is proportional
to the quantity ζ defined above, plays an important role in the
activity-induced reduction of the glass transition temperature.

3.2 Structural Changes

To check whether this activity induced fluidization is accompa-
nied by a significant change in the structure of the liquid, we
have calculated the radial distribution functions gαβ (r), defined
by

gαβ (r) =
V

Nα Nβ

〈
Nα

∑
i=1

Nβ

∑
j=1

δ (r− rα
i + rβ

j )〉, (6)

where Nα is the number of particles of type α (α = A or B).
We find that gBB(r) is more significantly affected by activity than
gAA(r) and gAB(r) (Fig. 5 and Fig. 10 in Appendix A.3), and shows
more liquid-like features as f0 is increased. Also, the height of the
first peak of gBB decreases and a new peak at a smaller value of r
develops with increasing f0. This observation suggests that there
is an activity-induced clustering tendency in the B-type particles.

The clustering tendency is confirmed from a calculation (see
Appendix A.4) of the size distribution of the clusters formed by
B-type particles. However, the average cluster size increases by a
small amount (< 20% for the parameter values considered in our
study) as the strength of the activity is increased and we do not
find any evidence for activity-induced phase separation observed
in many recent studies18,19,22,28,29,31,32 of systems of active par-
ticles. Since only B-type particles are active in our model system,
separation of the active component into dense and gas-like phases
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Fig. 4 Phase diagram in the T − f0 plane. The blue dots indicate the
points at which simulations were performed. The glass transition
temperatures (green filled circles) have been obtained by fitting the
α-relaxation time τα to extract TVFT for different values of f0. Both
dimensional considerations and heuristic arguments based on a
Langevin model as in Appendix A.2 suggest that the phase boundary
has the form TVFT( f0) = TVFT(0)−Aρaτp f0

2, where A is a constant of
order one. The phase boundary (thin black line) represents a fit of the
data for TVFT( f0) to this form.

would also imply A-B phase separation – aggregation of a large
fraction of B-type particles is necessary for the formation of a
dense cluster of these particles. To check whether this happens in
our system, we have divided the simulation box into a large num-
ber of cells and calculated the distribution of the number of B-type
particles in each cell. These distributions for different choices of
the cell size are found to be very similar to those expected for a
random dispersion of the particles, indicating the absence of any
large cluster of B-type particles.

One of the reasons for the absence of active phase separation in
our system is that the interactions in the Kob-Andersen model are
chosen specifically to avoid A-B phase separation which may lead
to crystallization at high density and/or low temperature. Also,
the Péclet number, defined as d0/σAA where d0 is the typical dis-
tance traversed by an isolated active particle in time τp, the time
scale over which the direction of the active force remains corre-
lated, is relatively small (< 10) for the parameter values consid-
ered in our simulation. Active phase separation is not expected28

for such small values of the Péclet number. The choice of the
Kob-Andersen model for our study also avoids the possibility of
the kind of phase separation observed in Ref.35 and the forma-
tion of microcrystalline domains.

3.3 Phase diagram

The strong effect of activity on the dynamics is seen very clearly
in Fig. 3 where the temperature dependence of the long-time dif-
fusion coefficient D has been shown for different values of the
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Fig. 5 Pair correlation function gBB(r) of B-type (active) particles for
different values of f0 at T = 0.45, ρa = 1.0 and τp = 4.0. The appearance
of a peak at a lower value of r and the increase in its height with the
increase of activity f0 is indicative of activity-induced clustering.

self-propulsion force f0. The rapid decrease in D with decreasing
T for f0 = 0 is replaced by a much weaker temperature depen-
dence for large f0. Activity-induced fluidization is also seen in
plots of the α-relaxation time τα , extracted from the decay of Q(t)
(Q(τα ) = 1/e), vs. T for different f0 (inset of Fig. 3). To extract
a glass transition temperature from the data for the α-relaxation
time, we fit τα to the well-known Vogel-Fulcher-Tammann (VFT)
form,

τα = τ∞ exp

 1

κ

(
T

TVFT
−1
)
 (7)

where κ is the kinetic fragility, τ∞ is the relaxation time at high
temperatures, and TVFT( f0) is the activity dependent (putative)
glass transition temperature at which the relaxation time extrap-
olates to infinity.

