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Depletion-induced interactions between colloids in colloid-polymer mixtures depend in range and strength on size, shape, and
concentration of depletants. Crowding by colloids in turn affects shapes of polymer coils, such as biopolymers in biological cells.
By simulating hard-sphere colloids and random-walk polymers, modeled as fluctuating ellipsoids, we compute depletion-induced
potentials and polymer shape distributions. Comparing results with exact density-functional theory calculations, molecular simu-
lations, and experiments, we show that polymer shape fluctuations play an important role in depletion and crowding phenomena.

1 Introduction

Depletion forces are ubiquitous in soft materials that contain
hard particles and flexible macromolecules,1 such as colloid-
polymer and colloid-surfactant mixtures. Over 60 years ago,
Asakura and Oosawa2 recognized that the exclusion of one
species (depletant) from the space between two particles of
another species creates an osmotic pressure imbalance that
induces an entropy-driven attraction between the particles
and can drive demixing into colloid-rich and colloid-poor
phases.3,4 Practical applications of depletion forces are in ini-
tiating flocculation of impurities in water treatment and wine-
making, promoting aggregation of DNA and crystallization
of proteins,5 and controlling stability and dynamical proper-
ties of many consumer products, including paints, foods, and
pharmaceuticals.1 Depletion forces have been measured by
several experimental methods, including total internal reflec-
tion microscopy,6 atomic force microscopy,7 neutron scatter-
ing,8 and optical trapping.9–11 Modeling efforts have invoked
force-balance theory,12,13 perturbation theory,14,15 polymer
field theory,16–21 density-functional theory,22,23 adsorption
theory,24,25 integral-equation theory,26–28 Monte Carlo sim-
ulation methods,29–41and free-volume theories for thermody-
namic phase behavior.42–44

Complementary to depletion is the phenomenon of crowd-
ing upon mixing polymers or other flexible macromolecules
with impenetrable obstacles. When colloids, nanoparticles, or
other crowding agents are dispersed in a polymer solution or
blend, flexible chains adjust their size and shape to conform
to the accessible volume.45 The prevalence and importance
of macromolecular crowding in biology was recognized over
three decades ago.46 In the congested environment of a cell’s
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cytoplasm or nucleoplasm, conformations of proteins, RNA,
and DNA are constrained by the presence of other macro-
molecules, affecting biopolymer function.47–49 Crowding of
polymers has been studied experimentally by neutron scat-
tering,50,51 computationally via Langevin dynamics52–54 and
Monte Carlo simulations of coarse-grained models,55–57 and
by free-volume theories.45,56–58

Attempts to interpret experimental or simulation data for
depletion forces in colloid-polymer mixtures typically assume
the spherical polymer model and treat the polymer size and
concentration as free parameters.6–10The fitted parameters in-
variably differ from measured values. Dependences on parti-
cle curvature and depletant concentration have been partially
accounted for by introducing an effective polymer size or de-
pletion layer thickness.19,36,38,43The influence of depletant
shape on interactions has been studied in mixtures of colloidal
spheres and rods10,15 or ellipsoids,13,59 but only of fixed size
and shape. Other workers have explored the impact of poly-
mer conformations on relative stabilities of hard-sphere col-
loidal crystals60–62and of crowding on polymer size50–58(but
not shape). Despite ample evidence that random-walk poly-
mers exhibit significant asphericity,63–66 however, no studies
have yet related shape fluctuations to depletion interactions
and crowding. This paper presents the first consistent analy-
sis of the role of depletant shape in mixtures of colloids and
nonadsorbing polymers. By comparing results with exact the-
oretical calculations and with data from molecular simulations
and experiments, we demonstrate the importance of polymer
shape fluctuations for depletion and crowding.

2 Model

Our model generalizes the widely-studied Asakura-Oosawa-
Vrij (AOV) model of colloid-polymer mixtures,2,3 which rep-
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resents the colloids as hard spheres and the polymers as effec-
tive spheres of fixed size that are mutually noninteracting,but
impenetrable to the colloids. The assumption of hard colloid-
polymer interactions is reasonable for colloids larger than
the polymers. However, the effective-sphere approximation
ignores conformational fluctuations of polymer coils. Here
we go beyond previous coarse-grained models of polymer-
induced depletion interactions by representing the polymers
as soft ellipsoids that fluctuate in size and shape.

