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D = 2.155σ to D = 2.873σ showed how line slips allow helical
structures to continuously transform into one another32.

Because the largest cylinders studied remain quite far from the
bulk limit, a rich set of structural features is to be expected in
wider cylinders as well. Many of the existing tools for finding
dense packings are, however, insufficient in this regime. Ear-
lier analyses relied on simulated annealing31,32, whose compu-
tational efficiency is too limited for finding packings with a sep-
arate inner core and outer shell. Algorithms based on sequential
deposition are much more expedient33, but the final structure
they generate depends too sensitively on the choice of underlying
template for them to be of broad applicability. Although a genetic
algorithm scheme (akin to that used in Ref.3) can search config-
uration space more broadly, the growing structural complexity of
the packings with D necessitates unit cells that are too large for
the approach to remain computationally tractable.

In this work, we improve the computational efficiency for
finding close packings of monodisperse HS in cylinders with
D > 2.873σ by instead using an adaptive-shrinking cell and
a sequential-linear-programming (SLP) technique34. This ap-
proach confirms earlier results for D ≤ 2.86σ and extends our
knowledge of close packed structures up to D = 4.00σ . Inter-
estingly, many of the new structures appear to be quasiperiodic
and some even present fairly exotic geometries. In Section 2, we
describe the SLP computational method, in Section 3 we present
the SLP results for different ranges of cylinder diameters, and in
Section 4 we specifically analyze the quasiperiodic structures ob-
served in the range 2.988σ ≤ D ≤ 3.42σ using a sinking algorithm
developed for this problem.

2 Sequential Linear Programming Method

In order to identify close packings of HS in cylinders, we adapt the
SLP method of Torquato and Jiao34 to this geometry. For conve-
nience, we describe configurations using cylindrical coordinates
with z, r, and θ representing the axial, radial and angular com-
ponents, respectively. For our search procedure, we consider a
fixed number of spheres in a finite cylinder with periodic bound-
ary conditions that match the top of the cylinder to the bottom
with a twist. In other words, the entire volume of the cylinder
is taken as a unit cell with a one-dimensional periodicity. The
infinite structure consists of spheres centered at

rrri j = rrri +n jλλλ , (1)

where rrri (i = 1,2, ...) are the particle positions within a unit cell,
n j ∈ Z, and λλλ = (λr,λθ ,λz) is the lattice vector. For our system, λz

is the height of the unit cell, λθ is the twist angle, and λr = 0. Note
that for helical structures, the twist angle is necessary because ∆θ

between two successive particles in a helix may not be a rational
fraction of 2π. The volume of a unit cell is thus

vu = π(D/2)2λz , (2)

and the lattice packing fraction can be expressed as

η =
Nvs

vu
, (3)

where N is the number of particles in a unit cell and vs is the
volume of a sphere of diameter σ .

A each optimization step, we allow the N particles in the unit
cell to move as well as changes to the unit cell height, λz, and
twist angle, λθ . Denoting particle displacements ∆rrr, the matrix
specifying changes to the unit cell εεε, the new particle positions
rrrn, and the new lattice vector λλλ n, we have

λλλ n = (III + εεε)λλλ (4)

εεε =







0 0 0

0 εθ 0

0 0 εz






(5)

rrrn = ( rr +∆rr,rθ +∆rθ ,(1+ εz)(rz +∆rz) ) . (6)

Note that the twist angle is not continuously shearing the parti-
cles within the unit cell, but is only a property of the boundary
conditions. It thus only appears in rrrn for boundary particles.

In order to find the maximum packing density we must solve
the following problem:

minimize vu

subject to

rn
i j ≥ σ , ∀ i j neighbor pairs, (7)

rir +∆rir +σ/2 ≤ D/2, ∀ i = (1,2, ...,N). (8)

