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One-dimensional collective migration of a proliferating
cell monolayer

Pierre Rechoa,c, Jonas Ranftb and Philippe Marcqc

The importance of collective cellular migration during embryogenesis and tissue repair asks
for a sound understanding of underlying principles and mechanisms. Here, we address recent
in vitro experiments on cell monolayers which show that the advancement of the leading edge
relies on cell proliferation and protrusive activity at the tissue margin. Within a simple viscoelastic
mechanical model amenable to detailed analysis, we identify a key parameter responsible for
tissue expansion, and we determine the dependence of the monolayer velocity as a function of
measurable rheological parameters. Our results allow us to discuss the effects of pharmacological
perturbations on the observed tissue dynamics.

1 Introduction
Recent experiments on the expansion dynamics of epithelial cell
monolayers highlighted a propagative mode with an approxi-
mately constant velocity at the leading edge. They were per-
formed with Madin-Darby canine kidney (MDCK) epithelial cells
in a quasi-one-dimensional geometry, first on tracks of small
width1, then on a (cylindrical) fiber of small radius2. The pres-
ence of a free boundary gives rise to an inhomogeneous cell den-
sity along the tissue, increasing monotonically towards the rear
of the cell layer. Conversely, the velocity is maximal at the lead-
ing edge and decreases monotonically with the distance from the
front. Collective cell migration in the rear comes to a halt as cell
density rises with time3.

Studying epithelization over durations short compared to the
typical cell cycle, some among us showed that a cell monolayer on
a hard substrate may be described by an inviscid, incompressible
fluid driven by active boundary forces4. A detailed comparison of
model predictions with experimental measurements showed that
during the epithelization of a disc-shaped empty domain, protru-
sive activity at the leading edge dominated force generation and
external friction between monolayer and substrate dominated en-
ergy dissipation.

Motivated by the experiments mentioned above, we wish to ex-
tend these results to monolayer expansion assays whose duration
is longer than a typical cell cycle. In addition to lamellipodial ac-
tivity at the leading edge, cell proliferation, as well as inflow of
cells from the reservoir, may drive collective migration. We take
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into account variations of the cell density and use linear non-
equilibrium thermodynamics to relate the equation of state of the
tissue to the dependence of the proliferation rate on cell density.
In doing so, we aim to provide a biophysical understanding of the
tissue dynamics observed in experiments, which further allows
to account for the effects of drug treatments that modify the ve-
locity at the leading edge1,2. Our approach is complementary to
earlier studies addressing mainly the kinetics of collective migra-
tion without reference to the tissue mechanical behaviour5–7. In
the following, the cell monolayer will be loosely referred to as the
“tissue” although it lacks some of the complexity of in vivo tissues,
such as, e.g., collagen secretion and organization.

This article is organized as follows. In Sec. 2, we introduce a
one-dimensional mechanical description of the collective migra-
tion of a proliferating cell monolayer. The combination of forces
generated by protrusions at the leading edge and by proliferation
in the bulk leads to monolayer expansion at constant front ve-
locity. We thus study in Sec. 3 the existence of traveling wave
solutions and the dependence of the front velocity upon control
parameters. The limit of vanishing viscosity, presented in Sec. 4,
gives rise to an effective Fisher-Kolmogorov-like free-boundary
problem which has a clear mechanical interpretation. In Sec. 5,
we discuss how pharmacological perturbations may modify the
response of the tissue. Finally, we summarize and discuss our
results in Sec. 6.

2 Expansion of a proliferating cell mono-
layer

With highly cohesive cell monolayers in mind, we formulate a
continuum description of collective migration. We describe the
tissue at length scales large compared to the size of a single cell,
and thus define the coarse-grained fields of the cell number den-
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Fig. 1 Schematic representation of the one-dimensional
expansion of a proliferating cell monolayer. (Top) A reservoir, which
is occupied by a confluent cell monolayer, is connected to a smaller
track to which the advancing cells are confined. Cells can undergo
division and apoptosis, and cells at the leading edge exert pulling forces
on the tissue due to lamellipodial activity. (Bottom) Side view of the
upper sketch; σh denotes the homeostatic stress at which cell division
and cell death balance, and σp denotes the protrusive stress exerted at
the leading edge. (Online version in colour.)

sity ρ(~r, t), the velocity v(~r, t) and the stress σ(~r, t) as functions
of the space coordinate ~r and time t. Sec. 2.1 recapitulates the
conservation laws obeyed by the system. Sec.2.2 shows that the
framework of linear non-equilibrium thermodynamics relates the
cell density dependence of stress and proliferation rate. Sec. 2.3
gives the resulting evolution equations and boundary conditions
in dimensionless form.

2.1 Conservation laws

In order to describe the migration of a cell monolayer along
narrow tracks or along cylindrical fibers of small radii, we as-
sume that the relevant fields vary little across the track width or
the fiber circumference. This assumption implies the absence of
long-range velocity correlations that are known to occur for track
widths larger than 100 µm1, the order of magnitude of the veloc-
ity correlation length as measured in bulk.

Within a thin film approximation, we consider an effectively
one-dimensional system along the migration axis: ~r = x~ex. At
time t, the tissue covers the track, or the fiber, from a reservoir at
x = 0 to the leading edge at L(t), see Fig. 1 for a sketch. Impor-
tantly, cells belong to a monolayer everywhere, including in the
reservoir, and there is no “permeation” of cells from superior lay-
ers as in the case of a cell monolayer spreading from an aggregate
with weaker cell-cell adhesion8. Since the cell monolayers that
we consider are easily supplied with nutrients from the third di-
mension, i.e., from the culture medium at the apical side, growth
is not limited by nutrient diffusion within the tissue. Because the
extracellular fluid is not confined to the tissue layer, we can ne-
glect interstitial flows that would otherwise give rise to additional
mechanical constraints9,10. We furthermore do not consider here
the effect of external chemotactic fields11.

