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Thermal Fluctuations of Vesicles and Nonlinear Curvature

Elasticity—Implications for Size-dependent Renormalized Bending

Rigidity and Vesicle Size Distribution

Fatemeh Ahmadpoora and Pradeep Sharma∗b

Both closed and open biological membranes noticeably undulate at physiological temperatures. These thermal fluctuations

influence a broad range of biophysical phenomena, ranging from self-assembly to adhesion. In particular, the experimentally

measured thermal fluctuations spectra also provides a facile route to the assessment of mechanical and certain other physical

properties of biological membranes. The theoretical assessment of thermal fluctuations, be it for closed vesicles or the simpler

case of flat open lipid bilayers, is predicated on assuming that the elastic curvature energy is a quadratic functional of the curvature

tensor. However, a qualitatively correct description of several phenomena such as binding-unbinding transition, vesicle-to-bicelle

transition, appearance of hats and saddles among others, appear to require consideration of constitutively nonlinear elasticity that

includes fourth order curvature contributions rather than just quadratic. In particular, such nonlinear considerations are relevant

in the context of large-curvature or small-sized vesicles. In this work we discuss the statistical mechanics of closed membranes

(vesicles) incorporating both constitutive and geometrical nonlinearities. We derive results for the renormalized bending rigidity

of small vesicles and show that significant stiffening may occur for sub-20 nm vesicle sizes. Our closed-form results may

also be used to determine nonlinear curvature elasticity properties from either experimentally measured fluctuation spectra or

microscopic calculations such as molecular dynamics. Finally, in the context of our results on thermal fluctuations of vesicles

and nonlinear curvature elasticity, we reexamine the problem of determining the size distribution of vesicles and obtain results

that reconcile well with experimental observations. However, our results are somewhat paradoxical. Specifically, the molecular

dynamics predictions for the thermo-mechanical behavior of small vesicles of prior works, appear to be inconsistent with the

nonlinear elastic properties that we estimate by fitting to the experimentally determined vesicle size-distribution trends and data.

1 Introduction

Biological membranes are ubiquitous in life, and form the en-

velope through which cells and organelles interact with their

surroundings1. Lipid bilayers, which primarily consist of self-

assembled phospholipid molecules, often form closed vesi-

cles2. Usually just a few nanometers thick, the membranes

serve as the gatekeepers for the cells and vesicles and aid in

the transport of chemicals, facilitate mechanical and electrical

signaling, transduction and adhesion. The vesicles, depending

on the specific membrane composition and the surrounding

environment, can exhibit a diversity of morphologies and of

course serve as multi-purpose carriers that are capable of fa-

cilitating communication among cells, transporting functional

genetic information as well as management of cellular waste.

Aside from fundamental biological studies, lipid-based vesi-

cles are often also created artificially in the laboratory for ap-

plications in drug design and delivery.

Although membranes are microscopically quite complex,
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their mechanical behavior is reasonably well-described by the

phenomenological theory of elasticity and just a few contin-

uum parameters such as the bending moduli and surface ten-

sion. Specifically, the oft-used Canham-Helfrich’s theoretical

framework parametrizes the energy cost of the deformation

of a tension-less membrane patch by the following quadratic

form3–7∗:

Fb =
∫

S

1

2
κb(H −Ho)

2 + κ̄(K −Ko) (1)

Here κb and κ̄ are the bending moduli that, respectively,

parametrize the energy change due to changes in the mean

(H) and Gaussian (K) curvatures. The corresponding spon-

taneous curvatures are denoted by Ho and Ko
†. The elastic

∗This specific form is not quite the same as that originally presented by Can-

ham or Helfrich. Several researchers have motivated the Helfrich-Canham

Hamiltonian from fundamental grounds i.e. both as a derivation from three-

dimensional solid or liquid crystal elasticity or statistical mechanics 5–7. The

specific form in Equation (1) is taken from Maleki and Fried 6 and as moti-

vated by them, inclusion of spontaneous Gaussian curvature is important in

certain situations.