In the absence of activity, TVFT(0) ∼ 0.3 in reduced Lennard-
Jones units. The values of TVFT for different values of f0 allow
us to construct a phase diagram in the T − f0 plane (Fig. 4). This
shows that even at low temperatures, there is a threshold activity
beyond which one may exit the glassy phase into the liquid. The
magnitude of τα , displayed as a color plot in Fig. 4, shows a sharp
increase near the phase boundary. The region displayed in red
color in Fig. 4 represents infinite τα according to the VFT form.
In this phase diagram, the glass transition temperature, defined as
the temperature at which τα would diverge if the VFT form con-
tinues to describe its temperature dependence, approaches zero
for a finite value (∼ 1.8) of the active force f0.

The phase boundary shown in Fig. 4 intersects the T = 0 axis
near f0 = 1.8 because the TVFT obtained from VFT fits to the tem-
perature dependence of τα at the relatively high temperatures
indicated in the Figure becomes negative for larger values of f0,
suggesting that τα would remain finite even at T = 0 for such val-
ues of f0. There are, however, indications that the extrapolation
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Fig. 6 Temperature dependence of the α-relaxation time for ρa = 1.0,
τp = 4.0 and different values of f0. The temperature has been shifted by
the optimal amount, δT ( f0) (see text) for each non-zero value of f0.
Inset: Dependence of δT on f0. The line through the data points is the
best fit to a quadratic dependence.

of the high-temperature results for τα and the diffusion coeffi-
cient D all the way down to T = 0 using the VFT form may not
be correct for values of f0 close to or greater than 2. As shown
in Fig. 3, the temperature dependence of D for f0 ≥ 2.5 appears
to deviate from the high-temperature behavior near T = 0.05, the
lowest temperature at which we were able to simulate the dy-
namics long enough to observe clear diffusive behavior for these
values of f0. Exploratory simulations at lower temperatures sug-
gest that the D vs T plot would bend downwards as T is decreased
below 0.05. This would imply that the results obtained from ex-
trapolation of the high-temperature data may not be reliable for
these values of f0. In particular, the phase boundary of Fig. 4 may
not be correct near T = 0. To check whether there is a threshold
value of f0 above which the system is in a fluid state at T = 0,
we have carried out simulations for large values of f0 ( f0 ≥ 25)
at T = 0. We find clear evidence for diffusive behavior in these
simulations. This observation clearly establishes that our model
exhibits activity-induced fluidization occurring at a finite value of
f0 even at T = 0. However, the value of f0 at which fluidization
occurs at T = 0 may be higher than that shown in Fig. 4.

The occurrence of fluidization at T = 0 for a finite value f0 is
not surprising because, as mentioned earlier, the dynamics used
in our simulation reduces to overdamped Langevin dynamics with
zero noise in the T → 0 limit. The average kinetic energy of the
particles is not zero in this limit because of the presence of the
active force. This is sufficient to melt the glass if f0 is sufficiently
large.

As discussed in detail in Appendix A.2, a heuristic single-
particle Langevin model provides a rationalization of some of the
features observed in our simulations. In this model, the phase
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Fig. 7 Relaxation time (τα ) as a function of temperature T , obtained
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boundary in the ( f0−T ) plane has the form

TVFT( f0) = TVFT(0)−Aρaτp f02, (8)

where A is a constant of order unity. As shown in Fig. 4, this form
provides a good description of the simulation results for small
values of f0. This observation indicates that the shift in the glass
transition temperature due to the presence of activity is propor-
tional to the “active temperature” Ta defined in Eq. 5 which is
proportional to the quantity ζ ≡ ρa f02

τp in our system. This is
in agreement with the results of mode-coupling calculations33,36

which predict that the effect of activity in systems where the ac-
tivity is a relatively small perturbation to the thermal behavior is
similar to that of increasing the temperature in the system with-
out activity.