Cell conservation law. The cell number density obeys the mass
balance equation, supplemented with a source term due to cell

proliferation:
∂tρ +∂x (ρv) = kd(ρ)ρ (1)

where kd is the effective proliferation rate, combining cell divi-
sions and cell deaths (delaminations), and depends on cell den-
sity, see below. This conservation law is associated with boundary
conditions at the inlet, where the tissue is connected to the reser-
voir, and the free end of the tissue. In line with experiments, we
impose zero flux boundary conditions:

v(0, t) = 0 and (2)

v(L(t), t) = L̇(t) , (3)

respectively. Throughout the text,˙= d/dt denotes the total deriva-
tive with respect to time. Eq. (2) assumes that cell proliferation
in the reservoir and subsequent tissue inflow is negligible com-
pared to proliferation in the tissue, as observed experimentally3.
Eq. (3) provides a kinematic condition for the evolution of the
leading edge. In principle, it could be modified by including a
boundary growth term if necessary.

Proliferation rate. Consistent with observations3,12, we con-
sider that the proliferation rate depends on cell density and as-
sume for simplicity a linear relation13,14,

kd(ρ) =
1
τd

ρd−ρ

ρd
, (4)

where ρd is the tissue carrying capacity, in other words the refer-
ence cell density at which the net cell division rate vanishes. [See
Appendix A for the more general case of arbitrary kd(ρ).] The
characteristic time scale τd may be estimated experimentally12

for vanishing cell densities as τd = kd(0)−1. Note that the cou-
pling between density and proliferation is not per se mechanical
but may be a combined effect of mechanical compression and
density-dependent signaling between cells. One declared aim of
this paper is to investigate the ramifications of such a coupling for
migrating tissues.

Force balance. In this continuum framework, internal and ex-
ternal forces are respectively described by the stress field σ(x, t)
and the external force field f ext(x, t). Force balance is expressed
as

∂xσ =− f ext . (5)

We assume that external forces are due to fluid friction between
the tissue and the substrate4:

f ext =−ξ v . (6)

For simplicity, we neglect active, bulk motility forces, as may be
produced by, e.g., cryptic lamellipodia within the monolayer15. At
the free boundary x = L(t) however, leading cells extend lamel-
lipodia and exert active pulling forces on the rest of the tissue.
Mechanically, we therefore treat boundary cells at the front as
external agents applying a tensile traction σp on the monolayer,
leading to the following condition on the stress4:

σ(L(t), t) = σp . (7)
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2.2 Linear non-equilibrium thermodynamics

In order to close the system of equations and to fully specify
the tissue mechanics, one needs a constitutive equation to relate
stresses to quantities like the cell density and the cell velocity
field. It is generally assumed that an equation of state relates the
isotropic tissue stress to the cell density, and that viscous stresses
occur in the presence of velocity gradients, effectively leading to
a Kelvin-Voigt viscoelastic rheology in one dimension.

Instead of postulating ad hoc such a relation, we use the frame-
work of linear non-equilibrium thermodynamics16 to specify the
constitutive equation of the cell monolayer, see17 for a similar
derivation in the context of single cell migration. This approach
has the advantage of being systematic in terms of the identified
fluxes and forces once a free energy is specified, and to give a
coherent picture of the dissipation caused by the system. More
specifically, it allows us to identify an equation of state for the
tissue stress that is thermodynamically consistent with the linear
relation kd(ρ) chosen above. To express the dissipation rate in
the material, we follow the classical Coleman-Noll method18–20

(see also21 for a general treatment in the context of volumetric
growth).

However, as one may argue that tissues are too far from (ther-
modynamic) equilibrium for linear non-equilibrium thermody-
namics to hold and that the assumption of the existence of a well-
defined free-energy density that depends on a few variables of the
system may not be justified, we refer the reader to Appendix A for
a more general treatment.

In the presence of distributed (bulk) friction forces f ext = −ξ v
and of (boundary) traction forces σp due to lamellipodial protru-
sions at the leading edge, the power Π of the external forces to
which the monolayer is subjected reads

Π =−
∫ L

0
ξ v2 dx+σpL̇

=
∫ L

0
(−ξ v2 +∂x(σv))dx .

By taking into account the force balance equation (5), Π can also
be expressed as the power of the internal forces

Π =
∫ L

0
σ∂xvdx.

The total free energy of the cell monolayer reads

F =
∫ L

0
ρ f (ρ)dx,

where f (ρ) is the specific free energy, which we assume to be de-
pendent only on the cell density ρ since temperature is constant
in the tissue and heat fluxes can thus be neglected. A theory de-
scribing a more general growth process is currently under investi-
gation and will be published elsewhere. Using Reynolds’ theorem,
the rate of change of the free energy reads

Ḟ =
∫ L

0
kdρ f dx+

∫ L

0
ρ

2 d f
dρ

(kd−∂xv)dx.

In this isothermal system the power of external forces and the free

energy rate must satisfy a dissipation principle

Σ = Π− Ḟ ≥ 0.

We express Σ as a bilinear form

Σ =
∫ L

0
(σ + p)∂xvdx+

∫ L

0
(−ρµ)kd dx.

where p = ρ2 d f
dρ

is the thermodynamic pressure and µ = f + p
ρ

is the thermodynamic chemical potential22 whose role in three
dimensional elasticity is played by the corresponding component
of the energy momentum Eshelby tensor21. The two terms under
integrals can be interpreted as products of the thermodynamic
forces σ + p, −ρµ with the respective conjugate thermodynamic
fluxes ∂xv, kd.

