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2.3 Atomistic model and RMD

The atomistic model used in molecular dynamics (MD) simu-

lations consists of a Lennard-Jones (LJ) fluid, defined by the

pair interaction potential VLJ(r) = 4ε[(σ/r)12 − (σ/r)6], where ε

and σ are the LJ energy and length scales, respectively, and r

is the inter atomic distance between two fluid particles. The

solid walls (Fig. 2b) are also made of LJ atoms; the lower wall

is characterized by a T-shaped nanocavity (Fig. 2). Solid and

fluid atoms interact via a modified version of the LJ potential:

V (r) = 4ε[(σ/r)12 − c(σ/r)6]. The coefficient c multiplying the

repulsive part of V (r) is used to tune the chemistry of the sur-

face. The two LJ potentials completely define the interactions

used in the atomistic system. The results coming from the MD

simulations can be expressed in reduced units21, for example the

reduced distance is defined as r∗ = r/σ , the reduced pressure as

P∗ = Pσ3/ε and the reduced temperature as T ∗ = kBT/ε. From

now on the superscript ∗, denoting dimensionless quantities, will

be omitted. Two surface chemistries are considered in this work:

a hydrophobic one (c = 0.6) with a Young contact angle θY = 110◦

and a hydrophilic one (c = 0.8) with θY = 55◦. Further details on

the choice of the coefficient c and on the calculation of the contact

angle are found in Ref. 5.

The atoms of the lower solid wall are kept fixed at their initial

positions forming an fcc lattice. The upper solid wall, instead,

is used as a piston to control the pressure Pl of the liquid phase.

This is achieved by applying to each particle belonging to the up-

per wall a constant force in the y direction (for details see Ref. 22

and the ESI). A velocity Verlet scheme is used for the time evolu-

tion of the upper solid wall. The temperature of the liquid is kept

fixed at T = 0.8 via the Nosé-Hoover chain thermostat23. The liq-

uid temperature T , together with the liquid pressure Pl , sets the

thermodynamic conditions of the system. The cavity dimensions

are specified in Fig. 2, with characteristic length being w ≃ 13.

The system extends for 7σ in the z direction. Periodic bound-

ary conditions are applied in the x and z direction. The position

of the upper wall fluctuates along the y direction to enforce the

required pressure, implying that the height of the computational

box changes in time. In the simulation campaign we explore a

range of positive and negative liquid pressures, in the interval

−0.08 ≤ Pl ≤ 0.16.

As anticipated before, the occurrence of rare events implies that

MD trajectories are trapped in the high probability regions of the

phase space, the metastable states, and transitions between these

regions happen on a very long timescale as compared to that ac-

cessible to MD simulations24. A convenient description of the

system is given in terms of the collective variables φi(r), which

depend on the microscopic state of the system r = {r1, ...,rN}.

For the system in Fig. 2b the simplest choice is a single collec-

tive variable counting the number of particles inside the T-shaped

nano cavity (yellow rectangle)25. This is a natural choice which

can be directly related to the volume Vv of the vapor domain em-

ployed in the continuum approach in Section 2.2. Relevant in-

formation about the process can be extracted by computing the

probability that the observable φ(r) assumes a given value Ncav,

p(Pl ,T ;φ(r) = Ncav), which depends also on the thermodynamic

conditions Pl and T . From p(Pl ,T ;Ncav) (where the dependence

on φ(r) is omitted) we define the Landau free energy:

Ω(Pl ,T ;Ncav) =−kBT ln p(Pl ,T ;Ncav) . (6)

The microscopic expression above for the free energy can be com-

pared with the macroscopic grand potential profile Ω(µ,V,T ;Ncav)

found via CREaM (see below).