† We emphasize a point which is sometimes glossed over but quite clearly high-

lighted by Maleki and Fried 6. Ho can be ascribed to two contributions, geo-

metric or constitutive. While the former corresponds to asymmetries between
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energy scale is set by the bending modulus and surface ten-

sion. Their typical values are such that membranes are usually

hard to stretch but bend (curve) quite easily8,9. Typical bend-

ing modulus of most lipid-bilayers is between 5 and 25kBT —-

small enough compared to the thermal energy scale that mem-

branes undulate or fluctuate noticeably at physiological tem-

peratures8–12. The study of these experimentally observed and

widely studied thermal fluctuations has been one of the corner-

stones of biophysical research on membranes10–14. Statistical

mechanics of open (nearly) flat membranes is well-developed

and, to a comparatively lesser degree of exhaustiveness, sev-

eral works also exist that describe the thermal fluctuations of

closed vesicles15–19. The reason for the interest in thermal

fluctuations of membranes is simple; aside from fundamen-

tal scientific curiosity, the fluctuations have been found to be

responsible for the so-called entropic (steric) repulsive force

between membranes20–23 and strongly influence phenomena

such self-assembly, adhesion, binding-unbinding transitions,

membrane fusion and many others24–27. In particular, the ex-

perimentally measured fluctuation spectra or calculated via

microscopic methods such as molecular dynamics, has pro-

vided a facile route to estimate mechanical and other related

properties of membranes28–31. For instance, in the case of a

large, nearly flat membranes, the following result for the fluc-

tuations of the out of plane displacement field h, can be easily

derived based on the linearized version of the quadratic Hamil-

tonian described in Equation (1) : 〈h2〉 ∝ kBT/κb
32. This

basic result has been extended to numerous other physically

relevant contexts providing an avenue to extract useful infor-

mation e.g. incorporation of electromechanical coupling, tilt

of lipids, presence of proteins or inclusions, proximity to sub-

strates or other vesicles among others33–40.

For very large cells and/or vesicles, assuming that the mem-

brane is nearly flat is a reasonable assumption and consider-

ably simplifies the statistical mechanics analysis. However,

this assumption is certainly in error for even moderately sized

vesicles and may conceal some interesting physical effects due

to the presence of finite curvature. For instance Morse and

Milner16 showed that the free-energy of a single vesicle in-

creases logarithmically with vesicle size, if finite-size contri-

butions are incorporated, as opposed to a logarithmic decrease

predicted for a nearly-flat membrane. Accordingly, several

works have devoted attention to the more difficult problem of

understanding the fluctuation behavior of closed membranes15–19.

In particular, one motivating factor has been the experimen-

tally observed size-distribution of vesicles41. A collection of

a fixed number of vesicles with different sizes can freely ex-

change amphiphilic molecules until a thermodynamic equilib-

the bilayer leaflets, the latter denotes the stable equilibrium state of a mem-

brane, which is zero for a flat membrane and can be nonzero for spherical

vesicles.

Fig. 1 A schematic showing fluctuations of a spherical vesicle. Due

to the small bending stiffness of biological membranes, compared

with the thermal energy scale, such vesicles undergo considerable

undulations at physiological temperatures. Experimental

measurement of the amplitude of the fluctuations provides a facile

route to the determination of the bending stiffness of the vesicles.

rium state is reached. Typically, the experimentally observed

size distribution of an ensemble of vesicles at equilibrium is a

Gaussian in nature, with a rather large cut-off radius of about

10–20 nm. Theoretical models that purport to explain vesicle

size-distribution trends, do so based on contributions from the

elastic bending energy and the chemical potential of the am-

phiphilic molecules that is required to create a vesicle. How-

ever, such models—-which are predicated on the quadratic

Helfrich Hamiltonian described in (1)—appear to be unable

to completely explain all features of the experimentally ob-

served vesicle size-distribution.

Our work is motivated by the following observations and

questions:

• How does the bending modulus get renormalized for

high-curvature or small-sized vesicles? Ostensibly, for

small vesicles, nonlinear curvature elasticity properties

should play a significant role; do they indeed do so?

• In analogy with what has been done in the case of quadratic

Helfrich-Canham Hamiltonian, it would also be desir-

able to have closed-form expressions for the thermal

fluctuation spectra of nonlinear curvature elasticity to

readily extract nonlinear elastic properties via experi-

ments or molecular dynamics.