Constitutive equations are obtained by expressing thermody-
namic forces as a linear combination of thermodynamic forces
through Onsager type relations. For simplicity, we neglect the
cross-terms, and obtain

σ + p = l11 ∂xv (8a)

−ρµ = l22 kd. (8b)

Here the different tensorial nature of the fluxes/forces is not an
issue because of the 1D Ansatz. Both diagonal kinetic coefficients
l11 and l22 are positive and we shall from now on denote η =

l11 the viscosity. We are left with the conventional relation (8a)
for a viscous, one-component, compressible fluid at a constant
temperature22

σ =−p+η∂xv

Identity (8b) relates the proliferation rate to its naturally associ-
ated generalized force, the chemical potential23,24. Interestingly,
the only choice of free energy consistent with the form of kd as-
sumed in Eq. (4) leaving ρ unconstrained, is then

f (ρ) =
l22

ρ τd

(
log
(

ρe

ρ

)
+

ρ

ρd
−1
)
,

where we have imposed the condition p(ρe) = 0, introducing an
elastic reference density ρe. Importantly, ρd 6= ρe: the carrying
capacity does not need to be equal to the elastic reference den-
sity. This leads to an expression of the stress thermodynamically
consistent with (4),

σ =−E log
(

ρ

ρe

)
+η

∂v
∂x

, (9)

where we identify the prefactor E = l22/τd as the elastic modulus
of the tissue.

The monotonically decreasing function se(ρ) = − log(ρ/ρe)

characterizes the dependence of (elastic) stress upon density al-
lowing to consider large deformations of the material. It is identi-
cal to the true strain, and infinitely penalizes both infinite dilution
(ρ = 0) and the formation of singularities (ρ =∞). While the same
form was postulated for convenient technical reasons in25–27 to
describe wound healing and cell colony expansion, we show here
that it is consistent with a proliferation rate linear in the density
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as assumed in Eq. (4).

2.3 The model

We now formulate the problem of cell monolayer expansion, as-
suming for simplicity that the material parameters τd, ρd, η , ξ ,
σp, ρe and E are constant.

We use τd,
√

E τd
ξ

, ρd and E as units of time, length, density and

stress respectively, and the reduced stress field

s =
σ −σp

E
.

The velocity field can be expressed as a stress gradient using (5)
and (6). Combining (1) with (4) as well as (5) with (9) we obtain
the dimensionless evolution equations

∂ρ

∂ t
+

∂

∂x

(
ρ

∂

∂x
s
)
= (1−ρ)ρ (10)

η̃
∂ 2s
∂x2 − s = logρ +α (11)

with boundary conditions

∂xs(0, t) = 0 (12a)

∂xs(L(t), t) = L̇(t) (12b)

s(L(t), t) = 0. (12c)

The dynamics of the free front depends only on two dimensionless
parameters: an active driving

α =
σp

E
+ log

ρd

ρe
(13)

and a dimensionless viscous coefficient

η̃ =
η

E τd
. (14)

In order to discuss the physical origin of the active driving char-
acterized by the parameter α, it is instructive to consider the sta-
tionary, homogeneous solution of Eqs. (10-12), given by ρ = 1,
s = −α, v = 0, and vanishing front velocity L̇(t) = 0. Returning
to dimensionful quantities, stationarity of the tissue requires that
cell division and apoptosis balance on average, which according
to Eq. (4) occurs for ρ = ρd. This state of tissue homeostasis im-
plies that bulk stresses are everywhere constant and equal to a
homeostatic stress

σh =−E log
ρd

ρe

which needs to be balanced at the tissue margin and thus requires
σp = σh. Given the definition (13), the stationary solution is only
possible for zero active driving α = 0.

The active driving α can thus be expressed as the difference
between the protrusive stress exerted at the free edge and the
homeostatic stress, normalized by the tissue elastic modulus,

α =
σp−σh

E
.

When α 6= 0, the homeostatic state cannot be sustained, and ρ =

ρ(x) 6= ρd. In this case, net cell division (kd > 0 for α > 0) or
death (kd < 0 for α < 0) at the front give rise to tissue expansion
or contraction, respectively, the dynamics of which is prescribed
by Eqs. (10-11), see Sec. 3.1.

A finite homeostatic stress σh 6= 0 implies a mismatch between
the carrying capacity ρd and the elastic reference density ρe,
which is often considered in elastic growth theories as a source
of growth-induced stress (see e.g.28,29). The ratio between the
applied stress at the free boundary to the elastic modulus of the
tissue, σp/E, which quantifies the strength of the pulling forces
exerted by the cells at the leading edge, can also be related to a
spreading coefficient within the context of wetting dynamics8,30.

If σp � E, the tissue may no longer be able to accommo-
date large deformations and will eventually rupture under ten-
sile stress31, a phenomenon inconsistent with the present for-
mulation which assumes continuity of the tissue. Conversely, if
−σp � E, a buckling instability may occur: this eventuality is
also beyond the scope of the present quasi-1D approach. Recent
work31,32 suggests values for σh as well as for E of the order of a
few kPa. We therefore expect the active driving |α| to be at most
of order 1.

Before turning to the analysis, let us discuss the various
scales involved in this problem. For lack of measurements per-
formed in the one-dimensional case, we rely on data from two-
dimensional cell monolayers4,12,31 as well as three-dimensional
cellular spheroids33,34. The dependence of cell cycle duration
upon cell number density has been measured in12, yielding a time
scale τd ≈ 10 h ≈ 104 s. Using E ≈ 103 Pa31 and ξ ≈ 1016 Pam−2

s4, we deduce a length scale of the order of
√

Eτd/ξ ≈ 30 µm,
and a velocity scale U =

√
E/(ξ τd)≈ 10 µmh−1, similar to typical

cell migration velocities1–3.