The first condition corresponds to the hard-sphere constraint and
the second to the hard-wall constraint. Because during the op-
timization D is fixed, minimizing vu is equivalent to minimizing
λz. The packing problem then becomes a standard constrained
optimization problem, and the constraints can be linearized
(by Taylor expansion), allowing the use of linear-programming
solvers34,35. The optimization problem at each step then becomes

minimize : εz,

subject to

rn
i j ≥ σ ,∀ i j neighbor pairs (9)

rir +∆rr +σi/2 ≤ D/2, ∀ i (10)

|∆rir| ≤ ∆r
upper
r , ∀ i (11)

|∆riθ | ≤ ∆r
upper
θ , ∀ i (12)

|∆riz| ≤ ∆r
upper
z , ∀ i (13)

|εθ | ≤ ε
upper
θ (14)

|εz| ≤ ε
upper
z , (15)

with algorithmic bounds that are sufficiently small so as to limit
large particle overlaps, which are a consequence of linearization
and are eliminated by counter-productively expanding the unit
cell, but not so small so as to slow down convergence. Here,
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optimal bounds on particle displacements and volume changes
are found to be roughly ∆r

upper
r = ∆r

upper
z = ε

upper
z = 0.001σ , and

∆r
upper
θ = ε

upper
θ = 0.001 radians. The overall packing optimiza-

tion can thus be done sequentially, meaning that the optimal so-
lution for a given step is used as input for the subsequent one,
until convergence is achieved. Operationally, we accept a solution
as having converged when the difference between two iterations
|∆vu| < vtol, where vtol = 10−6. Note that because this criterion is
independent of the unit cell size, the final unit cell volume is de-
termined less precisely for smaller system sizes , but this effect is
negligible on the scale of the figures and of the other numerical
results reported here.

Recall that for periodic structures, close packing can only be
obtained when N = ncNc, where nc is a positive integer and Nc

is the number of particles in the unit cell. For regimes where the
densest structure is known (and periodic), i.e., at small diameters,
we choose nc ≥ 3. For the rest of the diameter range, however, no
systematic studies have previously been undertaken, and only a
few structures have been proposed30,36. Where Nc is not a priori
known, we resort to scanning system sizes with N = 48 to N =

150. If the close packing is actually periodic with Nc ≤ 150, it is
identified properly, and the N that yields the highest density is
an integer multiple of Nc. One can then check factors of this N

to identify Nc. For systems where the close packed arrangement
is not periodic or where Nc > 150, the algorithm finds the best
periodic approximant within this regime of N.

3 SLP Results

Fig. 1 Close packing densities for 2.16σ ≤ D ≤ 2.86σ . Configurations

are depicted at density maxima. Yellow particles are part of a same

helix. In this regime, the results are in complete agreement with those of

Ref. 37. Figure 2 presents results for D ≥ 2.86σ .

Using the SLP method, we identified candidate structures for
HS close packing from D = 2.16σ to D = 4.00σ . For D ≤ 2.862,
we reproduce previously reported results32 (Fig. 1), but we ob-
tain denser structures than Mughal et al. for 2.862σ < D < 2.873σ

(Fig. 2 inset). This discrepancy is likely due to the difference in
system sizes between the two studies. The structures obtained for
this regime in Ref.32 had unit cells with either N = 7 or 15 par-
ticles, while our system size varies from N = 24 to 150, and the
densest structures are found to have 50 ≤ N ≤ 85. The origin of

this strong system size dependence likely lies in the complex peri-
odicity, i.e., the large Nc, of the packings in this regime, or to their
potential aperiodicity. (We come back to this point in Section 4.)

SLP identifies 17 distinct structures and their deformations over
2.873σ ≤ D ≤ 4.00σ (Fig. 2). The structures depicted in Figure 2
are local maxima in η(D). Most of the structures in this regime
have two well-defined layers: an outer shell and an inner core. In
structures for which this definition makes geometrical sense, the
outer shell is comprised of particles that are touching the wall,
or nearly so, and which form a corrugated cylinder of diameter
roughly D − σ that contains the particles comprising the inner
core. Because many of the outer shells are themselves close pack-
ings of spheres disks on the inner surface of the cylinder, they can
be described using the phyllotactic notation for helices, (l,m,n),
with l = m+ n and m > n, where l, m and n are the number of
helices, using the three possible helix definitions (Fig. 3)37. The
parameters defining some of these helical outer shells are listed
in Table 1. For simplicity, we denote below structures with the he-
lix whose height difference, ∆z, between two successive particles
within that helix is minimal, and ∆θ is thus the angular coordi-
nate difference between two successive particles within that helix
(Fig. 3a). Based on these definitions, we note that λz = (Ns/l)∆z

and λθ = mod 2π ((Ns/l)∆θ), where Ns is the number of shell par-
ticles in the unit cell.