As a further check of the validity of this description, we have
tried to collapse the data for the α-relaxation time shown in the
inset of Fig. 3 into a single master curve by shifting the temper-
ature by an amount that depends on the value of f0. For each
nonzero value of f0, we find the temperature shift δT ( f0) that
minimizes the difference between the curves τα (T − δT, f0) and
τα (T, f0 = 0). Results of this analysis are shown in Fig. 6 where
the data for each nonzero value of f0 have been plotted with the
optimal temperature shift δT ( f0). With this shift, the curves for
different values of f0 show fairly good collapse, although there
are small systematic differences between the curves. In the in-
set of Fig. 6, we have shown the dependence of δT on f0. It is
clear that δT is proportional to f 2

0 , as expected from Eq. 5. Us-
ing the best-fit value of the constant of proportionality and Eq. 5,
we estimate the value of the friction coefficient γ in the equiv-
alent Langevin description to be close to 1.8. We have carried
out a test simulation for f0 = 1.5 using overdamped Langevin dy-
namics with γ = 1.8. The temperature dependence of τα found in
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Fig. 8 Angell plot showing a crossover from fragile to strong behavior
with increasing active force ( f0). In the inset, the kinetic fragility (κ) has
been plotted as a function of f0.

this simulation is very similar to that obtained in our MD simula-
tion. Fig. 7 shows the temperature dependence of the relaxation
time τα obtained from these two approaches. To show the corre-
spondence between the two sets of results clearly, the τα values
obtained from overdamped Langevin dynamics has been scaled
by a factor of 2.0. These results establish a correspondence be-
tween our MD simulations and overdamped Langevin dynamics
and support the conclusion that the effect of activity on the dy-
namics of our system can be described as that of increasing the
temperature by Ta.

Figure 8 shows so-called “Angell Plots” - τα vs Tg/T , where Tg,
the analog of the experimentally determined glass transition tem-
perature at which the viscosity is 1013 poise, is obtained from the
definition τα (Tg) = 106. The curvature of the plots decreases with
increasing f0, indicating that the fragility decreases with increas-
ing activity. The dependence of the kinetic fragility κ obtained
from the VFT fits on the active force f0 (see the inset of Fig. 8) ex-
hibits the same trend, indicating that the activity makes the glass
stronger.

4 Discussion and Conclusions
There are several observable features of our model that are quali-
tatively different from those found in earlier studies1,2 of activity-
driven fluidization. In our model, the glass transition disappears
beyond a “critical” value of the activity, whereas in Refs.1 and2,
the glass transition was found to be present for all finite values
of the strength of the activity. This reflects a fundamental dif-
ference between hard-sphere systems and those with soft inter-
actions. In our model, the diffusion constant increases as f0 is
increased from zero at all temperatures. This behavior is quali-
tatively different from that reported in Ref.1 where the diffusion
constant was found to decrease with increasing activity at rela-
tively low densities (equivalent to relatively high temperatures
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in our system), causing a crossing of D vs. ρ plots for different
strengths of the activity. In our system (also in Ref.2), D vs. T
plots for different f0 come closer to each other as T is increased,
but they do not cross. This difference is probably a consequence
of the fact that the only control parameter considered in Ref.1

is the correlation time of the random force which, as discussed
earlier, affects both the strength and the persistence time of the
active forces. Contrary to the behavior of the hard-sphere system
studied in Ref.2, we find that the fragility in our model system
decreases with increasing activity.