Here Ω(Pl ,T ;Ncav) is computed via the Restrained MD

method10 (RMD), which amounts to adding a biasing potential

of the form Vbias(r) = k(φ(r)−Ncav)
2/2 to the physical one. This

harmonic-like potential, for suitable values of the spring constant

k, restrains the system close to φ(r) = Ncav, forcing it to explore

also regions of the phase space with low probability which are

otherwise unaccessible to brute force simulations. Further de-

tails are found in reviews on rare event methods16,26; in brief,

via RMD it is possible to evaluate the gradient of Ω(Pl ,T ;Ncav)

according to:

dΩ(Pl ,T ;Ncav)

dNcav
= 〈k(φ(r)−Ncav)〉bias , (7)

where 〈...〉bias represents the average computed over the biased

ensemble. In practice the right hand side of eqn (7) is computed

as the time average over a biased MD simulation. Each restrained

simulation starts from an initial configuration chosen in the Cassie

basin. The system is driven away from the Cassie state by pro-

gressively changing the value of Ncav until the desired condition

φ(r) = Ncav is reached. After a standard equilibration phase the

statistics for the average in eqn (7) is collected. The spring con-

stant is chosen to be k = 0.2 which guarantees an accurate estima-

tion of eqn (7). Summing up, in order to evaluate the free-energy

profile Ω(Pl ,T ;Ncav), the free-energy gradient (eqn (7)) is com-

puted on a set of equidistant points Ncav,i via independent RMD

simulations so that the full profile can be reconstructed using a

simple numerical integration:

Ω(Pl ,T ;Ncav,M) = Ω0 +
M

∑
i=0

dΩ(Pl ,T ;Ncav)

dNcav

∣

∣

∣

∣

Ncav=Ncav,i

∆Ncav , (8)

where Ω0 is the free energy computed at Ncav,0 and ∆Ncav =

Ncav,i+1 −Ncav,i = 130 is the fixed difference in Ncav between suc-

cessive RMD points.

The MD engine used in these simulations is the open source

code LAMMPS27. The biasing force is computed using the rare

events plugin PLUMED28 which can be interfaced with LAMMPS.

2.4 A simple two-dimensional example: the Müller potential

The Müller potential30 reported in Fig. 3a is a two dimensional

potential which is useful to illustrate rare events on rough free-

energy landscape, see, e.g., E et al. 31. The Müller potential is

characterized by three (meta)stable states, labeled α, β , and γ in

Fig. 3a.

Consider the case in which in order to describe the transition

from α to γ only one variable is known (or can be observed), say

the x variable in Fig. 3; this is by construction an approximation

since the Müller potential is two dimensional. In this section we
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Fig. 3 a) Color plot and isolines for the Müller potential (arbitrary units; red corresponds to low values, while violet to large ones). α, β and γ are the

minima of the potential. The blue and green points are the constrained minima along the line x = const. The black dashed curve is the actual transition

pathway connecting the free-energy minima (taken from Ref. 29). b) Free-energy profile computed along the constrained minima (blue and green

lines), and along the minimum energy pathway (dashed black line). c) Müller potential computed along the line x = 0.7 (grey line in panel a), showing

two minima and the free-energy barrier separating them.

will try to clarify which are the approximations introduced with

this reduced set of variables. Applying CREaM in one variable to

Müller potential amounts to perform a constrained minimization

on the line x = const. This procedure yields the set of minima at

a fixed x, see, e.g., the blue and green points in Fig. 3a. This set

of points is then used to construct a candidate transition pathway

connecting the two minima, which is formed by piecewise smooth

branches roughly corresponding to the bottom of the valleys of

the potential. Finally, the value of the potential computed along

the pathways yields the free-energy profile reported in Fig. 3b

with solid lines.

A similar result would be obtained by applying an RMD pro-

cedure to the same problem, provided that the MD trajectory

remains confined to a “valley”. Indeed, the main difference be-

tween CREaM and RMD, even when the same variable is used to

describe the system, is the fact that atomistic trajectories are af-

fected by thermal motion. Thanks to thermal fluctuations of the

order of kBT MD can escape from shallow minima. For the Müller

potential, depending on temperature, thermal fluctuations could

overcome the orthogonal barriers shown in Fig. 3c, leading to a

more effective sampling of the phase space.

Figures 3a and 3b show that the cusps in the free-energy pro-

files are a symptom of the presence of two neighboring valleys.

Around the cusp, the reduced description of the phase space via

the variable x is insufficient. In RMD, due to the integration (8),

even smooth free-energy profiles can hide jumps between valleys

(see, e.g., Fig. 6) which become evident only by considering ad-

ditional observables (e.g., y for the Müller potential).

