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In this study, we combine the elastic instability and non-linear rate-dependent phenomena 

to achieve microstructure tunability in soft layered materials. In these soft composites, 

elastic instabilities give rise to formation of wrinkles or wavy patterns. In elastic materials, 

the critical wavelength as well as amplitude at a particular strain level are exclusively 

defined by the composite microstructure and contrast in the elastic moduli of the phases. 

Here, we propose to use rate-dependent soft constituents to increase the admissible range of 

tunable microstructures. Through the experiments on 3D printed soft laminates, and 

through the numerical simulation of the visco-hyperelastic composites, we demonstrate the 

existence of various instability-induced wavy patterns corresponding to the identical 

deformed state of the identical soft composites.  

 

Natural materials are often found to have complex microstructures that give rise to a large 

variety of functionalities and desirable properties
1–4

. These design rules has been employed to 

create bioinspired microstructured materials combining excellent strength and toughness
5–8

, 

flexibility and protection
9
, or even extremely high adhesion

10
. Moreover, the microstructure 

defines optical
11

, acoustical
12

, electromechanical
13

, magnetic
14

, and chemical
15

 properties of 

materials. Furthermore, soft composites open the possibility to modify these properties by 

applied deformations or other external stimuli such as light
16

, heat
17

 or magnetic field
18

. This 

effect can be amplified by the instability-induced microstructure transformations
19

, the 

phenomenon which is frequently used in nature designed materials. The ability to trigger 
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dramatic microstructure transformations opens exciting opportunities to design soft 

reconfigurable materials and structures with tunable microstructures
20

 to achieve control over a 

large variety of material properties
21–24

. Recent advances in multi-material three-dimensional 

printing
25

 and other fabrication techniques already allow manufacturing of microstructured 

materials with resolution comparable to visible light wavelength and even sub-wavelength size
11

. 

For instance, soft layered composites, when compressed to a critical level, are known to 

experience elastic instabilities leading to formations of wavy interfaces
26,27

. In elastic materials, 

the critical wavelength as well as amplitude at a particular strain level are exclusively defined by 

the composite microstructure and contrast in the elastic moduli of the phases. This imposes 

restrictions on admissible microstructure, and, as a result, the tunability of the material properties 

and functionalities is limited. To overcome this issue and to increase the admissible range of 

tunable microstructures, we propose to use rate-dependent soft constituents. This will allow us to 

design the instabilities by controlling the governing properties of the constituents through the 

deformation rate. The combination of elastic instabilities and visco-hyperelastic phenomena 

gives us the access to a rich pool of various instability-induced wavy patterns corresponding to 

the identical deformed state of the identical soft composites.  

 

Experiments 

Layered composite samples with stiff layers and compliant matrix were fabricated using 3D-

printer Objet Connex. The available set of digital materials was tested mechanically at various 

strain rates (from 10
-4

 to 10
-1

 s
-1

). Through the survey of the material properties, we identified 

advantageous combinations of constituents to capitalize on the interplay between elastic 

instabilities and rate-dependent behavior of layered composites. In particular, the soft matrix 

material was printed in TangoPlus resin (further referred as soft or matrix material), whereas the 

stiff layers were printed in a digital material (further referred as rigid or layer material), which is 

a mixture of soft TangoPlus (~65 wt%) and rigid VeroWhite (~35 wt%) resins. For strain rates 

considered in experiments and numerical simulations (from 10
-4

 to 1 s
-1

), the elastic modulus of 

rigid material varies in 8-10 times; while the elastic modulus of soft material is nearly rate-

independent. This allows us to increase the range of contrasts in elastic moduli of stiffer and 

softer constituents and, hence, to achieve an enhanced tunability of the composite 
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microstructures. The material constants of used materials obtained from mechanical testing at 

different strain rates are summarized in Table 1. 

Guided by theoretical and numerical predictions of buckling behavior in rate-independent 

composites, we examine the composite with stiff phase volume fraction of 15 %. The thickness 

of the stiffer layers is ��	= 0.75 mm and the distance between them is ��	= 4.25 mm, while the 

width, height and out-of-plane depth are 85 mm, 35 mm and 8 mm, respectively. The specimens 

were constrained by special fixtures to eliminate out-of-plane deformation and maintain the 

plane strain conditions. The composites were subsequently subjected to compression down to 

75 % of the initial height �� = 25	%� at the strain rates of 10
-4

, 10
-3

, 10
-2

 and 10
-1

 s
-1

. The 

compression tests were carried out using Shimadzu EZ-LX testing machine and the strain was 

measured with a help of a CCD-camera point tracking system.  