• The experimentally observed size-distributions of vesi-

cles appear to be at odds with all theoretically derived
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distributions. Helfrich speculated and (qualitatively) pro-

posed that nonlinear curvature elasticity may play a role

in the correct prediction of vesicle size-distribution. How-

ever, a derivation of vesicle size distribution that in-

cludes thermal fluctuations within a nonlinear curvature

elasticity framework is still missing in the literature.

• Development of the statistical mechanics of closed mem-

branes, incorporating fourth order nonlinear curvature

elasticity, may be useful to understand various biophys-

ical phenomena for small vesicles e.g adhesion, mod-

ification of repulsive forces, binding-unbinding among

others.

To address the aforementioned issues, in the present work,

we develop the statistical mechanics of closed spherical vesi-

cles that are described by fourth order constitutively nonlin-

ear curvature elasticity and may be suitable for the study of

small-sized vesicles. The outline of the paper is as follows:

Nonlinear fourth order curvature elasticity is described in Sec-

tion II along with several aspects of the problem setup. The

statistical mechanics of closed vesicles is developed in Sec-

tion III, where we present the results for the renormalization

of bending modulus of small vesicles followed by, in Section

IV, the implications of our work for the assessment of size-

distribution of vesicles. Our results appear to be paradoxical in

light of some past computation of nonlinear elasticity proper-

ties. This, along with other issues, are discussed in the Section

V where we also conclude the work.

2 Nonlinear Curvature Elasticity and Problem

Setup

Consider a closed vesicle described by an enclosing surface

S. The elastic energy density may be represented by ψ =
ψ̄(H,K). As has been discussed elsewhere6, treatment of the

vesicle surface as an isotropic fluid membrane and the foun-

dational principles of continuum mechanics restrict the depen-

dence of ψ solely to (H,K). Assuming conservation of area

and volume, in the absence of external forces, the total poten-

tial energy of the vesicle can be written as:

E =
∫

S

(ψ +σ)dS+
∫

V
pdV (2)

where σ and p are the surface tension and osmotic pressure,

respectively. The conventional vesicle equations, as usually

found in the literature, are obtained by assuming a quadratic

form for ψ i.e. Equation (1). The equilibrium equations,

derivable by means of variational calculus, however can pro-

ceed without the actual specification of ψ and has been carried

out by a number of authors11,42–46. We quote below the result

in the form presented by Biria et. al.47

ψ̄H(2H2 −K)+
1

2
∆Sψ̄H +2ψ̄KHK +2∆S(ψ̄KH)

−divS(L∇Sψ̄K)−2(∇SH) · (∇Sψ̄K)−2ψ̄K∆SH

−2H(ψ +σ) = p (3)

Here, the subscript H (and K) denote the derivative with

respect to H (and K). Further, L is the curvature tensor and

∇S, ∆S and divS correspond to surface gradient, surface Lapla-

cian and surface divergence operators‡, respectively47.

Fourth order nonlinear curvature elasticity is obtaining by

considering all the invariants of the curvature tensor L up to

fourth order. Ignoring the spontaneous curvature, this leads to:

ψ̄(H,K) =
1

2
κbH2 +κK +

1

2
γ1H4 +

1

2
γ2H2K +

1

2
γ3K2 (4)

where γi are the fourth order moduli.

In linearized curvature elasticity (i.e. the quadratic Hel-

frich theory), assuming that the vesicle is a sphere of radius R,

the Young-Laplace equation takes the form: R = 2σ/p. In the

nonlinear setting however, due to the presence of higher order

moduli, this relation is modified. Assuming that sphere is the

stable state, Equation (3) results in:

− γ1

R5
+

γ3

R5
= p− 2σ

R
(5)

which implies that for a certain range of pressure, there may

be more than one sphere solution, that might be either sta-

ble or unstable depending on the values of γi. In this paper

we will not focus on the stability of different morphologies in

the context of nonlinear elasticity. It is assumed that the con-

ditions (based on the values of surface tension, pressure and

the elastic properties) ensure that a spherical vesicle is stable.

For further details on this topic, the reader is referred to refer-

ences48–50.