In this two dimensional example the exact transition pathway

connecting the metastable states α and γ can be computed29

(black dashed line in Fig. 3a). In Figure 3b the free energy along

the actual transition pathway is computed and projected on the x

axis for comparison with the CREaM approximation. As shown in

Fig. 3a, CREaM or RMD solutions are close to the exact transition

pathway when the “valleys” are deep. The two descriptions dif-

fer appreciably only near the transition state, where the reduced

description in terms of x apparently breaks down. However, the

location of the metastable states and the barriers separating them

are similar.

Although the Cassie-Wenzel transition and cavitation are intrin-

sically high-dimensional problems, a recent work32 has shown

that the scenario of a free-energy landscape with deep valleys il-

lustrated in the example above also applies to capillary problems

similar to the present. In other words the approximation in terms

of a single collective variable is generally viable, except in the

vicinity of jumps between neighboring valleys.

3 Results and discussion

3.1 Matching of continuum and atomistic parameters

The continuum free energy defined in eqn (3) depends on few

thermodynamic parameters and material properties which need

to be specified in order to match the atomistic results: ∆P, γlv,

and θY in addition to the geometrical dimensions of the system.

Equation (3) describes a system at constant chemical potential

µ, temperature T , and total volume V . In particular the depen-

dence of the free energy on T and µ is via the equation of state

∆P(µ,T ). Thus, fixing the chemical potential and the temperature

is equivalent to fixing ∆P. In the atomistic simulations the system

is characterized by a constant temperature T and a constant pres-

sure Pl in the bulk liquid. In addition, since the pressure Pv of

the vapor phase depends primarily on T , fixing the temperature

is equivalent to fixing Pv. Hence ∆P = Pl −Pv is constant in the MD

simulations; in practice, ∆P is measured in simulations (for more

details see the ESI) and is set as input parameter for the macro-

scopic model. Two other physical parameters must be provided,

i.e., the liquid-vapor surface tension γlv and the Young contact

angle θY . The surface tension is γlv = 0.57±0.02 as estimated via

equilibrium simulations of liquid-vapor slabs (see ESI for details).

From the simulations γlv is found to be independent of the size of

the liquid-vapor interface up to the investigated scale. Finally the

Young contact angle is computed following the same procedure

of Ref. 5, which yields θY = 55◦ and θY = 110◦ for the hydrophilic

and the hydrophobic chemistry, respectively. Cavity dimensions

are the same for both chemistries (see Fig. 2).

Having fixed the thermodynamic and material parameters, we

need to find a relation connecting the atomistic collective variable

Ncav and the corresponding order parameter V̄v used in CREaM.

These two variables can be related using the so-called sharp kink
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Fig. 4 Free-energy profiles for the hydrophobic (a) and hydrophilic (b) chemistries. The atomistic free energy is plotted with a red dash-dotted line.

The free energy computed via CREaM (eqn (5)) is the solid line, with each color representing a different configuration of the liquid-vapor interface.

Such configurations are illustrated in the top and bottom strips for the hydrophobic and hydrophilic cases, respectively. The color of the rectangle

enclosing each configuration corresponds to the branch of the same color in the CREaM free-energy profile. The insets show the atomistic average

density field computed in RMD simulations, with the arrows indicating the corresponding V̄v.

6 | 1–11

Page 6 of 12Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



approximation according to which the bulk properties of the liq-

uid and vapor phases are extended up to the interface. With this

approximation, the total number of particles Ncav in the control

volume is simply given by Ncav = ρlVl +ρvV̄v, where ρl and ρv are

the bulk density of the liquid and of the vapor phases, respectively.

Considering that the total control volume V is fixed, V = V̄v +Vl ,

we can write Ncav = (ρv −ρl)V̄v + const. Here the constant is cho-

sen such that V̄v coincides for the atomistic and continuum cases

at ∆P = 0 (see Fig. 4). Finally, in all the figures V̄v is normal-

ized with the volume Vre f of the T-shaped micro structure, which

serves as a reference.