In agreement with the typical viscosity of cell aggregates33,34,
the viscosity of a MDCK cell monolayer has been measured in31:
from η ≈ 105 Pas, we find η̃ ≈ 10−2. The associated viscous
stresses can be estimated as follows. The velocity gradient in
the tissue necessarily extends over several cells, and we estimate
the order of magnitude of the strain rate as ∂xv ≈ vtyp/100 µm ≈
10−1 h−1 using the typical migration velocities mentioned above.
Given a strain of order ∂xu ≈ 10−1 and with E ≈ 103 Pa31, η ≈
105 Pas33,34, one finds that η∂xv/E∂xu≈ 210−2. One can a priori
expect viscous stresses to be negligible in the experiments. Note
that most of the numerical values pertain to the epithelial MDCK
cell line.

3 Traveling waves

In this section, we first study numerically the system (10-12),
successively describing the transient dynamics (Sec. 3.1) and the
propagating front (Sec. 3.2) that follows in the asymptotic regime
when the active driving is extensile. We then derive analytically
an exact traveling wave solution in the limit of α → ∞ (Sec. 3.3).
The asymptotic front velocity is defined as V = limt→∞ L̇(t).
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(a)

(b)

Fig. 2 Tissue contraction and expansion. Kymographs of the
dimensionless cell density field ρ(x, t) (density values given by the
colourbar) showing (a) contraction, α =−0.5 and (b) expansion, α = 0.5.
In both cases, η̃ = 10−2 and the initial condition for the cell density field
is ρ0(x) = exp

{
−(x/(2L0))

2
}

, x ∈ [0, L0], L0 = 20. (Online version in
colour.)

3.1 Transients

Numerical simulations of Eqs. (10-11) supplemented with bound-
ary conditions (12) are performed thanks to the numerical
scheme described in Appendix B. Given the initial profile for the
density field ρ(x, t = 0) = ρ0(x), x ∈ [0,L0], the initial profile σ0(x)
for the stress field is obtained by solving (11), the spatial deriva-
tive of which gives the initial velocity field v0 = dσ0/dx. We
checked that the asymptotic behavior does not depend on the
choice of ρ0(x). As explained above, we qualitatively expect the
monolayer to contract when α < 0 and to expand when α > 0,
regardless of the value of the viscosity.

Contraction. Our simulations confirm that α < 0 leads to tis-
sue contraction, see Fig. 2(a) for a typical kymograph. Consistent
with the qualitative argument presented in Sec. 2.3, one observes
ρ(x) ≥ ρd close to the leading edge, implying a negative net cell
division rate and progressive suppression of the tissue layer. After
a short transient, contraction is approximately linear with time: a
propagative wave forms whose constant velocity V is a function
of the active driving α and the viscosity η̃ , see Fig. 3. One can de-
fine a characteristic time until collapse tc as being the time when
L(tc) = Lc� 1. For large initial tissue sizes, L(t = 0) = L0� 1, we
find tc ' L0/V . Interestingly, recent numerical and experimental

work32 suggests that, in a number of cases, tissue homeostasis is
a state of mechanical tension, characterized by a positive home-
ostatic stress σh > 0. For zero protrusive stress σp = 0, Eq. (13)
then gives α < 0: full inhibition of the protrusive activity of leader
cells may result in tissue contraction.

Expansion. In line with the experiments that motivate this
work, we focus on the opposite case α > 0 in the remainder of
this article. After a transient, whose duration increases with η̃

and decreases with α, the tissue dynamics converges towards a
spreading regime with a propagating front with constant veloc-
ity V , see Fig. 2(b), in agreement with observations1,2. Here
ρ(x)≤ ρd: cell density decreases, whereas velocity increases with
x, velocity being maximal at the leading edge.

3.2 A propagating front

In the experimentally relevant case of monolayer expansion α >

0, we next ask how the asymptotic front velocity V depends on
the parameters α and η̃ . From (10-12), it satisfies the following
problem on the half-axis z = x−Vt ∈]−∞,0],

−V ρ
′+(s′ρ)′ = ρ (1−ρ) ,

η̃s′′− s = logρ +α ,

ρ(−∞) = 1 , s(0) = 0 ,

s′(0) =V , s′(−∞) = 0 ,

(15)

where ρ(z) = ρ(x, t), s(z) = s(x, t) and z = 0 is the position of the
free front. A prime ′ = d

dz denotes the derivative with respect to
the reduced variable z.

To numerically compute V (α, η̃), we choose to operate by con-
tinuation from the known value V = 0 at α = 0 using AUTO35.
From this value, the software follows the solution of the nonlin-
ear system (15) when α varies (negatively or positively) using
a Newton algorithm. We checked that the velocities thus ob-
tained are identical to those attained in the asymptotic regime
using direct numerical simulation. In Fig. 3, we plot V (α, η̃)

as a function of α for several values of η̃ . Using the velocity
scale U =

√
E/(ξ τd) ≈ 10 µmh−1 (see Sec. 2.3), the experimen-

tally observed front velocities are of O(1)1,3 and thus suggest that
α ≈ 1−2, consistent with our upper bound estimate α / O(1).

We observe that the front velocity increases linearly with α for
|α| � 1, and eventually saturates for α → ∞ to a value that in-
creases with η̃ . The counterintuitive behaviour of V with the vis-
cosity can be understood qualitatively as follows. By integration
of (15), the front velocity can be expressed as a function of cell
density only,

V =
∫ 0

−∞

ρ(z)(1−ρ(z))dz.