These observations tell us that some of the effects of activity
on the glass transition are sensitive to the nature of the system
(whether driven by temperature or density) and to the details of
the self-propulsion mechanism37. This would imply that some of
the detailed characteristics of the active forces present in an ex-
perimentally studied system must be included in the development
of models for explaining the observed behavior.

To summarize, we have demonstrated activity driven flu-
idization in a model glass former at low temperatures and
a concomitant reduction of the glass transition temperature
with increasing activity. This fluidization is accompanied by a
crossover from caging dynamics to diffusive transport at long
times. The late-time diffusion coefficient in the activity-induced
fluid phase is weakly dependent on the temperature. We display
a phase diagram in the T − f0 plane that suggests that the glass
transition temperature goes to zero at a finite threshold value
of f0. The shape of the phase boundary has been rationalized
from a simple calculation as in Appendix A.2. This calculation
also brings forth the possibility of existence of a single control
parameter, ζ = ρa f02

τp, constructed from the three parameters
ρa, f0 and τp that characterizes the effects of activity on the
dynamics of the system in the fluid phase. This quantity plays the
role of an “active temperature” that adds to the nominal kinetic
temperature of the thermal system. We have also observed an
activity induced clustering of the self-propelled particles. The
kinetic fragility of the glass former has been found to decrease
with increase in activity. The results obtained here should be
relevant to activity induced fluidization in a variety of dense
colloidal systems and in cells and tissues. We are currently
exploring variants of this model to explain specific features of
caging and fluidization observed in the cell surface and the
nucleus.

A Appendix

A.1 Integration scheme

An elementary time step of the integration scheme used in our
study (Ref.23) involves the following operations:

~vi
′(t) = ~vi(t−∆t/2)+~Fi(t)∆t/2m, (9)

β
2 =

(3(N−1)kBT/m)

∑
N
i=1|~vi

′(t)|2
, (10)

~vi(t +∆t/2) = ~vi(t−∆t/2)(2β −1)+β~Fi(t)∆t/m. (11)

Here, ∆t is the integration time step, ~vi(t) is the velocity of particle
i at time t, m is the mass of a particle, and ~Fi(t) is the force on
particle i arising from its interaction with the other particles. For
the active particles, we add the contribution from the active force
f0n̂i(t):

~vi(t +∆t/2) = ~vi(t +∆t/2)+ f0n̂i(t)∆t/m (12)

where, n̂i(t) is the direction of the active force on particle i. This
vector changes after a persistence time τp. The positions of the
particles are then updated and the forces are calculated:

~ri(t +∆t) =~ri(t)+~vi(t +∆t/2)∆t (13)

~Fi(t +∆t) =−
N

∑
j=1

~∇iΦ(~ri(t +∆t),~r j(t +∆t)) (14)

where the sum over j excludes the j = i term, ~∇i represents the
derivative with respect to~ri and Φ is the pair interaction potential.

The results reported in the paper were obtained using this in-
tegration scheme in which the velocities are rescaled in every
time step. We have also carried out simulations in which velocity
rescaling is performed at intervals of n time steps with 1 < n≤ 10,
and found that the results are insensitive to the value of n in this
range.

To examine how the average kinetic energies of the active and
passive particles depend on T , we have shown in Table.1 the val-
ues of the average kinetic energy (per particle) of both active
and passive particles for several representative values of T and
f0. These results were obtained from simulations with 2.5× 106

time steps with ∆t = 0.002. Averages were performed over 100
data points at equal intervals. The error bars (numerical uncer-
tainty in determining the average from a finite number of mea-
surements) were estimated from the standard deviation of the
100 data points. It can be seen from the numbers in this Table
that the average kinetic energy of the passive particles is very
close to the equipartition value, 3kBT/2. The deviations from the
equipartition value are less than 0.5%, comparable to the error
bars and the deviations found in simulations in the absence of ac-
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B-type
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Self
Propulsion
Force

Fig. 9 Schematic diagram (in the top left) for self-propelled dynamics
and (in the right bottom) for the effective dynamics of B-type particles in
the presence of activity in a cage-like environment, represented by a
caging potential V . Activity generates an athermal noise for B-type
particles and remodels the caging-potential to allow for escape.

tivity ( f0 = 0). The average kinetic energy of the active particles
is higher than that of the passive particles by 1-2%, depending
on the values of T and f0. Thus, the kinetic energy per particle,
averaged over both active and passive particles, is slightly higher
than that for the passive particles which, in turn, is very close to
3kBT/2.