Intermediate structures can be obtained by continuously trans-
forming local density maxima. Some are uniform radial expan-
sions (or compressions) of these structures, accompanied with a
compression (or expansion) in z, while other structures undergo
a line-slip, which is a slip between two helices, keeping the rela-
tive position of the other helices constant32. Because a helix can
be defined in three different ways (Fig. 3), each maximal density
structure presents up to six corresponding line-slip possibilities
(two directions for each type of slip), although symmetry can re-
duce this number.

In the following subsections we present an overview of differ-
ent D regimes over which the packings we obtain share a number
of structural features.

3.1 Structures for D < 2.86σ

In this regime, all the structures are periodic and have a simple
mathematical description. Most of them are simple helices. The
last two structures, however, are non-helical and contain an in-
ner core (Fig. 1). HS close packing for 2.71486σ ≤ D ≤ 2.74804σ

has D5 symmetry with a close packed inner core, and can be con-
structed as a packing of spindles of nearly regular tetrahedra. The
optimal structure for 2.74804σ ≤ D ≤ 2.8481σ has instead a unit
cell of 11 particles – an inner particle sandwiched between two
staggered five-particle rings – that is reminiscent of a stacking
of ferrocene molecules. Note, however, that neither the inner
core nor the outer shell of this last structure are separately close
packed.

3.2 Structures for 2.86σ ≤ D < 2.988σ

For D ≥ 2.86σ , packings do not have simple analytical descrip-
tions. The competition between the inner core and the outer
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Fig. 2 Close packing densities for D = 2.85−4.00σ . Configurations are depicted at the density maxima. Yellow particles are part of a same helix or its

line-slip structure, as described by the phyllotactic notation, and red particles are hoppers (see text for details). Note that some configurations do not

have a well-defined helical structure. The inset shows the difference between Mughal et al.’s (red triangles) and the current (blue circles) results for

2.86σ < D < 2.875σ .

Table 1 Structural parameters and properties of close packed outer

shells for different cylinder diameters. Quantities are rounded to the last

digit

Notation D/σ ∆θ ∆z/σ Chirality Number of helices
(6,5,1) 2.8652 1.1167 0.1538 chiral 1
(6,6,0) 3.0000 1.0472 0.0000 achiral /
(7,4,3) 3.0038 0.9365 0.4268 chiral 3
(7,5,2) 3.0623 0.9697 0.2759 chiral 2
(7,6,1) 3.1664 0.9507 0.1309 chiral 1
(8,4,4) 3.2630 0.7854 0.5000 achiral 4
(8,5,3) 3.2888 0.8357 0.3706 chiral 3
(7,7,0) 3.3048 0.8976 0.0000 achiral /
(8,6,2) 3.3615 0.8475 0.2391 chiral 2
(8,7,1) 3.4720 0.8272 0.1139 chiral 1
(9,5,4) 3.5377 0.7220 0.4434 chiral 4
(9,6,3) 3.5818 0.7496 0.3267 chiral 3
(8,8,0) 3.6131 0.7854 0.0000 achiral /
(9,7,2) 3.6648 0.7512 0.2109 chiral 2
(9,8,1) 3.7805 0.7318 0.1008 chiral 1
(10,5,5) 3.8025 0.6283 0.5000 achiral 5
(10,6,4) 3.8223 0.6624 0.3971 chiral 4
(10,7,3) 3.8800 0.6771 0.2917 chiral 3
(9,9,0) 3.9238 0.6981 0.0000 achiral /
(10,8,2) 3.9711 0.6738 0.1883 chiral 2

shell becomes more complex, because the two layers have dif-
ferent packing requirements, and neither of them systematically
wins. For 2.86σ ≤ D ≤ 2.988σ , the inner core dominates. To see
why, note that a core particle can only fit into a shell formed by
a horizontal layer of 6 spheres when D ≥ 3σ . For D < 3σ , a core
sphere can only fit if these 6 spheres form a helix around it. Ev-
ery core particle must thus be at the center of a six-particle helix,

Fig. 3 There exists three different ways to define a helix, and thus six

possible line-slip structures. Yellow particles are part of a same helix.