3.2 Free-energy profiles

The free-energy profiles at ∆P ≃ 0 are reported in Figs. 4a and

4b for the hydrophobic and hydrophilic case, respectively. The

CREaM solutions are plotted with solid lines, each color encoding

a different family of vapor domains. The top and bottom rows of

Fig. 4 show the corresponding shapes of the vapor bubble for the

hydrophobic and hydrophilic cases, respectively. It is seen that

at fixed Vv several CREaM solutions are possible; for visual clar-

ity only those with lowest free energy are shown in Fig. 4. Both

atomistic and continuum free-energy profiles show two minima

for hydrophilic and hydrophobic chemistries. The minimum at

V̄v ≃ 0 corresponds to the Wenzel state; while the minimum with

V̄v close to unity is the Cassie state. The shape of the meniscus in

the Cassie state is predicted by macroscopic capillarity theory: at

∆P≃ 0, the equilibrium condition, eqn (4a), renders an infinite ra-

dius of curvature which corresponds to a flat interface. This con-

dition must hold together with the appropriate boundary condi-

tion. Thus an equilibrium Cassie state can be obtained only when

the liquid-vapor interface is pinned at the corner of the T-structure

and the angle β can take the value β = π/2. According to Gibbs

criterion explained in Section 2.2, this condition is attained at the

outer corner for the hydrophobic chemistry (V̄v =Vre f ) and at the

inner corner for the hydrophilic one (V̄v = 0.75Vre f ).

In CREaM profiles, the macroscopic Wenzel state is attained by

construction at V̄v = 0 while the MD profiles have slightly different

values. This discrepancy is due to the liquid density depletion

near the solid wall in the nano structure33. This depletion layer

is not taken into account in the sharp interface approximation

used to relate Ncav and V̄v. Its thickness depends on the chemistry

of the surface and on the liquid pressure, with the larger values

corresponding to the hydrophobic solid and to low pressures; this

explains why the Wenzel state for the hydrophilic chemistry is

closer to V̄v = 0.

In the following discussion, in order to make a quantitative

comparison between the microscopic and macroscopic descrip-

tion of the Cassie-Wenzel transition and of cavitation, we divide

the free-energy profile in three regions

• V̄v ≥ 0.7Vre f which is relevant to the cavitation regime;

• 0.1Vre f ≤ V̄v ≤ 0.7Vre f which includes the configurations ex-

plored in the Cassie-Wenzel transition;

• V̄v ≤ 0.1Vre f which corresponds to the Wenzel basin.

In the first region, the free-energy barriers and the critical vol-

umes are compared for atomistic and macroscopic models. Only

the hydrophilic chemistry is considered, since the critical bubbles

for the hydrophobic case are too large (in the x-direction, see e.g.

inset of Fig. 4a for Vv > 1) for the definition of the collective vari-

able given in Fig. 2. In the second region, atomistic and macro-

scopic Cassie-Wenzel transition pathways are compared. Finally,

in the third region, the behavior of the two models near the Wen-

zel state is analyzed.

3.3 Cavitation

At negative pressures ∆P < 0 the free-energy profiles show a max-

imum for V̄v ≥Vre f which corresponds to a critical cavitation bub-

ble of volume V cr
v (∆P) (inset of Fig. 5a). The ensuing free-energy

barrier ∆Ω
†
Cv separates the Cassie state from the thermodynam-

ically stable vapor state. This barrier, as stated before, dictates

the kinetics of cavitation via eqn (1). Figure 5a reports ∆Ω
†
Cv

as a function of ∆P for the atomistic simulations (red symbols)

and for CREaM (black solid line). For the simple cavitation path-

ways shown in Fig. 4, the findings of CREaM coincide with the

classical nucleation theory (CNT)34. The trend shows that the

atomistic barrier is always less than the macroscopic one. These

findings are in agreement with previous simulation studies35,36

which predict that CNT overestimates the height of the barrier

for the case of homogeneous nucleation. The pressure at which

∆Ω
†
Cv disappears is designated as spinodal pressure for the Cassie-

vapor transition, PCv
sp ; the atomistic value for PCv

sp is less than the

macroscopic counterpart.

The volume V cr
v of the critical bubble is reported in Fig. 5b as

a function of ∆P. For CREaM, the critical volume (solid lines) is

dictated by Laplace law eqn (4a), which, in two-dimensions, gives

Rc = γlv/∆P with Rc the radius of curvature of the critical bubble.

The critical volume V cr
v can be easily computed from Rc. There

are two possible configurations for the critical bubble. For largely

negative pressures the critical bubble is pinned at the outer corner

of the T-shaped structure (blue line in Fig. 5b). For moderately

negative pressures, the critical bubble meets the solid wall with

the Young contact angle (green line in Fig. 5b). The atomistic crit-

ical volume (red symbols in Fig. 5b) are in fair agreement with the

macroscopic ones at moderately negative pressures for which the

critical bubble is not pinned. In conclusion, the Laplace equation

predicts rather accurately V cr
v at the nano scale and over a broad

range of pressures.