A.2 Heuristic Calculation

As described in the main text, a dense soft glass-forming liq-
uid, modeled by the Kob-Andersen binary mixture of A-type
and B-type particles, shows strong collective caging behavior
at sufficiently low temperatures. Incorporating activity or self-
propulsion, f0, in B-type particles induces cage breaking and flu-
idization if f0 is sufficiently large. Here we try and capture some
features of this collective behavior within an approximate single-
particle description, using Langevin dynamics for the position of
a tagged-particle in an effective caging potential created by the
neighboring particles. Activity enters into the Langevin equation
both as a source of athermal noise14 and as a slower remodeling
of the caging potential (Fig. 9).

We model the dynamics of a tagged passive particle by a
Langevin equation for the displacement xA(t),

mẍA =−V ′− γ ẋA +ξ (t) , (15)

where m is the mass of a particle (assumed to be the same for
both active and passive particles) and γ is the effective friction
coefficient. V ′ is the force derived from a caging potential whose
form we comment on later. The thermal noise ξ (t) is taken to
be white having zero mean with a variance equal to 2γkBT . As
noted in the main paper, the parameter T in our simulations is
analogous to the temperature associated with the noise term in

the Langevin equation.
The active particles are, in addition, subject to a random active

force with amplitude f0. The randomness is modeled by an ather-
mal noise ψ(t), which is exponentially correlated over a time scale
τp. The Langevin equation describing its displacement is given by,

mẍB =−V ′− γ ẋB +ξ (t)+ f0 ψ(t) . (16)

The statistics of the athermal noise is given by 〈ψ(t)〉 = 0,
〈ξ (t)ψ(t ′)〉= 0 and

〈ψ(t)ψ(t ′)〉= cexp
[
−|t− t ′|

τp

]
(17)

where c is a dimensionless constant. For a fixed τp and c,
this athermal noise in general does not obey the fluctuation-
dissipation relation. The fraction of active particles is ρ0 which
is equal to 0.2ρa in the model considered in our simulations.
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Fig. 10 Changes in pair correlation function (a) (top) gAA(r) and (b)
(bottom) gAB(r) in the presence of different values of self-propulsion
forces ( f0) for T = 0.45, ρa = 1.0 and τP = 4.0. Insets in the figures show
the shift of the first peak of g(r) to lower values of r with increasing f0,
suggesting formation of structures at smaller scales.

The caging potential V (Fig. 9) is taken to have the same form
for both active and passive particles, with a confining harmonic
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part, V = 1
2 kx2

α (where α = A,B), and a barrier whose height is
reduced by the active force over a time scale corresponding to the
α-relaxation time. In what follows, we will only be concerned
with the harmonic confining part of the potential, represented by
the parameter k.

It is straightforward to calculate the mean square displacement
of the active and passive particles,

〈[xA(t)]2〉=
kBT

k
(18)

〈[xB(t)]2〉=
kBT

k
+

f 2
0 cτp

γk
1

(1+ τp
τx
)
, (19)

where the relaxation time τx = γ/k. The particle-averaged mean
square displacement may be written as,

〈x(t)2〉= ρ0〈xB(t)2〉+(1−ρ0)〈xA(t)2〉, (20)

from which we can derive an average Lindemann factor,

〈x2〉
a2 =

kBT
ka2 +

ρa f02
τp

γka2

[
c

1+ τp
τx

]
(21)