Thus, cell proliferation contributes to propulsion only in the inter-
facial layer between the (homeostatic) state ρ = 1 and the tissue
margin density ρ(z = 0). The speed of the front depends both on
the density range given by 1−ρ(0) and on the width λ of the in-
terfacial layer. For α → ∞, the former is bounded by 1, whereas
λ grows with η̃ since viscous dissipation penalizes large gradi-
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Fig. 3 Front velocity. The dimensionless velocity V (α, η̃) is plotted as
a function of the control parameter α, for several values of the
dimensionless viscosity η̃ . Values obtained for η̃ = 10−2 (blue circles)
are indistinguishable from those obtained in the inviscid limit η̃ = 0 (solid
blue line). The dashed lines represent the linear approximation close to
(α = 0,V = 0): V = α/

√
1+ η̃ , see Sec. 3.3. Inset: V (α, η̃) vs. η̃ for fixed

values of α. For small enough α (dot-dashed curve) the velocity
decreases with η̃ as captured by linear analysis (see Sec. 3.3). For
larger values of α, note the non-monotonic viscosity-dependence of the
front velocity (dashed curve) which first increases with η̃ and then
decreases after a critical value of η̃ is reached. This critical value
increases with α and ultimately, when α → ∞, the front velocity becomes
a monotonically increasing funtion of η̃ . (Online version in colour.)
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Fig. 4 Typical steady-state profiles of density, stress and velocity
along the monolayer. (Online version in colour.)

ents. As a consequence, in this limit, the front moves faster for
a larger viscosity (see Fig. 3 inset, full line). This situation is re-
mindful of the “pushed” fronts observed in the propagation of an
interface between two proliferating cell populations, where pro-
liferation in the bulk occurs over a lengthscale that grows with

tissue viscosity, propelling the interface forward36. For |α| � 1,
a perturbative calculation shows that the velocity grows with α,
and decreases with η̃ as V = α/

√
1+ η̃ (see Sec. 3.3). In this

limit of small driving, the effect of η̃ is two-fold: viscous dissipa-
tion both reduces 1−ρ(0) and decreases the slope of the interface
region, the joint effect of which is a decrease in the front velocity
(Fig. 3 inset, dotted-dashed line). In between these two limits of
large and small driving, an increase of η̃ may either increase or
decrease the velocity depending on the values of both η̃ and α

(Fig. 3 inset, dashed line).

In Fig. 4, we represent the steady-state profiles obtained by
AUTO. Density, stress and velocity profiles connect the home-
ostatic state ρ = 1, s = −α, v = 0 in the bulk to the leading
edge state ρ = ρ(0), s = 0, v = V at z = 0. For all parame-
ter values, the asymptotic density profiles decrease monotoni-
cally, whereas the velocity and stress profiles increase monoton-
ically along the monolayer, in agreement with experimental ob-
servations. Whether the tissue is under tension (σ > 0) or un-
der compression (negative tension, σ < 0) does not depend on
the sign of α but on the signs of both σh and σp. In general,
min(σh,σp)≤ σ ≤max(σh,σp), and while s is always negative, the
tissue can switch from a compressive to a tensile state at some
bulk point (or even be tensile everywhere) due to the action of
leader cells.

We checked numerically that the monotonic profiles of the cell
density, velocity and stress fields found asymptotically are stable
to perturbations by an additive noise of small amplitude. Explain-
ing the propagation of mechanical waves during two-dimensional
tissue expansion37 will therefore require additional ingredients,
among which contractility-dependent bulk motility forces are an
obvious candidate.

3.3 The small driving limit

For α � 1, the velocity of the expanding tissue can be explicitly
found as a function of α and η̃ . Performing a Taylor expansion
around the stationary state α = 0, s= 0, ρ = 1, and V = 0, we have

s = 0+ ε
1
s+o(ε) , ρ = 1+ ε

1
ρ +o(ε) ,

V = 0+ ε
1
V +o(ε) , α = 0+ ε

1
α +o(ε) ,

where ε is a small, positive parameter 0 < ε � 1, and
1
q denotes

the first-order perturbation of quantity q. Eqs. (15) then become
at first order

1
s′′ =−

1
ρ and η̃

1
s′′− 1

s =
1
ρ +

1
α

with boundary conditions

1
ρ(−∞) =

1
s′(0)−

1
V =

1
s′(−∞) =

1
s(0) = 0 .

Combining the first and second equation we obtain the second
order differential equation

(η̃ +1)
1
s′′− 1

s =
1
α
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for the reduced stress field s to first order. Using boundary condi-

tions on
1
s we obtain

1
s =

1
α

(
e

z√
1+η̃ −1

)
and

1
ρ =−

1
α

e
z√

1+η̃

1+ η̃
.

Spatial variations of velocity field, the stress field and the cell
number density decay away from the front over a characteristic
length

∆z =
√

1+ η̃ .

Since we expect η̃ ' 10−2, the size of this boundary layer is given
by the unit of length, of the order of

√
Eτd/ξ ≈ 30 µm.

Of the two remaining boundary conditions, one is automati-
cally satisfied while the last one provides the velocity,

V =
α√

1+ η̃
. (16)

This expansion for α � 1 can be made at all orders following the
same procedure, defining an alternative way to analytically con-
struct V (α, η̃). We note that the linear approximation becomes
accurate over a wider range of α as η̃ increases, see Fig. 3.