3.4 Pathways for the Cassie-Wenzel transition

Figure 6 reports the free-energy profile and the Cassie-Wenzel

transition pathway on a hydrophobic cavity for the atomistic (red

dash-dotted lines) and the macroscopic approaches (inset). The

initial conditions for these RMD simulations are in the Cassie state

as for the profiles in Fig. 4.

Both RMD and CREaM free-energy profiles show cusps, which

are signatures of the transition between orthogonal shallow val-

leys as discussed in the model potential of Section 2.4. The first

cusp, near the Wenzel state, is discussed in detail in the next sub-

section. The second cusp, at V̄v ≃ 0.65Vre f in the red RMD profile,
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Fig. 5 a) Atomistic (red symbols) and continuum (black line) free-energy barriers for cavitation as a function of ∆P computed for the hydrophilic

surface. The definition of the Cassie-vapor free-energy barrier ∆Ω
†
Cv is reported in the inset, showing a detail of the atomistic and continuum

free-energy profiles for a representative negative pressure. b) Critical volumes computed via atomistic (red symbols) and continuum (solid lines)

approaches as a function of ∆P. Two different configurations of the critical bubble exist: a pinned bubble (blue line and related inset) and a depinned

one nucleating on the flat solid surface (green line and related inset).

corresponds to the transition between an interface pinned at the

inner corner (right branch) and one with the liquid touching the

cavity bottom (left branch, see the lower strip in Fig. 6).

As the liquid touches the bottom, the atomistic transition path-

way switches between two different configurations: a symmetric

one, with two vapor bubbles in the arms of the T-structure and

an asymmetric one, with a vapor bubble in only one arm. In the

macroscopic profile these two states correspond to different so-

lutions of the CREaM equations (5). The occurrence of this mor-

phological transition in RMD can be explained as a thermally acti-

vated jump between two shallow valleys, as illustrated in Fig. 3c.

In other words, there is a free-energy barrier in the subspace or-

thogonal to that spanned by the collective variable Ncav which in

RMD is overcome by thermal fluctuations. Clearly, the atomistic

description cannot follow each single branch separately because

the orthogonal free-energy barriers are of the order of kBT . On

the opposite, the macroscopic model is capable of following more

branches but is unable to jump between any two of them and to

evaluate the orthogonal free-energy barriers. The jump occurring

in the atomistic simulations, identified by a star in Fig. 6, cannot

be detected simply by looking at the free-energy profile, which is

smooth (no cusps). However, the jump is easily revealed by exam-

ining the corresponding density fields along the transition path-

ways. The observed abrupt change of configuration corresponds

to a jump between the two valleys identified by CREaM, shown by

the orange dashed arrow between the dark and light green pro-

files in Fig. 6. These two branches share, at least in CREaM, the

same free-energy gradient. Based on the observed agreement be-

tween the atomistic and macroscopic results, the same mean force

is expected in eqn (7) irrespective of which of the two branches

is visited by the dynamics. In this way the morphological tran-

sition is concealed by the thermodynamic integration used to re-

construct the RMD profile (eqn (8)). The macroscopic expression

for the free energy, instead, is capable of distinguishing the (abso-

lute, with no undetermined integration constant) free energy of

the two branches revealing that the single bubble configuration is

energetically favored.

A second atomistic pathway is reported in Fig. 6, which is gen-

erated by choosing the initial condition for the RMD simulations

in the Wenzel basin (blue dash-dotted line). It is seen that the

pathway selected by these initial conditions is different from the

one started from Cassie. In particular, the system dynamics can-

not explore the valley corresponding to two “symmetric” menisci

because this is at higher free energy by ca. 20 kBT (see the or-

ange arrow for CREaM calculation). Thus the system is stuck

in asymmetric configurations of the meniscus, which first pins

at the lower corner of the re-entrant mouth and eventually de-

taches from it (top strip). This result confirms that the free-energy

landscape is extremely complex and suggests that for the Cassie-

Wenzel transition and for cavitation two different pathways can

be followed. In order to confirm this insight, more sophisticated

techniques should be used, such as the string method in collective

variables37.