Here, a is the typical cage size, ka2 is the potential energy scale,
and the ratio ρ0/ρa has been absorbed by redefining the constant
c. The coefficient of the second term on the right-hand side of
Eq. 21 is proportional to kBTa/(ka2) for τp � τx where Ta is the
“active temperature” defined in Eq. 5. This equation implies that
the effect of activity in this system can be approximated as that
of increasing the bath temperature by an amount proportional to
Ta. This gives us a heuristic phase boundary which varies with
the self-propulsion force as TVFT( f0) = TVFT(0)−Aρaτp f02 where A
is a proportionality constant. As discussed in the main paper, this
form provides a good description of the phase boundary found in
our simulations. The form of Eq. 21 is also consistent with the
observation that different combinations of the parameters ρa, f0
and τp for a constant value of ζ = ρa f02

τp lead to a collapse of
dynamical quantities such as the MSD and Q(t) in a temperature
range above the VFT temperature, TVFT.

A.3 Pair Correlation Functions

The pair correlation function gαβ (r) is defined as

gαβ (r) =
V

Nα Nβ

〈
Nα

∑
i=1

Nβ

∑
j=1

δ (r− rα
i + rβ

j )〉, (22)

where Nα is the number of particles of type α (α = A or B).

As shown in Fig. 10, gAA(r) and gAB(r) are less affected by the
presence of activity compared to gBB(r), which shows a signifi-
cant change with increasing activity. This suggests that presence
of stochastic activity does not affect the local structure of the pas-

sive A-type particles in any significant manner, whereas the B-type
particles are affected much more strongly. This observation also
rules out the occurrence of A-B phase separation and the forma-
tion of crystallites in the presence of activity.

A.4 Evidence of activity induced clustering
To understand the decrease of the first peak height and the si-
multaneous development of a new peak at a smaller value of r in
gBB(r) , we analyze the cluster size distribution for the B-type par-
ticles. For this purpose, we define two B-particles to be connected
if their interparticle distance is less than a cutoff r0, chosen to be
slightly larger than the value of r at the new peak in gBB(r) that
appears with increasing activity (we have taken r0=1.0 for the
results shown in Fig. 11).
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Fig. 11 Cluster size distribution function P(n), where n is the size of a
cluster of the B-type particles, for different f0 at T = 0.45, ρa = 1.0 and
τp = 4.0. With increasing activity ( f0), the distribution broadens,
signifying the clustering tendency of B-type particles. In the inset the
average cluster size has been plotted as a function of f0.
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f0 Particle Type T = 0.05 T = 0.25 T = 0.50 T = 0.75 T = 1.00

0.0
Passive(A)

0.0500
±0.0001

0.2504
±0.0003

0.5008
±0.0006

0.7519
±0.0010

1.0022
±0.0013

Passive(B)
0.0503
±0.0002

0.2510
±0.0012

0.5024
±0.0025

0.7517
±0.0039

1.0044
±0.0050

1.0
Passive(A)

0.0503
±0.0001

0.2503
±0.0003

0.5005
±0.0006

0.7486
±0.0010

0.9982
±0.0012

Active(B)
0.0510
±0.0003

0.2537
±0.0013

0.5017
±0.0025

0.7521
±0.0038

1.0049
±0.0045

2.0
Passive(A)

0.0504
±0.0001

0.2487
±0.0003

0.4997
±0.0007

0.7500
±0.0017

0.9998
±0.0023

Active(B)
0.0518
±0.0003

0.2502
±0.0013

0.5022
±0.0026

0.7581
±0.0041

1.0109
±0.0056

Table 1 Average kinetic energy per particle of the passive (A) and the active (B) particles for a number of parameter values (T, f0). The simulations
were performed with ρa = 1.0 and τp = 4.0.The values of the kinetic energies are in units of 3kB/2.
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