‡ Let n be the normal vector to the surface S. A surface projection tensor may

be defined as:

P = I−n⊗n,

where I is the identity tensor. The surface gradient, surface Laplacian and

surface divergence of a scalar field f and a vector field g can then be defined

in terms of P and their smooth extensions f e and ge as 47:

∇S f = P∇ f e, ∇Sg = (∇ge)P,

divSg = P ·∇ge, ∆S f = divS(∇S f )

Finally, the curvature tensor takes the following form: L =−∇Sn.
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Fig. 2 Displacement field fluctuations of the surface of a spherical

membrane. We have assumed that the fluctuations are normal to the

surface. The fluctuating mid-plane displacement is normalized as

u(θ ,φ) =U(θ ,φ)/r0

In what follows, we will assume that the topology of the

membrane does not change as it undergoes thermal fluctua-

tions and accordingly, the contribution of the Gaussian curva-

ture to the free energy may be neglected. §

§ In the conventional (linear) model, according to Gauss-Bonnet theorem, the

integration of the Gaussian curvature over the surface is invariant under any

deformation and hence the contribution of the Gaussian curvature to the bend-

ing energy may be ignored. This is, however a global constraint on the topol-

ogy of the membrane, which is necessary but not sufficient. Strictly speaking,

the Gaussian curvature at any point on the surface depends only on the met-

ric tensor which is constrained by the intrinsic topology of the surface. To

capture the effect of such strict local topological constraint, one need to fix

the metric tensor’s components, using local Lagrange multipliers in the total

Hamiltonian. This will guarantee that the Gaussian curvature will not change

at any point on the surface, and therefore all the contributions of the Gaussian

curvature in the free energy can be neglected. In this manner, the total bending

energy density in nonlinear framework can be modified as below:

ψ̄ =
1

2
κbH2 +

1

2
γcH4 +λ · (g−g0) (6)

where γc is the only fourth order constant. Also, g0 and g correspond to the

metric tensors of the undeformed and deformed surfaces respectively. Fur-

ther, λ is a set of Lagrange multipliers accounting for the constraints on the

metric tensor components. Imposing such local topological constraints, for

the simplest example of an unstretchable flat sheet, it has been shown that

constraining the metric tensor components results in a significant modifica-

tion to the shape equation 51,52. This notion is critical when the deformations

may result in topological changes. For our specific problem, since the fluc-

tuations are considered to take place for a fixed (and stable) topology– and

that is a stable sphere will remain a sphere in the absence of external forces–

implementing the topological constraints is unimportant. Accordingly, in the

remainder of the work, the additional Lagrange multiplier term in Equation

(6) is dropped.

We rescale the fourth-order moduli to emphasize the fact

that nonlinear curvature elasticity introduces an intrinsic length

scale—-in sharp contrast to the conventional Helfrich-theory:

γc = κbℓ
2
c where ℓc is the critical length scale that determines

when the nonlinearity may be ignored, ℓcH ≪ 1. Typically,

ℓc is assumed to be in the same order of magnitude as the

thickness of the membrane. However, as will be elaborated in

due course, there is uncertainty about the determination of this

parameter and we eventually use experimental data on vesicle

size-distributions to estimate that, at least for the materials sys-

tem we investigated, its value is indeed of the same order as the

membrane thickness. We speculate that the physical origins

of ℓc are rooted in force and entropic interaction between ad-

jacent lipid molecules when compelled to take highly curved

configurations whose size-scale is compared to the thickness

dimensions of the bilayer (and hence lipids). We will focus

on the fluctuations of a closed vesicle in the shape of a perfect

sphere—-as has been done by nearly all works that precede

us. The fluctuating spherical vesicle (Figure. 1) with a mean

radius of r0, surface defined as S := {r ∈ R
3 : |r| = r0} has a

membrane of thickness d. Consider a small but arbitrary per-

turbation of the surface of the vesicle. The position of each

point on the perturbed surface of the sphere can be described

as:

r̃ = r+ εUn (7)

where we have assumed that the perturbation is only along the

normal direction as shown in Figure. 2. Here ε ∈ R is a small

number and U(θ ,φ) : S → R denotes the magnitude of the

normal perturbation. The mean curvature and the Jacobian of

the perturbed surface can be expressed as:

H̃ = H +δH

J̃ = 1+δJ (8)

where, H is the mean curvature of the undeformed surface.