 

Modeling 

Theoretical studies of buckling in linear elastic layered composites established the foundation for 

predictions of the onset of buckling and the associated critical wavelengths
26,28

. Nestorović and 

Triantafyllidis
29

 analyzed failure of finitely strained layered composites for quasi-static loadings, 

and showed the existence of macroscopic and microscopic instabilities. Recently, it was 

numerically shown, that the triggered wavy microstructures can be used for manipulating elastic 

waves and inducing band-gaps in dilute laminates
24

, and to increase the large energy dissipation 

capacity in viscoelastic non-dilute laminates
30

. 

Here, we targetly exploit the evolution of microstructure in layered composite with rate-

dependent constituents in post-buckling regime to achieve significant tunability of the 

microstructure. Since the soft material used in 3D-printing can be considered as rate-independent 

for the strain rates of 10
-1

 – 10
-4

 s
-1

,
 
we approximated its behavior by the neo-Hookean material 

model. The corresponding strain energy function is  

���� = ��2 ����� − 3�, (1) 
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where ���� is the first invariant of the right Cauchy-Green tensor  = ���, � is the 

deformation gradient, and �� is the shear modulus of matrix.  In this case, the second Piola-

Kirchhoff stress tensor �� can be found as 

�� = 2���� = ���, (2) 

where � is the identity tensor. The first Piola-Kirchhoff  stress tensor, P can be found as � = ��. 
To capture the pronounced viscoelastic behavior of the stiffer viscoelastic layers, we 

implemented Quasi-Linear Viscoelastic (QLV) model
31,32

. Thus, the second Piola-Kirchhoff 

stress tensor �� is expressed as 

�� = � �1 − !" #1 − $%&'	() *+
",� - .��/�.0 �0 = ��/� #1 − !" 	+

",� *
'
1 + !"� $%&'() .��/�.0

'
1 �0, (3) 

where ��/� = �3�, and �3 is the shear modulus of the rigid layer material. Prony series 

parameters,	!" and 4" , define the rate-dependent behavior of the layers. The properties of the 

rigid layers were determined from plane strain compressive tests and they are summarized in 

Table 1. Note that only three terms of Prony series were found to be sufficient to describe the 

mechanical response of layer material for the considered strain rate range. 

Table 1. Material constants 

�3 (MPa) �� (MPa) !� 4� (s) !5 45 (s) !6 46 (s) 

22 0.2 0.65 0.15 0.17 4.8 0.1 120 

 

To explore the microstructure evolution in the post-buckling regime, the finite element (FE) 

analysis was employed by means of COMSOL FE code. The QLV material model (Eq. 3) was 

directly implemented into the numerical solver in terms of the second Piola-Kirchhoff stress 

tensor. Since several buckling modes are possible during compression, and critical strains for 

these modes have close values, as we show further, the only buckling mode observed in 

experiments was taken into account by introduction small imperfection to layers geometry. The 

2D representative volume elements (RVE) were constructed, such that they could accommodate 

the corresponding full buckled wavelength. The response of the composite is computed by 

applying the periodic displacement boundary conditions. 
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Results 

Experimental observations together with numerical simulations show that for any applied strain 

rate, buckling occurs when the applied strain reaches the corresponding critical level. Then, the 

amplitude of the instability-induced wavy patterns increases during a subsequent increase in the 

compressive strain. Figures 1a and 1c show the experimentally observed wrinkling patterns for 

two strain levels of 15 and 20 %, respectively. We observe that the identical composites buckle 

at different strain levels, defined by applied strain, which leads to the formation of wavy 

interfaces with different amplitudes for the same strain level. For instance, while buckling 

already occurs for a relatively fast loading (10
-1

 s
-1

), the layers stay straight for a slower loading 

(10
-4

 s
-1

). Figures 1b and 1d show that the numerical simulations also successfully capture this 

behavior.  