A polymer coil ofN segments has size and shape character-
ized by its gyration tensor,T = (1/N)∑N

i=1 r ir i , wherer i is the
position vector of segmenti relative to the center of mass. A
conformation with gyration tensor eigenvaluesΛ1, Λ2, Λ3 has
instantaneous radius of gyrationRp =

√
Λ1+Λ2+Λ3. The

experimentally measurable (root-mean-square) radius of gy-
ration is an ensemble average over polymer conformations,

Rg ≡
〈

R2
p

〉1/2
. If the average is defined relative to the poly-

mer’s principal-axis frame, the coordinate axes being labelled
to preserve the eigenvalue order (Λ1>Λ2 >Λ3), then the aver-
age gyration tensor describes an aspherical object, whose av-
erage shape is an elongated (prolate), flattened ellipsoid.63–65

Each eigenvalue is proportional to the square of a principal
radius of the general ellipsoid that best fits the shape of the
polymer:x2/Λ1+y2/Λ2+z2/Λ3 = 3.

Ideal, freely-jointed (random-walk) polymer coils can be
modeled as soft Gaussian ellipsoids.67 For coils sufficiently
long that extensions in orthogonal directions are essentially
independent, the shape probability distribution is well approx-
imated by the factorized form68

P(λ1,λ2,λ3) = P1(λ1)P2(λ2)P3(λ3) , (1)

whereλi ≡ Λi/(Nl2) (i = 1,2,3) for segment lengthl and

Pi(λi) =
(aidi)

ni−1λ−ni
i

2Ki
exp

(

−λi

ai
−d2

i
ai

λi

)

, (2)

with parametersK1 = 0.094551, K2 = 0.0144146, K3 =
0.0052767, a1 = 0.08065, a2 = 0.01813, a3 = 0.006031,
d1 = 1.096,d2 = 1.998,d3 = 2.684,n1 = 1/2, n2 = 5/2, and
n3 = 4. We emphasize that these distributions, which exhibit
broad fluctuations in polymer size and shape, are derived from
random-walk statistics67,68 and will be modified in the pres-
ence of crowding agents (e.g., colloids).

The deviation of a polymer’s average shape from a sphere
is quantified by the asphericity65

A= 1−3
〈λ1λ2+λ1λ3+λ2λ3〉
〈(λ1+λ2+λ3)2〉 . (3)

A perfect sphere (λ1 = λ2 = λ3) hasA= 0, while an object that
is greatly elongated along one axis hasA ≃ 1. A mixture of
spherical colloids of radiusRc and polymers of uncrowded rms
radius of gyrationRg is characterized by the number densities,
nc andnp, and size ratio,q≡ Rg/Rc, of the two species.

3 Methods

To explore the influence of polymer shape on depletion-
induced interactions between colloids, and of crowding on
polymer conformations, we developed a Monte Carlo (MC)
algorithm for simulating mixtures of hard colloidal spheres
and ideal polymers, whose shape distribution follows Eq. (1).
At fixed temperatureT and volume, trial displacements of
colloids and displacements and rotations of polymers are ac-
cepted with the Metropolis probability69 min

{

e−β∆U , 1
}

,
whereβ = 1/(kBT) and∆U is the associated change in po-
tential energy. Colloid-colloid and colloid-polymer overlaps
yield infinite energy and so are always rejected. To detect in-
tersection of a polymer with a colloid, we implemented an
overlap algorithm that determines the shortest distance be-
tween the surfaces of a sphere and a general ellipsoid by nu-
merically evaluating the root of a 6th-order polynomial.70 For
trial rotations, we define the orientation of a polymer by a unit
vectoru, aligned with the long axis of the ellipsoid, and gen-
erate a new (trial) directionu′ = (u+ τv)/|u+ τv|, wherev
is a randomly oriented unit vector andτ is a tolerance de-
termining the magnitude of the rotation.69 In addition, we
perform trial changes in shape of a polymer coil, from gy-
ration tensor eigenvaluesλ ≡ (λ1,λ2,λ3) to new eigenvalues
λ ′ ≡ (λ ′

1,λ ′
2,λ ′

3). Such trial moves, which entail a change in
internal free energy of the coil,71 Fc =−kBT lnP0(λ ), are ac-
cepted with probability

P(λ → λ ′) = min
{

e−β (∆Fc+∆U), 1
}

= min

{

P0(λ ′)
P0(λ )

e−β∆U , 1

}

, (4)

whereP0(λ ) is the shape distribution in a reservoir of pure
polymer [Eq. (1)]. We assume that a coil of a given shape
in the system has free energy equal to that of an identically
shaped coil in the reservoir.72 Through trial changes in eigen-
values, the polymers evolve toward an equilibrium shape dis-
tribution, constrained by the presence of crowders (colloids).