4 The inviscid limit

In this section, we consider the inviscid limit of (10-11) which
corresponds to η̃→ 0 and is more amenable to analysis. This limit
can be viewed as the limit where the effective viscosity due to cell
division Eτd dominates the bulk hydrodynamic viscosity of the
tissue, see Eq. (14). Plugging s =− logρ−α (see (11)) into (10)
we obtain the following parabolic reaction-diffusion equation for
the cell density field ρ,

∂tρ = ∂xxρ +ρ (1−ρ) , (17)

using dimensionless quantities. When defined over the real axis,
and for initial conditions decaying faster than exponentially, the
Fisher-Kolmogorov equation (17) admits a traveling wave solu-
tion between the fixed points limx→−∞ ρ = 1 and limx→+∞ ρ = 0
with a velocity VFK = 25,38,39. This equation is a classical model of
collective cell migration into empty space, originally introduced
to describe the kinematics of wound healing assays40,41 by com-
bining the effects of cell diffusion and cell proliferation, yet with-
out reference to mechanical aspects. Based on measurements of
the front velocity and of the cell density profile, good agreement
has been found with predictions of the Fisher-Kolmogorov equa-
tions for a variety of wound healing assays6,7,42–46. However, the
smooth spatial variation of Fisher-Kolmogorov traveling waves is
often hard to reconcile with the steepness of the cell density pro-
file observed close to the leading edge46. This point has led to the
study of a sharp-front Fisher-Kolmogorov equation, where the dif-
fusion coefficient is a linear function of the cell density and van-
ishes when ρ = 06,44,47.

Here, cell monolayer expansion corresponds to the associated
free boundary problem posed on x ∈ [0,L(t)] with the boundary

conditions

∂xρ(0, t) = 0 , (18a)

ρ(L(t), t) = e−α , (18b)

∂xρ(L(t), t) =−L̇(t)e−α . (18c)

Condition (18b) reflects the fact that the front is always sharp,
with a finite density that follows from Eq. (7), and diffusion has
a purely mechanical origin, distinct from the random motion of
single cells within the tissue. Traveling wave solutions are known
to exist for the problem (17-18) on the semi-axis (−∞,L(t)]27 and
the result of Fisher-Kolmogorov is recovered in the limit of strong
active driving α → ∞.

Indeed, taking the limit in the Dirichlet boundary condition,
Eq. (17) is supplemented with

ρ(L(t), t) = 0 ,

∂xρ(L(t), t) = 0 , and ∂xρ(0, t) = 0 .

This problem belongs to the class of models studied in48, where
it is shown that regardless of initial conditions, linear expansion
occurs. Further, Proposition 2.2 of48 shows that the asymptotic
velocity is

L̇(t)−→
t→∞

VFK = 2

in agreement with the Fisher-Kolmogorov result. We emphasize
again that this limit of strong driving is unphysical.

As in the viscous case, the dependence of the front velocity V
on the active driving α for the problem defined by Eqs. (17-18)
is obtained numerically with the AUTO software35, see Fig. 3.
The asymptotic front velocity V (α) is a monotonically increasing
function interpolating between V (0) = 0 and V (∞) = 2. A simple
approximation giving the correct velocities and slopes at both α =

0 and α = ∞ is the function Vapprox(α) = 2
(

1− e−α/2
)
. As seen

in Fig. 3, the velocity curve V (α, η̃) for a realistic viscosity η̃ =

10−2 is almost indistinguishable from V (α,0), consistent with our
above reasoning (Sec. 2.1) that viscous stresses are expected to
be negligible.

In dimensional form, the front velocity is thus given by

V =

√
E

ξ τd
V
(

σp

E
+ log

ρd

ρe

)
(19)

where the function V is the dimensionless velocity computed nu-
merically and drawn on Fig. 3.

We also show the asymptotic profiles for different values of α,
see Fig. 4, top row. One can see that they display a boundary
layer whose spatial extension ∆x may be simply estimated in the
following way,

V (α) =−
(

1
ρ

∆ρ

∆x

)∣∣∣
L
' 1− e−α

e−α ∆x
,

or ∆x' (eα −1)/V (α). When 0 < α � 1, in agreement with (3.3)
we recover ∆x = 1. When α � 1, ∆x→ ∞ since the transition be-
tween the values ρ = 1 and ρ = 0 may be located anywhere. Note
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however that the moving interface associated with the Fisher-
Kolmogorov solution, where this transition occurs, still has a fi-
nite width of O(1).

5 Possible effects of pharmacological per-
turbations

For simplicity and as suggested by experimental data, we consider
in this section only the inviscid limit, and discuss successively
the inhibition of cell division (Sec. 5.1), of actin polymerization
(Sec. 5.2), and of contractility (Sec. 5.3). In each case, Eq. (19)
allows in principle to predict the response of the front velocity
to pharmacological perturbations with drugs known to affect the
cell cycle, the actomyosin cytoskeleton and/or to interfere with
cell motility.

5.1 Blocking cell proliferation

When kd = 0, the cell number density becomes a conserved quan-
tity and the dimensional problem reads

∂tρ−
E
ξ

∂xxρ = 0 ,

ρ(L(t), t) = ρe e−
σp
E , ∂xρ(0, t) = 0 ,

L̇ =− E
ξ ρe

e
σp
E ∂xρ(L(t), t) .

with an initial density profile ρ(x, t = 0) = ρ0(x), x ∈ [0,L0]. This is
a classical Stefan problem for which (see Chap. 18 of49) the front
will stop at the distance

Lstop = e
σp
E

∫ L0

0

ρ0(x)
ρe

dx , (20)

which as expected increases with σp. When cell division is
blocked by mitomycin during the collective migration of epithe-
lial cells along cylindrical rods2, cells in the bulk stop moving, and
monolayer expansion becomes confined to the front rows, where
cells are stretched. In addition, collective cell migration has been
observed to stop at a finite distance in the absence of cell division
in a two-dimensional scratch wound healing assay (see25, where
a finite Lstop was predicted on the basis of a Lagrangian descrip-
tion). Both observations are in qualitative agreement with our
model. However, whether the distance predicted by Eq. (20) is
correct has not been tested quantitatively.