Similar arguments apply also to the system with hydrophilic

chemistry. However in this case the number of alternatives valleys

is very large (see Fig. 4b and ESI), making a detailed analysis like

the one reported for the hydrophobic case very cumbersome.

3.5 Wenzel state

Looking at the free-energy profiles in Fig. 4 it appears that, for

both chemistries, atomistic and macroscopic models have quali-

tatively different behaviors close to the Wenzel basin: the concave

atomistic free energy can be roughly described as a parabola with

an upward concavity in contrast with the macroscopic one which

has opposite curvature. Strictly speaking, the parabolic approxi-

mation is valid only around the Wenzel minimum at ∆P = 0; for

larger V̄v, deviations from parabolicity, the so-called fat tails39,

cannot be excluded on the basis of the present computations. The

parabolic trend indicates that, close to the Wenzel state, the prob-

ability distribution p(Ncav) for the atomistic collective variable is

Gaussian as per eqn (6). This behavior is typical of liquids un-
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Fig. 6 Detail of the atomistic (dash-dotted lines) and continuum (inset)

free-energy profiles in the region of the Cassie-Wenzel transition for the

hydrophobic chemistry. The red (blue) curve represents RMD results

started from atomistic configurations in the Cassie (Wenzel) state; the

same color code applies for the average fluid density fields reported in

the upper (Wenzel) and lower (Cassie) strips. The star in the main panel

and the orange arrow in the inset identify the approximate location of the

jump between orthogonal valleys illustrated in the sketches above and

explained in detail in the text.

der confinement and accounts for the fluid density fluctuations at

the wall38,39. These fluctuations can be related to the compress-

ibility of the (confined) liquid40. The upward concavity of the

Wenzel basin implies a positive compressibility, which is naturally

captured by the atomistic system. For the macroscopic case, in-

stead, the free-energy behavior is completely different since the

compressibility vanishes altogether by the sharp-kink approxima-

tion (ρl and ρv are constant), entailing a different trend. This

can be made explicit by expanding close to the Wenzel state the

expression for the macroscopic free energy, which scales as the

liquid-vapor surface area Ω ∝ V̄
2/3
v , which is quite different from

the atomistic scaling ≃ V̄ 2
v . Similar results are found by Rems-

ing et al.41, who investigated the liquid/vapor transition between

two flat hydrophobic surfaces of nanometric extension. They also

found that near the pure liquid state the free energy is harmonic

as opposed to the V̄
2/3
v trend predicted by the (incompressible)

classical nucleation theory. Another connection with the present

results is the “kink” that these authors find in free-energy profiles

which could probably be interpreted in the light of the simple

model in Fig. 3.

A direct consequence of the upward concavity of the Wenzel

basin is the existence of a liquid (or Wenzel) spinodal ∆PW
sp which

has no counterpart in the (incompressible) macroscopic model,

see the insets in Fig. 7b and in Fig. 7a, respectively. This reflects

the physical fact that superhydrophobicity can be restored at suf-

ficiently low pressures. On the contrary, the classical nucleation

theory fails to capture this feature, predicting finite free energy

barriers for all pressures18.

In order to make these observation more quantitative, we re-

port in Fig. 7 the free-energy profiles Ω(V̄v/Vre f ) (insets) and

their derivative dΩ/d(V̄v/Vre f ) for pressures greater (red) and less

(blue) than the liquid spinodal. For the macroscopic model, it is

seen that the Wenzel state is attained by construction at V̄v = 0,

while the point at which the free-energy derivative jumps from

positive to negative values corresponds to the free-energy max-

imum (Fig. 7a). Decreasing the pressure amounts to shifting

the free-energy derivative dΩ/d(V̄v/Vre f ) ≡ λ by a constant, see

eqn (5). Since, however, dΩ/d(V̄v/Vre f ) has a vertical asymptote

for V̄v → 0, a maximum always exists in the continuum model.

This maximum is a regular point for large negative pressures, cor-
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responding to a critical bubble nucleating in the corner, while it is

a cusp for moderately negative pressures. This cusp is generated

by the presence of two valleys having different slopes, cf. Fig. 3.