Depletion of polymers induces an effective interaction be-
tween colloids that reduces, in the dilute limit, to the poten-
tial of mean force (PMF),vmf(r) = Ω(r)−Ω(∞), defined as
the change in grand potentialΩ(r) upon bringing two col-
loids from infinite to finite (center-to-center) separationr by
working against the polymer osmotic pressure,Πp = npkBT
(for ideal polymers). If we make the choiceΩ(∞) = 0, then
vmf(r) = −ΠpVo(r), whereVo(r) is the intersection of the
excluded-volume regions surrounding the colloids. For spher-
ical polymers (AOV model),

Vo(r) =
4π
3
(1+q)3R3

c

(

1− 3r/Rc

4(1+q)
+

(r/Rc)
3

16(1+q)3

)

. (5)
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Fig. 1 Simulation snapshot (a) depicts colloids (blue spheres) and polymer (red ellipsoid), which induces potential of mean forcev(r) at
center-center distancer (units of colloid diameterσc) for polymer-to-colloid size ratios (b)q = 0.125, (c)q = 0.7776. Our MC simulation
data for the fluctuating ellipsoidal polymer model (squares), and predictions of the spherical polymer (AOV) model (circles, dashed curves),
are compared with (b) density-functional theory (DFT) predictions (solid curve) for continuum-chain polymers23 and (c) MC simulation data
(solid curve) for lattice-chain polymers29 at corresponding effective size ratiosqeff [Eq. (6)]. Also shown in (b) is the AOV model prediction
for the bare size ratioq (dotted curve). Error bars are smaller than symbols.

In general, however, sinceVo(r) depends on the shapes of
colloids and polymers, its computation is nontrivial. In the
fluctuating ellipsoidal polymer model, computingVo(r) also
requires averaging over polymer shape and orientational dis-
tributions. We determinedvmf(r) using a particle insertion
method69,73 by fixing two colloids at separationr in a sim-
ulation box, inserting polymers of random shapes and orienta-
tions, generated by our MC algorithm, at random positions
in the space between fixed colloids, and counting the frac-
tion of double overlaps. Since ideal polymers are indepen-
dent, we need insert only one at a time and then scale by the
polymer number. For the polymer trial moves, we used toler-
ances ofτ = 0.001 for rotations and∆λ1 = 0.01,∆λ2 = 0.003,
∆λ3 = 0.001 for shape changes. As a check, our algorithm re-
producesVo(r) for spherical polymers (AOV model) [Eq. (5)].

Accurate calculation of the PMF requires calibrating the el-
lipsoidal polymer model to consistently match the polymer ra-
dius to the depletion layer thickness and to account for defor-
mation of a polymer coil near a curved surface.29 A rational
criterion for choosing theeffectivesize ratioqeff is based on
equating the free energy to insert a hard sphere into a bath of
ideal polymers, as predicted by polymer field theory,16 with
the work required to inflate a sphere in the model polymer so-
lution.36,38,43For nonspherical polymers, we generalize this
criterion to

qeff =
Rg

c

[

(

1+
6√
π

q+3q2
)1/3

−1

]

, (6)

wherec is the integrated mean curvature of the polymer,74

which accounts for shape fluctuations. We computedc nu-
merically by integrating the mean curvature over the ellipsoid

surface and averaging with respect to the shape distribution
[Eq. (1)], yieldingc= 0.93254Rg (compared withc= Rg for
spheres of fixed radius). Equation (6) ensures that, in the limit
q→ 0, the model recovers the exact depth of the PMF (per unit
area) between hard, flat plates at contact:1,2 (4/

√
π)RgΠp.