5.2 Inhibiting actin polymerization

Inhibitors of actin polymerization are expected to lower σp, and
thus to lead to a lower front velocity through the decrease of α,
assuming all other parameters to be unchanged. This was indeed
observed experimentally on cylindrical wires of radius 10 µm us-
ing the Rac inhibitor NSC237662.

5.3 Inhibiting contractility

Contractility may be taken into account explicitly in the model
through an additive, constant active stress σA > 0 in the constitu-
tive equation: σ =−E log(ρ/ρe)+η∂xv+σA. Up to the definition

Fig. 5 Dimensional front velocity V vs. effective elastic modulus
E/σp, for parameter values σh = 0, τd = 104 s 12, σp = 103 Pa,
σp/ξ = 0.1 µm2s−1 4.

of a modified protrusive stress σp → σ̃p = σp−σA, the problem
is unchanged. Again assuming all other parameters to be unaf-
fected, inhibiting tissue contractility decreases σA, increases σ̃p,
and therefore increases α. This simple argument suggests that
inhibiting contractility would lead to a higher front velocity.

However, inhibitors of contractility may also modify tissue me-
chanics through indirect (or non-linear) effects on parameters
other than σA. In4, some among us conjectured that inhibiting
the Rho pathway with C3-transferase may also increase the fric-
tion coefficient ξ , due to alterations of the density and turn-over
of cell-substrate adhesions. Here, the same effect would lead to a
lower front velocity according to Eq. (19).

Further, we expect contractility inhibition to decrease the tis-
sue elastic modulus, as blebbistatin treatment is known to soften
cells50,51. In Fig. 5, we plot the velocity V of the moving front
as a function of E/σp, as obtained from Eq. (19), in the particu-
lar case ρd = ρe, i.e. σh = 0. Strikingly, the curve V (E/σp) is not
monotonic: a decrease of the tissue stiffness can result in either
an increase or a decrease of the front velocity. Thus, the actual
change of the front velocity may depend on the amplitude of the
effect of contractility inhibition on the elastic modulus. Physically,
this is due to the fact that in a softer material, growth generates
less elastic stress pushing the free boundary but also resists less
the pull generated by protrusive forces.

Together, we find that pharmacological inhibition of tissue con-
tractility may therefore have an increasing or a decreasing effect
on the front velocity depending on the concentration of the drug
and on the respective amplitude of its impact on various physical
parameters of the problem. Experimentally1,2, blebbistatin treat-
ment slows down the moving front in the case of narrow channels
and fibers, whereas the effect is opposite for wider substrates.

Finally, let us emphasize that the possible effects of inhibitors
have been inferred from known variations of the parameters σp,
σA, ξ and E. To our knowledge, possible effects on the parame-
ters τd and σh have not been studied and may modify our conclu-
sions.

6 Conclusion
A simple description of a cell monolayer as a one-dimensional,
proliferating, viscoelastic material allows to reproduce qualita-
tively a number of experimental observations pertaining to the
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expansion of epithelial monolayers in a laterally confined geom-
etry1,2: the displacement of the leading edge is linear in time;
its velocity is of the order of 10 µmh−1; the cell number density
decreases while the velocity increases monotonically towards the
moving front.

The active control parameter combines two mechanisms: pro-
trusive forces generated by active crawling at the leading edge,
and the mechanical effect of bulk cell proliferation. In the limit
of small driving, an analytical solution predicts exponential re-
laxation of the density, velocity and stress profiles over a short
boundary layer. In the limit of strong driving and zero viscos-
ity, we recover the Fisher-Kolmogorov equation, a classical model
of collective cell migration combining cell diffusion and prolif-
eration. In this context, the diffusion coefficient receives a me-
chanical interpretation as the ratio of elastic modulus over tissue-
substrate friction coefficient. In the case of strongly cohesive tis-
sues, such as epithelial or endothelial monolayers, the cell density
gradient is steep at the front. Indeed our description postulates
a finite cell density at the free boundary, due to the presence of
actively migrating leader cells. The Fisher-Kolmogorov approach
predicts a smooth cell density gradient, and may thus better fit
the expansion of high-density assemblies of mesenchymal cells,
where cohesive forces are low and single cell diffusion contributes
to the collective behavior.

Our one-dimensional model may also describe some aspects
of the expansion of two-dimensional monolayers52,53, provided
that translational invariance in the direction orthogonal to front
spreading is a reasonable approximation, in a statistical sense,
thus allowing for averaging. Indeed similar one-dimensional
models have been used to describe aspects of two-dimensional tis-
sue expansion6,7,25,26,46. While a proper tensorial generalization
remains highly desirable, this suggests that shear components
may be neglected to first order when describing the mechanics
of cell monolayers.

The model depends on two dimensionless parameters, the ac-
tive driving α and the viscosity η̃ . Although we provide an order
of magnitude estimate for η̃ = 10−2, its relevance remains to be
tested quantitatively since it builds on measurements performed
on different geometries, sometimes with different cell types. Ide-
ally, one would like to fit the model to experimental data, per-
haps using velocity and cell density profiles to estimate model pa-
rameters. Given a linear relationship between proliferation rate
and cell density, we used the framework of non-equilibrium linear
thermodynamics and several simplifying, yet reasonable assump-
tions to predict that the tissue pressure should depend logarith-
mically on the cell density. This prediction may be tested experi-
mentally, since the internal stress field can be obtained exactly in
one spatial dimension from traction force microscopy53. As cell
density increases in time, the same data may allow to estimate
the critical value ρe where tissue pressure changes sign.