In the atomistic case, instead, the free-energy derivative

changes sign twice for ∆P ≥ ∆PW
sp . These two stationary points

are the Wenzel and the transition state, respectively, as shown

in Fig. 7b. Upon decreasing pressures, the Wenzel state gradually

shifts to larger V̄v, see also Ref. 42. When ∆P≤∆PW
sp , no stationary

point exists and the Wenzel state becomes unstable. Because of

the peculiar shape of the Wenzel basin, in the atomistic case the

maximum is always attained at the cusp where the free-energy

derivative has a discontinuity.

4 Conclusions

In the present work wetting and cavitation on nanostructured sur-

faces have been studied via molecular dynamics and macroscopic

capillarity models. Rare events methods have been used in order

to determine the wetting and cavitation pathways and the related

free energy barriers, which dictate the thermally activated kinet-

ics of the two phenomena. The systems considered here consist of

a re-entrant nano-cavity with hydrophobic and hydrophilic chem-

istry, respectively. Given the re-entrant geometry, both chemistries

allow for the presence of a Cassie state. We have found that the

free energy landscape is characterized by many “valleys”, indicat-

ing that many pathways are possible for wetting and cavitation on

nanostructured surfaces. These pathways and the kinetics of the

process strongly depend on the chemistry and on the geometry

of the surface, with the hydrophilic chemistry showing the largest

number of transition pathways.

Comparison of the present results with previous work on sim-

pler textures11,18 shows that the number of possible pathways

dramatically increases with the complexity of the surface texture.

For instance, rectangular grooves admit ca. 7 different single-

bubble families11, which constitute chunks of the overall path-

way; since two rectangular ends are present in the re-entrant

geometry considered here, the number of pathways doubles just

because of the trivial replication of the bubble shapes at the left

and at the right ends. The re-entrant mouth further increases

the number of possible bubble configurations to at least 20 (cf.

Fig. 4 in which the symmetric configurations are not shown).

It is expected that three-dimensional geometries also induce an

analogous increase in the number of pathways. This explosion

of complexity may seem to preclude in practice the applicability

of the CREaM/Surface Evolver framework to more sophisticated

textures. However, we note that only the few pathways with the

lowest free energy need to be considered, while the vast major-

ity of them is extremely improbable; symmetry arguments are

able to identify bubble configurations that are equiprobable and

thus need to be computed only once (e.g., the left/right symme-

try mentioned above). Furthermore, simple arguments can be de-

vised a priori on the number and combination of bubbles which

are energetically favored11.

The present results allowed for a detailed quantitative compar-

ison of the atomistic and continuum models at the nanoscale. The

major qualitative difference concerns the curvature of the free en-

ergy profile close to the Wenzel state. For the atomistic model this

curvature is positive, accounting for density fluctuations of the

confined liquid38. The macroscopic model, instead, due to the

assumption of liquid incompressibility, does not capture density

fluctuations and features a negative curvature. This discrepancy

is reflected in the different (non-classical) pathways to wetting

and nucleation, which in turn lead to different estimates for the

kinetics41. Strictly related to the compressibility is the presence

of a liquid spinodal – shifted by confinement as compared to the

bulk one – which is only captured by the atomistic model. Quan-

titative differences emerge in the free energy barriers connected

with cavitation, with the macroscopic model (classical nucleation

theory) overestimating them. As expected, the largest discrepan-

cies are found away from two-phase coexistence, where the size

of the critical bubble becomes nanometric.

The complex free energy landscape connected with wetting and

cavitation on structured surfaces has required particular atten-

tion in interpreting the results of the rare event atomistic sim-

ulations and continuum calculations. The approximation intro-

duced by a reduced description of the transition in terms of a

single variable (the volume of the vapor bubble) has been dis-

cussed in detail. This convenient choice, which is normally used,

e.g., in classical nucleation theory, is capable of identifying most

of the pathways, but fails when there is a morphological transi-

tion32. Sufficient but not necessary symptoms of the failure of a

reduced description are the presence of cusps in the free energy

profile. Furthermore, thermodynamic integration, which is often

used in atomistic free-energy methods, may fail to capture signif-

icant free-energy jumps. In order to overcome these limitations,

a full description of the fluid density field would be required in

order to capture the details of the phenomenon and the exact

free energy barriers. These latter results call for a more profound

understanding of the coarse grained description of a liquid.
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