This configuration is an example of a (l,m,n) = (7,5,2) helix, where l = 7

can be obtained by counting the particle number of the top layer (c), m is

depicted in (b), and n in (a). In the text, we select the convention

depicted in (a) to denote helices.

which limits its freedom to move within the inner core. For in-
stance, for a perfect (6,5,1) outer shell, for which D = 2.8652σ ,
the spacing between two turns of the six-particle helix that forms
the outer shell is 6∆z = 0.9228σ < σ . If the outer shell were itself
close packed, then three six-particle helices would only accom-
modate a single inner particle, leaving large gaps between inner
particles. A denser structure is instead obtained by deforming the
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outer shell in order to accommodate a denser inner core.

As D approaches 3σ , core particles become increasingly free
to move. For 2.97σ < D < 3.00σ , the close packed outer shell is
a line-slip structure of (7,4,3). The perfect (7,4,3) outer shell at
D= 3.0038σ has an inner core spacing of 7

3 ∆z= 0.9959(1)σ , which
is barely smaller than a particle diameter. Hence, for 2.97σ < D <

2.988σ , although the overall structure remains dominated by the
inner core, the outer shell barely differs from a close packed, line-
slip structure of (7,4,3).

3.3 Structures for 2.988σ ≤ D ≤ 3.42σ

For 2.988σ ≤ D, the inner core is sufficiently large to allow core
particles to move freely within an outer shell, thus greatly reduc-
ing their constraint on the outer shell. Note that the lower end of
this range is smaller than 3σ because the close packed shell for
2.988σ ≤ D < 3.000σ is a line-slip structure of (7,4,3), for which
no six outer particles are ever in the same plane. They can thus
wrap an inner core without difficulty. Close packed structures
from that point on and up to D = 3.42σ are found to almost al-
ways form a close packed outer shell, independently of the inner
core. The local density maxima in Figure 2 for this regime in-
deed all correspond to the diameters of close packed outer shells
(Table 1).

Out of the sequence, the structure with a (8,4,4) outer shell is
particularly noteworthy. As for all outer shells with m = n = 1

2 l,
this helical structure is achiral – two of the three possible helical
directions are equivalent, and ∆z = σ/2. As a result, the outer
shell consists of straight columns when viewed from the top of the
cylinder. The top view of (8,4,4) outer shell and its core is thus
very similar to the close packing of hard disks in a circle (Fig. 4a).
Two other structures are found to have this property (Fig. 4b and
c), but the structure with the (8,4,4) outer shell is the only one
that is close packed. Note that a similar phenomenon would likely
be observed for a structure with a (10,5,5) outer shell were it to
be close packed (which it is not).

The case D = 3.00σ is also remarkable. The outer shell is then
a close packed structure with staggered six-particle rings, i.e.,
(6,6,0). The spacing between two rings is ∆⊥ = σ

√√
3−1

.
=

0.8556σ . Although core particles placed between the planes of
the rings can shift off the cylinder axis, they cannot shift enough
to allow a periodic packing of the core with no gaps between suc-
cessive core spheres. This phenomenon illustrates the difficulty of
searching for close packed structures in this regime. Close packed
structures may indeed be quasiperiodic and thus not correspond
to any finite λz or Nc. In the present context, a quasiperiodic struc-
ture consists of a periodic shell and a column of core particles with
an average vertical separation that is irrational with respect to the
height of the unit cell of the shell. Our numerical approach then
at best provides a periodic approximant of that structure. In or-
der to consider this issue more carefully, we present an alternate
algorithm for studying this regime in Section 4.

3.4 Structures for D > 3.42σ

For D > 3.42σ , many of the close packed outer shells are not ob-
served. Instead of remaining disordered or quasiperiodic, the

Fig. 4 Comparison between disks in a circle and the top view of

spheres in a cylinder at (a) D = 3.613σ 38 (circle) and D = 3.25σ

(cylinder), (b) D = 3.813σ 38 (circle) and 3.43σ (cylinder), and (c)

D = 3.924σ 39 (circle) and 3.58σ (cylinder). Red particles are hoppers.