4 Results

As a first test of the ellipsoidal polymer model, we computed
the PMF in the dilute colloid limit by performing simulations
over a sequence of colloid pair separations for the same size
ratios as used by Forsman and Woodward23 in their exact
density-functional theory (DFT) calculations for a continuum-
chain polymer model (q= 0.125) and by Meijer and Frenkel29

(q = 0.7776) in their MC simulations of random-walk poly-
mer chains on a cubic lattice. In each comparison, we used
appropriate effective size ratios computed from Eq. (6) with
c/Rg = 1 for spheres andc/Rg = 0.93254 for ellipsoids, and
averaged over five independent runs, each of 2×107 polymer
insertions. Figure 1 shows that the PMFs resulting from the
ellipsoidal polymer model are in excellent agreement with the
corresponding PMFs from both of the explicit polymer mod-
els. Thus, calibration of the effective polymer size near hard,
flat plates (q= 0) proves accurate also for polymers near hard
spheres (q> 0). In contrast, the AOV model [Eq. (5)] predicts
a shorter-ranged (and, forq= 0.7776, also deeper) potential,
reflecting lack of freedom of a spherical polymer to deform to
avoid obstacles.

We turn next to the experiments of Vermaet al.,9 who used
an optical tweezer to measure interactions between silica mi-
crospheres of diameterσc = 1.25± 0.05 µm in aqueous so-
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Fig. 2 Potential of mean force between a pair of silica micro-
spheres (diameterσc = 1.25 µm) induced byλ -DNA in water with
Rg = 0.5 µm (q = 2Rg/σc = 0.8). Our MC simulation data for
the fluctuating ellipsoidal polymer model (squares) at effective size
ratio qeff = 0.8351 [Eq. (6)] are compared with both experimental
data9 (circles) and predictions of the AOV model (dashed curve)
[Eq. (5)] for qeff = 0.7788 [Eq. (6)]. The solid curve is a least-
squares fit to the experimental (not simulation) data of the function
−exp(a0+a1r +a2r2) with a0 = 0.817,a1 =−0.167,a2 =−1.269.

lutions of λ -DNA (contour length 16µm, radius of gyration
Rg ≃ 500 nm), whose conformations are known to be random
walks of∼160 Kuhn segments.66 Taking the nominal size ra-
tio of q = 0.8, we computed the PMF in both the ellipsoidal
and spherical polymer models and here compare our results
with data for a dilute DNA solution of concentration 25µg/ml
(np = 0.5 µm−3), in which polymer interactions should be
negligible (Figs. 2 and 3 of ref. 9). Since the experiments can-
not accurately resolve the vertical offset of the potential, we
varied the offset to most closely fit our simulation data. With
this single fit parameter, the ellipsoidal polymer model, with
effective size ratioqeff = 0.8351 [from Eq. (6)], is in close
agreement with the measured interaction potential (Fig. 2), as
is seen by comparing the least-squares fit to the experimen-
tal data with our simulation data (solid curve and squares in
Fig. 2). In contrast, the AOV model, withqeff = 0.7788, signif-
icantly overestimates the depth, and underestimates the range,
of the potential. From visual inspection, it is clear that nover-
tical shift of the experimental data will yield close alignment
with the AOV model (solid and dashed curves in Fig. 2).

The close agreement of depletion potentials from our sim-
ulations of the ellipsoidal polymer model with, on the one
hand, DFT calculations and simulations for explicit polymer
models and, on the other hand, experimental data from optical
tweezer measurements of colloid-DNA mixtures is strong ev-
idence that aspherical polymer shapes play a significant role
in depletion. Contrary to previous studies,1,19,25we conclude
that depletion interactions between hard-sphere colloidsare

not fully captured by modeling polymers simply as penetra-
ble spheres of an effective size or, equivalently, with an effec-
tive depletion layer thickness. Moreover, our approach consis-
tently accounts forfluctuationsin polymer shape, in contrast
to models of spheroidal depletants.13,59