Up to second order in ε , the variations of H and J may be

expanded as:45,53

δJ =−2HUε +(
1

2
|∇SU |2 +KU2)ε2 +O(ε2)

δH = ((2H2 −K)U +
1

2
∆SU)ε

+(HU∆SU − 1

2
∇SU · (H∇SU)+(4H2 −3K)HU2)ε2

+O(ε2) (9)

Neglecting the contribution of the Gaussian curvature, the

bending energy per unit area of the perturbed surface can be

written as:

ψ̄[H̃] =
1

2
κbH̃2 +

1

2
γcH̃4 (10)
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Using Equations (8) and (9) and integrating the above ex-

pressions over the surface of the membrane, we obtain:

E
tot[U,H] =

∫

S

ψ̄[H̃]J̃dA0

=
∫

S

(

E(ε0)+E(ε2)+E(ε4)+O(ε4)
)

dA0 (11)

in which we have retained up to fourth order terms. The lead-

ing terms in the expressions for E(ε i) are as follows:

E(ε0) =
1

2
κbH2

(

1+ ℓ2
cH2

)

E(ε2) =
1

8
κb(∆SU)2(1+6H2ℓ2

c)

+
1

4
κbU∆SU(5H2 −2K +3H2(7H2 −4K)ℓ2

c)+ · · ·

E(ε4) =
1

32
κbℓ

2
c(∆SU)4 + · · · (12)

Specializing to the case of a perfect sphere of radius r0,

the equilibrium mean and Gaussian curvatures are H−1 =−r0

and K−1 = r2
0. Moreover, we define the normalized mid-plane

displacement as: u = U/r0. For notational simplicity, we use

∆ := ∆S(r0 = 1) as the surface laplacian operator on the unit

sphere. Assuming that θ and φ are polar and azimuthal angles,

we can write the area element as: dA0 = r2
0dΩ, where dΩ =

sin(θ)dθdφ . Then, integrating the terms in (12) over the area

of the sphere, we obtain¶:

¶ In spherical coordinates, using (er,eθ ,eφ ) as the basis vectors, the perturbed

surface of the sphere is r̃ = r0(1+u(θ ,φ))er and the area element and normal

vector of the perturbed surface are:

J̃dA0 = |∂θ r̃×∂φ r̃| dθdφ

=

√

1+

(

∂u

∂θ

)2

+

(

1

sinθ

∂u

∂φ

)2

r2
0 sinθ dθdφ

n =
∂θ r̃×∂φ r̃

|∂θ r̃×∂φ r̃|

Also the mean curvature is:

H̃ =−1

2
divS n

The surface operators are defined as:

∇ :=
∂

∂θ
eθ +

1

sinθ

∂

∂φ
eφ

∆ :=
1

sinθ

∂

∂θ

(

sinθ
∂

∂θ

)

+
1

sin2 θ

∂ 2

∂φ 2

The area element and the mean curvature can then be expressed as:

J̃dA0 = r2
0(1+2u+u2 +

1

2
|∇u|2 + · · ·)sinθ dθdφ

H̃ =− 1

r0

(

1−u− 1

2
∆u+u2 +u∆u− 1

2
|∇u|2 + · · ·

)

E0 =
∫

S

E(ε0)dA0 = 2πκb

(

1+
ℓ2

c

r2
0

)

E2 =
∫

S

E(ε2)dA0

=
∫

S

[

1

8
κb

(

1+
6ℓ2

c

r2
0

)

(∆u)2 +
3

4
κb

(

1+
5ℓ2

c

r2
0

)

u∆u

]

dΩ

E4 =
∫

S

E(ε4)dA0 =
∫

S

[

1

32r2
0

κbℓ
2
c(∆u)4

]

dΩ (13)

For notational simplicity, in what follows, we set κ1 =
1
8
κb(1+

6ℓ2
c/r2

0), κ2 = 3
4
κb(1 + 5ℓ2

c/r2
0), and κ3 = 1

32
κbℓ

2
c/r2

0. Evi-

dently, E0 is the ground state energy, corresponding to the

equilibrium state. A small perturbation of the surface (7), re-

quires an additional elastic energy that can be expressed as:

Epert = E2 +E4. Up to second order, the energy function E2

within the linearized curvature elasticity framework has been

derived earlier by many authors. Here, we have generalized it

to include the effects of constitutive nonlinearities. In the fol-

lowing section we will use the energy function (13) to study

the thermal fluctuations of the displacement field for a spheri-

cal vesicle.