The cylinder outer shells consist of straight columns and only the top

layer of particles is visible, so the resulting packings look similar to those

of disks in a circle. Note that because the height of neighboring columns

is shifted by 0.5σ , the cylinder diameter is smaller than that of the circle

and projecting particles onto the cylinder base reveals overlaps.

inner core then forms nearly ordered structure, which imposes
many defects on the outer shell. For some of the packings, the
defects are so large that they enable the two shells to interpene-
trate. The structures in this regime are thus not clearly dominated
by any one of the two layers, hence neither of the two shells is
typically close packed. For instance, of l-particle staggered ring
structures, (l, l,0), only l = 6, 7 and 9 are observed. For l = 6 and
7, the inner core is so small that only a lightly zig-zagging chain of
particles fits within it; for l = 9, the inner core is large enough that
a staggered three-particle ring structure fits. For l = 8, however,
the zig-zagging structure is not very dense, and a two-particle flat
pair does not fit. The packing structure thus ends up having a
completely different organization: a dense triple helix inner core
and an tortuous outer helical shell of eight particles.

The competition between the two shells does not only result in
defective compromises, but also yields two novel types of struc-
tures. First, some structures are analogous to three-dimensional
extensions of packing of hard disks in a circle (Fig. 4b and c). Al-
though the roughly straight columns formed by these structures
gives their top view a two-dimensional feel, they are not simple
stacks of these packings. As can be seen in Figure 4, projections
of particles onto the cylinder base reveals overlaps. The outer
shell is an (imperfect) triangular lattice rather than a square lat-
tice, and the outer rings are not flat but form zig-zags. As a re-
sult the same three-dimensional version fits in a cylinder with a
smaller diameter than the corresponding two-dimensional circle.
Second, some structures cannot be neatly divided into shells. For
instance, for 3.55σ ≤ D ≤ 3.61σ , although both layers are dense
the gap between them is sufficiently large to allow outer parti-
cles to hop back and forth between the two shells, keeping η

unchanged (Fig. 4c and Fig. 2).
Table 1 indicates that four ten-fold (l = 10) outer shells could
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potentially be observed for D ≤ 4.00σ . Yet only one appears in the
phase sequence, as the last structure. The other three structures
are missing, because for 3.62σ ≤ D ≤ 3.94σ the inner core is just
large enough to accommodate a triple helix, and thus a nine-fold
helical outer shell better accommodates this inner shell than a
ten-fold one.

As discussed in Sec. 3, for 3.00σ ≤ D ≤ 3.42σ , the incommen-
surability of the two shells may result in structures that are not
periodic. Close packed structures thus cannot be obtained us-
ing a finite periodic unit cell, which makes the numerical search
for packings by SLP extremely challenging (if not impossible) for
some regions, e.g. 3.00σ ≤ D ≤ 3.05σ . By contrast, for D > 3.42σ

the strong interaction between the two shells forces the two to
share a same periodicity in some ranges of D (see Supplementary
Table S1). There therefore exist in those regions dense periodic
structures that can be identified with relative computational ease.
The vastness of the configurational space to sample at this point,
however, reduces the confidence with which truly close packed
structures are then identified.

4 Sinking algorithm for 2.988σ ≤ D ≤ 3.42σ

SLP results suggest that for 2.988σ ≤ D ≤ 3.42σ packings may
be quasiperiodic. Despite their relatively simple geometrical de-
scription, the true densest structures are then beyond the reach
of our numerical algorithm because SLP relies on periodic bound-
ary conditions. Systematically extrapolating the SLP results to
infinite system size could sidestep this difficulty, but the range
of computationally accessible system sizes is here insufficient for
such extrapolation to be of much numerical significance. We thus
consider a more directed approach to analyze the infinite-system
size limit of these packings. This approach, however, rests on
assumptions about the overall structure of packings that are not
rigorously justified, and is found to be suboptimal in a few in-
stances.