 

 

Figure 1. Formation of wavy interfaces in soft layered composites. (a), (c) – experimentally observed wavy 
patterns for different strain rates at the strain levels of 15 (a) and 20 % (c), respectively. (b), (d) – Simulation 

results, showing 7�5 stress distribution in matrix for different strain rates at the strain levels of 15 (b) and 20 % 
(d), respectively. 
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Remarkably, we do not observe any effect of strain rate on the buckling wavelength. It is 

known
27

, that in linear elastic case for the single stiff layer, embedded in soft matrix, the 

buckling wavelength is related to the contrast in shear moduli as 8	~:��/��<=>, where �� and �� 
are shear moduli of soft and rigid phases, respectively. However, this relation becomes 

inaccurate with an increase in volume fraction of the stiff phase
28

. In particular, for composites 

with incompressible constituents, the critical strain for specific buckling mode with wavelength l 

in plane strain conditions is defined as 

ε@�8� = 12 ���3 A2 +
1B�
:sinh�B�� − B� cosh�qJ�<5�sinh�B�� cosh�B�� + B�� K +

B�53 , (4) 

where B� and B� are the normalized thicknesses of matrix and layer respectively, defined as 

B� = L�3/8, 			B� = L��/8. Thus, the critical wavelength of buckling mode is the one 

corresponding to the minimum value of �@�8�. 
For viscoelastic materials, which mechanical response depends on the applied strain rate, the 

effective rate-dependent shear modulus at each point of stress-strain curve can be defined. If the 

material stress-strain relation is described by the linearized version of the equation (3), the 

effective elastic modulus, which depends on the level of applied deformation and strain rate, can 

be estimated as 

�M����, �N� = �M��%' + �M��O"%PQ��, �N� = 	�3 #1 − !" 	+
",� * + !"$& RRN () 	,+

",�  
(5) 

where the first term �M��%'  is the rate-independent term, while the second term �M��O"%PQ depends on 

the strain rate. Effective shear modulus �M�� represents the slope of the stress-strain curve for 

particular strain, and for the loading with constant strain rate the value �M�� attaining the static 

shear modulus 	�M��%'  at higher levels of strain, when the second term of Equation (5) becomes 

infinitely small. For example, for strain rates of 10
-4

 and 10
-3

 s
-1

 the values of the effective shear 

modulus at the buckling points for rigid material are 1.8 and 2.6 MPa, respectively; while for the 

strain rate of 10
-1

 s
-1

, the value of the effective shear modulus is 6.9 MPa. Thus, the contrast 

between stiff and soft constituent moduli varies from 8.9 to 35 for the considered strain rates. 

Next, we use the concept of estimated effective moduli for qualitative consideration of the 

wavelength weak sensitivity observed in our experimental study.    
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Figure 2. Critical curves for composites with volume fractions of the stiff phase of 15% (a) and 3 % (b). 

Figure 2a shows the dependence of the critical strain value on the wavelength for different strain 

rates. The reported in Figure 2a critical curves are obtained from equation (4) with the estimated 

effective moduli calculated from (5) for experimentally observed buckling strain. We observe 

that the experimentally determined wavelength corresponds to the minimum in the curve for 

strain rate 10
-4

 s
-1

. Note that the critical strain differs only by less than 1.5 % from the strain 

levels corresponding to larger wavelengths. An increase of the strain rate to 10
-3

 s
-1

 leads to a 

decrease in the critical strain due to higher effective shear modulus. In this case, the minimum 

strain rate corresponds to slightly higher wavelength, however the calculated and experimentally 

observed critical strains are very close (compare 16% and 16.05%). Similarly, for a higher strain 

rate (10
-2

 s
-1

) we observe that the difference between minimum critical strain and observed 

critic.al strain does not exceed 1%. Only for the fastest loading (10
-1

 s
-1

), the difference between 

experimentally observed and analytically predicted wavelengths becomes visible. However, it is 

plausible that the viscoelastic behavior of the matrix material, which has not been accounted for 

in simulations, starts to play a more significant role for faster loadings. Thus, an increase in the 

effective shear modulus of matrix material would lead to a decrease in the contrast between 

phases’ moduli, and, may result in a change of the critical curve. Additional potential source, that 

may affect the experimentally observed buckling behavior, is the presence of interphases and 

imperfections at the interfaces. These may trigger different buckling modes, especially when the 

critical strains for these modes are close, as in the in the considered case. In order to 

experimentally realize the wavelength tuning, one should consider dilute composites and/or 

utilize constituents with a significant contrast in instantaneous and infinite elastic moduli. Such 

composites provide wider range of contrasts between shear moduli of layers and matrix. 
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Moreover, as one can see from Figure 2b the minima in the corresponding critical curves are 

more pronounced, which allows to trigger different buckling modes for different rates of loading. 