3 Thermal Fluctuations in the Context of Non-

linear Elasticity and the Renormalized Bend-

ing Rigidity of Small Vesicles

There exists a rich and extensive literature on thermal fluctua-

tions of membranes54–58. In the context of lipid bilayers and

biological membranes, the vast majority of the works use Hel-

frich’s classical quadratic Hamiltonian (i.e. linearized curva-

ture elasticity) as the starting point. Specifically, constitutive

nonlinearity—as detailed in the preceding section, has hitherto

not been accounted for. Unfortunately, carrying out statistical

mechanics of non-quadratic Hamiltonians is a daunting task

to say the least; and closed-form solutions are frequently un-

obtainable. The equipartition theorem, which is the essential

result used by nearly all the analytical statistical mechanics

works on biological membranes, is not applicable.

Several methods have been introduced in the literature for

treating non-quadratic Hamiltonians. Perhaps, the most straight-

forward approach is the perturbation expansion59 wherein the

non-quadratic part of the Hamiltonian is considered to be a

small perturbation compared to the quadratic part for which

an exact solution is known. If the perturbation term is small

enough, and under certain conditions, a rapid convergence

of the free energy expansion may be achieved. Neverthe-

less, for low temperatures, divergent contributions may appear
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from second order corrections59. Improved results may be ob-

tained by the so-called variational perturbation theory (VPT)

which has been successfully employed to remove divergen-

cies in several canonical problems of quantum and statistical

physics59–64. This method is based on the so-called princi-

ple of minimum sensitivity65 and involves the use of a trial

quadratic Hamiltonian with a variational coupling parameter.

The requirement that an infinite perturbation expansion series

should not depend on the variational parameter, the variational

coupling parameter is "optimized" so that a truncated series

solution depends minimally on it. The convergence of this

method has been shown to be excellent when compared to all-

numerical calculations and fairly reasonable closed-form ana-

lytical solutions may be obtained with just first or second order

expansions in many cases59,60,66‖. Renormalization group67

(RG) is also another approach to treat the divergencies in per-

turbation expansions. This method is based on scaling tech-

niques and some universal properties of materials near critical

phenomena. In most of the cases, RG involves numerical cal-

culations to estimate the free energy, and is often unable to

produce analytical expressions for the correlation functions.

In what follows, we employ the variational perturbation

approach and retain terms only up to the first order. Higher

order corrections are cumbersome to incorporate but may be

included if required. Our choice of the approach is dictated

by our desire to obtain closed-form yet reasonably accurate

solutions. The perturbed energy function, introduced in (13) is

split in two parts; quadratic (E2) and a non-quadratic (E4) part

that is not tractable via the equipartition theorem. We express

the original Hamiltonian in the following modified form:

H(λ ) =H0 +λHI (14)

where λ is a control parameter, such that 0 6 λ 6 1. We re-

mark that H is exactly the original non-quadratic Hamiltonian

when λ = 1. Also, H0 is a trial Hamiltonian, that is analyti-

cally soluble and HI is the correction term. Using the concept

of the canonical ensemble, the partition function is :

Z(λ ) =
∫

exp(−βH(λ ))D [u] (15)

where β = 1
kBT

and D [u] represents the functional integration

measure60. The Helmholtz free energy can be obtained as:

F(λ ) =− 1

β
logZ(λ ) (16)

Differentiating the above free-energy, with respect to λ ,

‖This approach, if only a first-order expansion is used, is also known more pop-

ularly as the Gibbs-Bogoliubov variational method which is frequently used in

several classes of quantum and classical statistical mechanics problems 67–72.

we obtain:

∂F(λ )

∂λ
=

∫

HI exp(−β (H0 +λHI))D [u]
∫

exp(−β (H0 +λHI))D [u]

= 〈HI〉 (17)

The second derivative of the free-energy, with respect to λ
yields:

∂ 2F(λ )

∂λ 2
=−β (〈H2

I 〉−〈HI〉2)

=−β 〈(HI −〈HI〉)2〉 (18)

which is always a negative value;
∂ 2F(λ )

∂λ 2 6 0. This implies that

the free energy is a concave function for all values of λ , and

thus, the function F(λ ) is always below the tangent to F(λ )
at λ = 0. Using the Taylor expansion around λ = 0 we can

write:

F(λ )6 F0 +

(

∂F

∂λ

)

|λ=0λ +
1

2!