We first assume that packings in this regime have an outer
shell that is close packed along the cylinder wall (see Fig. 5).
For D = 3σ , for instance, the densest outer shell is the (6,6,0)
structure. Note, however, that even this seemingly straightfor-
ward case would be mathematically nontrivial to demonstrate.
The structure cannot be argued to be the densest possible based
on the local packing density, because a closed hexagon (or tri-
angle) of spheres on the cylinder surface minimizes the covered
area when one diameter of the hexagon is vertical rather than
horizontal as in the (6,6,0) structure (Fig. 6). Rigorously proving
that (6,6,0) shell is close packed for D = 3σ thus remains an open
problem. We nonetheless persist in this direction and next as-
sume that each successive core particle falls to its lowest possible
position without perturbing the outer shell. These assumptions
are broadly consistent with the SLP results, and should allow for
slightly denser structures to be obtained by sidestepping the peri-
odicity and finite-size constraints of that algorithm.

For convenience, in the following we define the shell density,
ρs, as the number of shell spheres per unit length along the cylin-
der axis. As the cylinder diameter D expands from a perfect, close
packed shell, the shell could expand radially and compress axially,
but it is always preferable for a line slip to emerge instead40. It is

Fig. 5 Perfect, close packed outer shells: (a) stacked layers of 6

spheres each (6,6,0), (b) a 7-particle triple helix (7,4,3), and (c) a

7-particle double helix (7,5,2).

�

Fig. 6 The cylinder surface area occupancy for bent hexagons with

different orientations for D = 3σ . The area coverage is minimized for

θ = π/6 and is maximal for θ = 0, even though it is the latter structure

that gives rise to the (6,6,0) outer shell.

an exercise in geometry to analytically generate these structures.
The density of the inner core, ρ∞, is then computed as follows.
(i) We sample all of the possible heights for a periodic starting
point within the helix periodicity, looking for a combination of r
and θ that maximizes r while obeying the hard sphere and hard
wall constraints. (ii) Given the position of a sphere in the core,
we then assume the best way to pack the next higher sphere is to
place it at the lowest possible position without moving any sphere
in the shell or already placed in the core. Each core sphere thus
touches the core sphere below it and two spheres of the outer
shell. (iii) We iterate this step until the density of the core can be
determined to within the desired numerical accuracy.

Overall, we thus assume that the core density is optimized by
maximizing the radial coordinates of the inner particles, and es-
pecially the first one. This last assumption is made with no loss
of generality for the cases in which the core is quasiperiodic, as
in such cases every height of a core particle relative to the shell
structure is approached with arbitrary accuracy in the infinite sys-
tem; the value obtained for ρ∞ does not depend on the location
of the initial particle. We also assume that a locally densest pack-
ing ensures a globally densest packing. This last assumption is
known not to be true in general. For random-sequential addition,
for instance, it is known to fall far short of the close packing41.
The highly constrained nature of our growth algorithm, however,
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here does give access to very high density structures.

In the special case D = 3σ , the procedure can be described by
a map. Recall that ∆⊥ = σ

√√
3−1 is the spacing between suc-

cessive layers of the shell. Consider a core sphere at a generic
specified height z1 that is moved as far as possible off of the cylin-
der axis and is therefore touching two shell spheres. Let xxx1 be the
position of this sphere and xxx2 be the position of the core sphere
that sits just above it. Let ai = {zi/∆⊥}, where {·} denotes the
fractional part, indicate the relative height of the ith sphere with
respect to the shell layers just below and just above it. We con-
struct the map M(a) that relates a2 to a1. This map can then be
iterated to determine the locations of all of the spheres in the
core:

zi+1 = zi +(1+{a2 −a1})∆⊥ . (16)

If the map converges to a fixed point or a limit cycle, the core is
periodic. We will see, however, that this map is either quasiperi-
odic or has an extremely long period.

Figure 7 shows the possible locations xxx1 for a sphere within
one layer. The cyan circular arc shows the possible locations for
a sphere that touches two adjacent shell spheres in a same layer.
The magenta arc shows the possible locations for a sphere that
touches two adjacent spheres in different layers. The purple arc
shows the same locations as the cyan arc, but shifted up one layer
and rotated accordingly by π/6 about the cylinder axis. The por-
tions of these arcs shown with thick blue and red curves (along
with the positions related by the hexagonal rotations and reflec-
tions) are the possible locations of a core sphere within the de-
picted layer.

Fig. 7 Possible locations of a core sphere within a layer. The large disks

are cross sections of the confining cylinder, and are separated by ∆⊥.