In the following, we focus on the microstructure tunability of the composites with weak 

wavelength tuning. In this case, the microstructure tunability is due to the tailored onset of 

buckling, resulting in targeted post-buckling amplitudes of wavy interfaces.  

 

Figure 3. Dependence of amplitude S��� on strain level for different strain rates. The amplitude is normalized by 
the stiffer layer thickness. The background color corresponds to the value of the tunability function, T∗���. Vertical 
dashed lines represent the critical strains for instantaneous and infinitely slow loading in the linear elastic case. 

Figure 3 shows the dependence of the amplitude, S���, normalized by the initial thickness of the 

stiff layer, on the applied strain in the assumption of the same buckling mode. We observe a 

rapid increase in the wrinkling amplitude directly after the buckling; however, after the 

formation of the wavy patterns, the corresponding curves flatten with further increase in 

compressive loading. Obviously, at each macroscopic strain level, different amplitudes can be 

induced by managing the strain rate. At the same time, considering the strain rates which is 

slower than 1 s
-1

 (red squares on Figure 3) and faster than 0.1 s
-1

 (blue circles), one may notice 

that variety of achievable amplitudes for strain of 10% is much wider (0.1 X S��� X 1.1) in 

comparison with strain of 20 % (1.9 X S��� X 2.1). To quantify this tunability phenomena, we 
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introduce function, T��, �N�"+, �N�Z[�, which describes the tuning capability for specific strain 

value � and for strain rates range \�N�"+, �N�Z[]  
T��, �N�"+, �N�Z[� = S���|RN,RN_`a − 	S���|RN,RN_)b (6) 

 

The defined tuning capability function can be expanded to capture any possible strain rates. In 

this case, equation (6) is modified as  

T∗��� ≡ T��, 0,∞� = S���|RN→f − 	S���|RN→1 (7) 

 

 

Figure 4. Dependence of tuning capability T��, �N�"+, �N�Z[� on strain for different sets of �N�"+ for �N�Z[ = 1 s-1 (a) 
or �N�Z[ = 0.1 s-1 (b).  
Figures 4a and 4b show the dependence of the function T��, �N�"+, �N�Z[� on the strain for the 

various ranges of strain rates [�N�"+, �N�Z[	]. We observe that the tuning capability is non-

monotonic function, and it reaches the maximum for a particular strain level �g��N�"+, �N�Z[	�. The 

behavior of viscoelastic materials can be considered as rate-independent under infinitely fast 

(instantaneous) or infinitely slow loadings. In these extreme cases, the effective shear modulus 

reduces to �3 and �M��%' , respectively. Thus, by using equation (4), one can predict the critical 

strain in these cases. The corresponding estimates are shown in Figure 3 by the dashed vertical 

lines. We observe that the approximation is in a good agreement with simulation data for 

instantaneous loading. However, the difference between the theoretical estimation and simulation 
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results for infinitely slow loading is more significant. This is due to the fact, that in this regime, 

the buckling appears at large strains where nonlinear effects, which are not accounted in the 

analytical estimate, become significant. These cases of infinitely slow and infinitely fast loading 

provide the estimates for the bounds for the microstructure tunability. Thus, for each strain rates 

�N�"+ and �N�Z[, we have T��, �N�"+, �N�Z[� X T∗���. Therefore, the area under the corresponding 

curve in Figures 4a and 4b (black) encloses the admissible values of the tuning capability in 

layered composites. While the tuning capability is limited by the value of T∗ function, the exact 

value of �g is defined by the material constants, in particular, by the Prony series constants such 

as relaxation times 4". Consequently, by combining different materials pairs for composite 

constitutions one may achieve maximal tunability for the specific strain ranges. 

Conclusions 

We investigated the elastic instability phenomenon as well as the post-buckling behavior of soft 

layered composites subjected to compression. Through the experiments on finitely deformed 3D-

printed composites and through the numerical simulations, it was shown that for composites with 

visco-hyperelastic constitutes the critical strain significantly depends on the strain rate. 

Moreover, we revealed the mechanism that governs the formation and tunability of wavy 

patterns. We find that the combination of the elastic instability and visco-hyperelastic 

phenomena leads to a significant increase the admissible range of tunable microstructures. We 

found that the tuning capability reaches its maximum for particular strain level, which, in turn, 

depends on the composite microstructure as well as on the material properties of the constituents. 

Consequently, the composites with viscoelastic constituents can be directly tailored to achieve 

required microstructure tunability. This can provide powerful means to control the material 

performance and achieve new functionalities. 
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