(

∂ 2F

∂λ 2

)

|λ=0λ 2 + · · · (19)

We may now set λ = 1 to retrieve the free-energy corre-

sponding to the original Hamiltonian. Also we can write the

correction term in terms of the trial Hamiltonian H0 and the

exact Hamiltonian H as: HI = H−H0. The infinite Taylor

series in the right hand side of Equation (19) should match the

exact free energy—regardless of the choice of the trial Hamil-

tonian H0. In practice, however, the series is truncated up to

a finite order M to obtain an estimate of the free energy. Let

FM be the truncated series (19) up to M-th order. Then using

cumulant averages we can write the explicit form for FM as:

FM = F0 −
1

β

M

∑
k=1

(−β )k

k!
〈[H−H0]

k〉c
H0

(20)

where, 〈·〉H0
denotes the phase average with respect to H0

and the superscript c corresponds to cumulant averages59∗∗.

Unlike the infinite series expansion in Equation (19), the trun-

cated series FM does depend on the choice of the trial Hamil-

tonian H0. Accordingly, in order to obtain an optimized esti-

mate, we need to minimize the sensitivity of the truncated se-

ries to the trial Hamiltonian. Suppose now that the trial Hamil-

tonian H0 in Fourier space is defined as:

∗∗The cumulant averages of a function X with respect to H0 up to third order is

defined as: 59

〈X〉c
H0

= 〈X〉H0

〈X2〉c
H0

= 〈X2〉H0
−〈X〉2

H0

〈X3〉c
H0

= 〈X3〉H0
−3〈X2〉H0

〈X〉H0
+2〈X〉3

H0
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H0 = ∑
q∈KN

u(q)G(q)u(q)∗ (21)

with q representing the modes of fluctuations, u(q) being the

fluctuating field in mode q and G(q) is an unknown trial func-

tion that defines the form of interactions between the degrees

of freedom. Then, to obtain the optimal form of G(q), we

must set:60

∂FM

∂G(q)
:= 0. (22)

In a rather good approximation, the result for the truncated se-

ries of the variational free energy from this method will con-

verge i.e. FM ≈ FM+1 and the series (20) achieves its minimal

sensitivity to the trial function. We remark that restricting cal-

culations to first order in the truncated series (20) yields just

the well-known Bogoliubov theorem12 for the upper bound of

the exact free energy:

F 6 F0 + 〈H−H0〉H0
(23)

In what follows, we will use this approach up to first order

to obtain a closed form solution for the free energy of the sys-

tem.

As can be appreciated, the original Hamiltonian may be

split into a trial and a correction term in an infinite number

of ways. The next step involves choosing the optimal trial

quadratic Hamiltonian. To achieve this, we start with the Fourier

decomposition of the perturbation field on the sphere. To this

end we expand the displacement in terms of spherical harmon-

ics. Let N be the total number of degrees of freedom and

KN := {(l,m)|(l,m) ∈ Z×Z, l > 2, l(l +1)< N,−l < m < l}.

Then we can expand the normalized perturbation field in terms

of spherical harmonics as below:

u(θ ,φ) = ∑
(l,m)∈KN

ul,mYl,m (24)

where Ylm
†† are spherical harmonics73 with eigenvalues:

∇2Yl,m =−q2
l,mYl,m =−l(l +1)Yl,m (25)

and ul,−m = u∗l,m are the Fourier transformation of u(θ ,φ):

ul,m =
∫

S

u(θ ,φ)Y ∗
lmdΩ (26)

We select the general form for the quadratic trial Hamilto-

nian H0 in Fourier space as defined in Equation (21). The goal

now is to match the exact free-energy as closely as possible by

finding an optimal match for the form of the propagator G(q).
To this end we set:12,60

∂

∂G(q)

(

F0 + 〈H−H0〉H0

)

:= 0 (27)

The partition function and the free energy corresponding to the

trial quadratic Hamiltonian H0 in Equation (21) is obtained as:

Z0 =
∫

e−βH0[u]D [u],

F0 = αF +
kBT

2
∑

q∈KN

log(G(q)) (28)

where αF is a constant independent of the propagator G(q).
Calculating F0 from (28) and substituting it into the L.H.S. of