The core sphere must be centered on a point on one of the thick blue

curves or the short, thick red curve. See text for details.

The placement, xxx2, of the sphere that rests on top of the sphere
at xxx1 must lie on a piecewise arc of the type shown in Fig. 7, dis-
placed one or two layers upward, and rotated so as to be as close
to diametrically opposite xxx1 as possible. Inspection of the pos-
sible rotations and reflections reveals that the choice leading to
the densest structure is a reflection through the plane containing
the cyan arc in Fig. 7, followed by a rotation by 7π/6 about the

cylinder axis and a translation upward by ∆⊥, as shown in Fig. 8.

Fig. 8 Placement of a core sphere. A point P on the blue or red curve

indicates a possible placement of a sphere center. The sphere above it

lies on the point on the green or orange curve that is a distance σ from

P. See text for details.

The map M(a) is determined by finding the value of a2 along
the upper curve (green/orange in Fig. 8) that is exactly σ away
from a1 on the lower curve (blue/red). M(a) has the form of a
circle map:

M(a) = {a+ω + f (a)} , (17)

where ω is a constant and f (a) is a periodic function with unit
period and zero mean. Numerical computation of the map yields
ω = 0.163887 and the function f (a) shown in Fig. 9. Note
the scale on the vertical axis; deviations from a line with unit
slope are quite small. The slope of M(a) lies within the range
(0.8689,1.1533) everywhere, hence the map is monotonic and
thus invertible, which means that it cannot be chaotic42.

For a circle map with a small amplitude nonlinearity, the
generic behavior is quasiperiodic42. In the present case, we con-
firm the quasiperiodicity to a high degree of accuracy, i.e., we
detect no exponential convergence to a limit cycle, and we deter-
mine the asymptotic density ρ∞ by fitting the values of ρn = n/zn

to the form
ρ∞ = ρn + c/n, (18)

where c is a fitting constant. More precisely, we compute zn, the
height of the nth sphere in the core, taking z = 0 to be a point at
the center of a layer of the outer shell and beginning with z1 =

0. We then extract the sequence of zn values for which the nth

sphere sets a new record for coming closest to lying exactly in the
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Fig. 9 Plot of the nonlinear term in the map from the height of one core

sphere to the next one up, f (a). Note that for the purposes of this figure

we have not taken the fractional part of an+1. Note also the scale on the

vertical axis.

plane of a layer, but is just below that plane, i.e, points for which
an comes ever closer to unity. Note that if the sequence were
converging to a periodic limit cycle, this procedure would either
yield a finite sequence or one that exponentially approaches a
value different from unity. Figure 10 shows ρn −ρ∞ as a function
of n for the sequence of best approximants, where ρ∞ has been
adjusted to get a straight line on the log-log plot. We find the
best fit to be obtained for ρ∞ ≈ 1.0043324(1)/σ , which is slightly
denser than for a simple stack of spheres on the cylinder axis, 1/σ .
The total number of spheres per unit of cylinder length is thus ρs+

ρ∞ = 8.0169578(1)/σ , corresponding to η = 0.593849(1), which is
denser than η = 0.593661(1) obtained from the SLP algorithm, as
expected.

Fig. 10 Infinite-system size extrapolation of the core linear density to ρ∞

for D = 3σ from the sinking algorithm fitted to Eq. (18).

For D 6= 3σ , the lack of reflection symmetry in the helical shells
and the presence of line slips complicate the construction of a
map from one core sphere height to the next. We instead perform
brute force numerical computations of the core packing algorithm
for n spheres and take the core density to be ρn = n/zn. The core
density, ρ∞, is obtained by fitting the numerical results to Eq. (18),

as above. The joint core and shell packing fraction, η(D), is then
obtained with a resolution of ∆D = 0.001σ (see Fig. 11).

For most values of D, the sinking algorithm gives structures
with a higher packing fraction than the SLP algorithm, but dif-
ferences that are typically less than 0.1%, which suggests that
the SLP algorithm performs remarkably well in this regime. The
most significant structural difference between the two algorithms
is observed for 3.003σ ≤ D ≤ 3.017σ , where the sinking algorithm
identifies structures with a (7,4,3) outer shell, while the SLP al-
gorithm produces a (6,6,0) outer shell. The packing fraction dif-
ference between these two structures is small, but well above our
numerical precision. The discrepancy may thus result from the
former structure not being as easily accessible in the SLP search
than the latter for our choice of algorithmic parameters and initial
conditions.