Our approach may be compared with the powerful and ele-
gant method of Bolhuis and Louiset al.32–38that models poly-
mers as “soft colloids” by replacing a polymer coil with a sin-
gle particle at the center of mass. These authors determined
the effective pair potential between two polymers and between
a polymer and a hard sphere by first computing the respective
radial distribution functiong(r) between the centers of mass,
via MC simulation of explicit segmented polymers on a lat-
tice, and then invertingg(r) via the Ornstein-Zernike integral
equation. From subsequent simulations of a coarse-grained
model of colloid-polymer mixtures governed by such effec-
tive pair potentials, they extracted polymer depletion-induced
interactions between hard-sphere colloids. For polymers in a
good solvent, whose excluded-volume interactions were mod-
eled via self-avoiding walks, comparisons of effective pair po-
tentials derived from simulations of the explicit and coarse-
grained models were in close agreement forq≃ 1 and in the
dilute polymer concentration regime, with deviations emerg-
ing abruptly at higher concentrations. Moreover, a computa-
tionally practical superposition approximation that expresses
two-body depletion interactions in terms of the radially sym-
metric density profile of a polymer around a single colloidal
sphere, which for ideal depletants can be implemented as a
simple convolution integral,75 proves nearly as accurate as
simulations. Our analysis of polymer shape fluctuations, al-
though here limited to ideal polymers, would suggest that the
soft-colloid approach succeeds largely by capturing, in the ef-
fective colloid-polymer potential, an accurate representation
of the distortion of a polymer coil near a hard, curved surface.

Our restriction thus far to the dilute limit, while intended
to highlight the role of polymer shape fluctuations in deple-
tion interactions, raises the important question of how such
shape fluctuations may be modified in more crowded envi-
ronments, as in concentrated suspensions and biological cells.
As a first step toward assessing the impact of crowding on
polymer shapes, we simulated polymers amidst many mobile
colloids, now including trial displacements of both species.
Previously, we computed polymer shape distributions, radii of
gyration, and asphericities in the protein limit (q≫ 1), using
a coated-ellipsoid approximation for the excluded volume.57

By applying the exact overlap algorithm, we can now extend
this analysis to the colloid limit (q< 1). Figure 3 shows results
from simulations of 216 colloids and one polymer atq= 0.8
in a cubic box with periodic boundary conditions, along with
predictions of a free-volume theory based on a mean-field ap-
proximation for the average volume accessible to an ellipsoid
in a hard-sphere fluid.57 With increasing colloid volume frac-
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Fig. 3 (a) Simulation snapshot depicts colloids (blue spheres) and polymer (red ellipsoid) in a cubic simulation cell with periodic boundary
conditions. (b) Probability distributions for eigenvalues (λ1, λ2, λ3) of the gyration tensor of an ideal polymer coil with random-walk segment
statistics. Simulation data (symbols) are compared with predictions of free-volume theory57 (solid curves) for an ellipsoidal polymer with
uncrowded size ratioq = 0.8 amidst 216 colloids of volume fractionφc = 0.5. Dashed curves: uncrowded (φc = 0) distributions [Eq. (1)].
Inset: polymer asphericityA vs.φc [Eq. (3)]. (c) Polymer radius of gyrationRg vs.φc.

tion, φc ≡ (4π/3)ncR3
c, the polymer eigenvalue distributions

shift toward contraction of the polymer along all three princi-
pal axes, while the radius of gyration and asphericity decrease,
reflecting compactification of the polymer. These trends imply
a decreasing range of pair attraction with increasing colloid
concentration.

5 Conclusions

In summary, we computed depletion potentials between hard,
spherical colloidal particles induced by ideal polymers, mod-
eled as fluctuating ellipsoids with random-walk segment
statistics. Comparisons with exact theoretical calculations
and data from both molecular simulations and experiments
demonstrate that shape-fluctuating polymers induce signifi-
cantly weaker and longer-ranged interactions than spherical
depletants, even after accounting for particle curvature via an
effective depletion layer thickness. While the depletion po-
tentials computed here in the dilute limit are not expected
to directly transfer to concentrated colloid-polymer mixtures,
in which many-body effective interactions may be signifi-
cant, the ellipsoidal polymer model should be applicable at
nonzero concentrations. When progressively crowded by col-
loids, polymer coils remain aspherical, but become more com-
pact in size and shape.

Our approach provides a new conceptual framework for in-
terpreting experiments, is computationally more efficientthan
explicit polymer models, and may be adapted to model de-
pletion and crowding in mixtures of colloids and excluded-
volume polymers,35–40,43represented as self-avoiding random
walks64 in good solvents. It may be further extended to the
protein limit of polymer-nanoparticle mixtures, by incorpo-
rating an appropriate penetration free energy.57,76 Models of
shape-fluctuating particles also may be useful for exploring

phase behavior in polymer nanocomposites and in dispersions
of soft colloids, e.g., microgels, whose shapes deform at high
concentrations.77
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