We deliberately selected the minimal set of mechanical ingre-
dients conducive to a constant velocity of tissue expansion, and
thereby neglected, among other ingredients, bulk cell motility,
cell polarity, nonlinear tissue-substrate friction, or chemotaxis. It
is our hope that appropriate modifications may make this work
relevant to the modeling of in vivo collective cell migration54, of

which paradigmatic examples are the formation of the lateral line
primordium55,56, or neural crest cells migration57.
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A Evolution equation for arbitrary cell-
division rate and elastic stress functions

The above results are obtained for a specific form of the net cell
division rate kd(ρ), and an associated constitutive relation for the
elastic stress that follows from non-equilibrium linear thermody-
namics. For the sake of completeness, we give here the general
evolution equations for the cell layer for arbitrary kd and elastic
stress σe = −Ese(ρ), with the sole constraints that they decrease
monotonically with the density, dkd/dρ < 0, dσe/dρ < 0, and van-
ish at finite values of the density. We show that once these func-
tions are fixed, the evolution still depends on only two param-
eters, namely the active driving α and the effective viscosity η̃

identified above.

In the general case, the governing equations read

∂tρ +∂x(ρv) = kd(ρ)ρ ,

∂xσ = ξ v ,

σ =−Ese(ρ)+η∂xv ,

(21)

respectively expressing cell number balance, force balance and
the constitutive relation for the stress. They are supplemented
with the boundary conditions

v(0) = 0 , v(L) = L̇ , σ(L) = σp .

To simplify the notation in what follows, we introduce the fol-
lowing (by now familiar) conventions:

ρd ≡ k−1
d (0) ,

ρe ≡ s−1
e (0) ,

σh ≡−Ese(ρd) .

We furthermore define two auxiliary functions for the cell division
rate and the elastic stress relative to the homeostatic density, or
carrying capacity, of the tissue:

κ(x)≡ kd(xρd) ,

s̄e(x)≡ se(xρd)− se(ρd) .

Non-dimensionalizing with the units

t∗ = 1/ lim
x→0

κ(x) , l∗ =
√

Et∗/ξ , ρ
∗ = ρd

for time, length, and cell number density, respectively, and using

Journal Name, [year], [vol.],1–11 | 9

Page 9 of 13 Soft Matter



the previously introduced reduced stress

s =
σ −σp

E
,

we can then recast Eqs. (21) in the simpler form

∂ρ

∂ t
+

∂

∂x

(
ρ

∂

∂x
s
)
= k̄d(ρ)ρ ,

η̃
∂ 2s
∂x2 − s = s̄e(ρ)+α ,

(22)

where k̄d(ρ) = κ(ρ)/limx→0 κ(x). The boundary conditions corre-
spondingly become

∂xs(0) = 0 , ∂xs(L) = L̇ , s(L) = 0 .

As in the specific case discussed in the main manuscript, for any
given functions kd and f the dynamics depends only on two di-
mensionless parameters given by

α =
σp−σh

E
, η̃ =

η

Et∗
.

Stationarity of (22) requires ρ = 1, s = −α, and can only be at-
tained for α = 0 when taking the boundary condition on s into
account.

We checked numerically that linear expansion is also observed
for several plausible choices of the function se(ρ) (see27 for a
proof in the inviscid limit). The curve V (α, η̃) depends quantita-
tively on the precise form of the equation of state.

B Numerical resolution of the free bound-
ary, viscous problem

B.1 Scaled variables

For the numerical resolution, in order to write boundary condi-
tions at a fixed position in space, we prefer the scaled coordinate

y =
x

L(t)
. (23)

and denote the new unknown functions σ̂(y, t) = σ [L(t)y, t] and
ρ̂(y, t) = L(t)ρ[L(t)y, t]. Eq. (1) becomes

∂ ρ̂

∂ t
+

1
L

∂

∂y
(v̂ρ̂) = ρ̂

(
1− ρ̂

L

)
(24)

where the velocity field relative to the leading edge velocity can
be expressed through the momentum conservation equation

1
L

∂ ŝ
∂y
− yL̇ = v̂ (25)

Using (25), the constitutive equation (11) becomes

η̃

L2
∂ 2ŝ
∂y2 − ŝ = log(

ρ̂

L
)+α (26)

Accordingly, the boundary conditions (12) become

v̂(y = 0, t) = 0 (27a)

v̂(y = 1, t) = 0 (27b)

ŝ(y = 1, t) = 0 (27c)

B.2 Numerical implementation

The numerical scheme used to solve the Cauchy problem Eqs. (24-
27) is based on the finite volume method58 in order to strictly
conserve mass and handle very localized states without spurious
oscillations.

Two regularly-spaced grids on the same interval [0,1], denoted
Z and Zd for its dual, are considered in parallel. An initial condi-
tion on ρ̂ being given on Z, (26) is solved using boundary condi-
tions (27a) and (27c) and the effective drift term v̂ is computed
on Zd using relation (25). We then apply an upwind finite volume
scheme to (24) using the no flux boundary conditions (27a) and
(27b). This allows the computation of the updated concentration
profile ρ̂ on Z which gives in turn the new initial data used for
the next time step. The same procedure is then repeated. The
time interval for each time step is adapted so that the Courant-
Friedrichs-Lewy condition is uniformly satisfied on Zd

58.
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Motivated by recent experiments on the expansion of highly cohesive cell 

sheets, our model of collective cell migration in one spatial dimension

shows that constant front velocity results from the combined mechanical 

effects of bulk cell proliferation and front lamellipodial activity.
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reservoir tissue track
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