At the level of precision considered for the SLP study (∆D =

0.01σ), the sinking algorithm is found not to win outright at
three points: D = 3.04σ , D = 3.27σ , and D = 3.40σ (see Table 2).
We find that two distinct mechanisms are at play, which can be
seen through consideration of the linear density ratio between
the SLP and the sinking algorithms separately for the shell, ρs,
and for the core, ρ∞ (Fig. 11 inset). Interestingly, we find that
ρSLP

s /ρsink
s ≤ 1 at 3.04σ and 3.40σ . This indicates that a denser

core is obtained at the expense of having a slightly perturbed
(and less dense) outer shell. At 3.27σ , some shell spheres instead
do not touch the cylinder wall (taking over some of the empty
core space), which increases both the shell and the core densities.
(For D = 3.09−3.10σ , the SLP also identifies a denser outer shell
than the one used in the sinking algorithm, but in these cases the
denser core obtained by the sinking algorithm more than com-
pensates for this difference.) The effect of the coupling between
the outer shell and the inner core may be due to the proximity of
a change to the shell symmetry (D ≈ 3.04σ), or to the end of this
regime (D ≈ 3.40σ), but finer resolution studies would be needed
to make more definitive statements. It is also unclear whether this
coupling is strong enough to make the close packed structures pe-
riodic. SLP identifies unit cells that contain at least 55 ≤ N ≤ 80

spheres, but larger cells are certainly possible.

Table 2 Density differences between SLP and sinking structures for

points where the former is denser than the latter.

D/σ (ρSLP
s −ρsink

s )σ (ρSLP
∞ −ρsink

∞ )σ ηSLP −ηsink

3.04 −6.4×10−6 1.259×10−3 9.0×10−5

3.27 2.9×10−6 4.510×10−4 2.8×10−5

3.40 −7.9×10−3 9.254×10−3 7.2×10−5

5 Conclusion

In this study, we have extended the range of known HS close
packings in cylinders of diameters D = 2.862σ to D = 4.00σ by
adapting the SLP method of Ref.34 to this geometry and by devel-
oping a sinking algorithm. We have identified 17 new structures,
most of them chiral, along with their continuous deformation. We
also distinguish ranges of cylinder diameters over which different
types of packings are observed. Most notably, around D = 3σ the
outer shell is both fairly independent of the inner core and close
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Fig. 11 Packing results for the SLP (blue circles) and the sinking (solid

line) algorithms are in fairly close agreement, but the quasiperiodic

phases identified by the latter are typically denser. The biggest

differences are in the choice of optimal shell morphology around

D = 3.01σ and D = 3.35σ . The phase sequence for the sinking algorithm

is (7,4,3), (6,6,0), (7,4,3), (6,6,0), (7,5,2), (7,6,1), (8,4,4), (8,5,3), (7,7,0)

and (8,6,2), from left to right (separated by dashed lines). The inset

shows the shell ρSLP
s /ρsink

s (red triangles) and core ρSLP
∞ /ρsink

∞ (blue

circles) linear density ratio as a function of D. See text for details.

packed, and both algorithms provide strong numerical evidence
that many of the packings are quasiperiodic.

Although our study ended at D = 4.00σ , we expect the compe-
tition between different shells to persist even once three and four
of them develop. For D ≫ 4σ , however, the bulk FCC limit should
eventually be recovered. The shell area should thus eventually
form but a thin wrapping of a FCC core. Based on the analogy
with packing of disks within a circle15, however, we don’t expect
this phenomenon to develop before D & 20σ , which is far beyond
the regime that can be reliably studied with existing numerical
methods.

In closing, it is important to recall the difference between
packings and their assembly from local algorithms, such as the
Lubachevsky-Stillinger algorithm43 and other slow annealing ap-
proaches that mimic self assembly. Although optimal, some of the
packings may be dynamically hard to access (or even inaccessi-
ble) via self-assembly, which can be important in simulations and
colloidal experiments. This question will be the object of a future
publication.
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