Equation (23), we obtain the variational free energy Fvar as:

Fvar = F0 + 〈H−H0〉H0

= αF +
kBT

2
∑

q∈KN

log(G(q))

+ ∑
q∈KN

(κ1q4 −κ2q2)〈u(q)2〉H0

+4πκ3〈(∇2u)4〉H0
(29)

The mean square value of the perturbation field in each

mode of the fluctuation can be obtained using the equipartition

theorem74:

〈u(q)2〉H0
=

kBT

2G(q)
(30)

†† We have excluded the modes corresponding to l = 0 and l = 1, since these

modes represent the area change and the rigid body motion of the vesicle and

hence do not contribute to the total energy. We also recall the two important

properties of the spherical harmonics, which will be used later in our calcula-

tions. They are orthonormal:
∫

S

YlmY ∗
l′m′dΩ = δll′δmm′

and separable:

Ylm = Pm
l (θ)eımφ

where Pm
l (θ) is the Legendre polynomial corresponding to the mode (l,m).

In what follows, for the eigenvalues of the spherical harmonics, we use the

notation q = ql,m wherein q2 = q2
l,m = l(l +1).
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Also the last term in (29) which is a higher order corre-

lation function, may be calculated by invoking Wick’s theo-

rem74:

〈(∇2u)4〉H0
= 3〈(∇2u)2〉2

H0
(31)

Minimization of the variational free energy in (29) with

respect to the unknown propagator G(q) provides an upper

bound for the exact free energy. Then, solving Equation (27)

gives us the following form for G(q):

G(q) =
(

(κ1 +24πηκ3)q
2 −κ2

)

q2 (32)

where,

η = 〈(∇2u)2〉H0
=

1

4π ∑
q∈KN

q4〈u(q)2〉H0
(33)

which should be calculated by integrating over all undulation

modes. For brevity we rewrite Equation (32) as:

G(q) =
1

8
(c1q4 − c2q2) (34)

where c1 and c2 are the corresponding coefficients of q4 and

q2 in (32), respectively. The unknown value of η in the ex-

pression for c1, should be calculated from the implicit equa-

tions of (30), (32) and (33):

η =
1

4π ∑
q∈KN

q4〈u(q)2〉H0

=
kBT

4π ∑
q∈KN

q4

2G(q)

=
kBT

πc1
∑

q∈KN

(

1+
c2

c1q2
+ · · ·

)

(35)

where, to further simplify our calculations, we have dropped

the term 1
q2 since it is negligible compared to one– q2 ≫ 1. To

compute the summation we replace it with an integral:

∑
q∈KN

:= ∑
l

(2l +1)≈
∫

(2l +1)dl (36)

where lmax can be easily obtained from the total number of

modes (degrees of freedom):

N = ∑
l

(2l +1) =
4πr2

0

A0
(37)

in which A0 is the area associated with each degree of freedom,

and is typically of the same order of magnitude as d2 with d

is the thickness of the membrane. Substituting the solution of

Equation (35) for η into the expression for G(q) in Equation

(34) gives us the following form for the coefficients c1 and c2:

c1 =
1

2
κb

(

1+
6ℓ2

c

r2
0

+χ

)

c2 = 6κb

(

1+
5ℓ2

c

r2
0

)

(38)

where,

χ =

√

1+
12ℓ2

c

r2
0

+
36ℓ4

c

r4
0

+
24ℓ2

cN

βκbr2
0

(39)

Note that the q4 contribution in (32) is equivalent to the

bending rigidity (c1) of a vesicle studied in the context of lin-

earized curvature elasticity, and according to (38), can be sig-

nificantly larger than the bare modulus κb. We also note that

there is a curvature-dependent suppression of thermal fluctua-

tions in the nonlinear context and accordingly larger vesicles

experience stronger fluctuations, compared to smaller vesi-

cles. On the other hand, the q2 term in Equation (34) has

softening effects, that arise from geometric nonlinearities. In

the remainder of this section, we aim to study the softening ef-

fects of the thermal fluctuations on the bending rigidity. This

topic has been well appreciated since the early and pioneering

work by Helfrich56,75–77. Considering geometric nonlinear-

ity and using first order approximations, Helfrich75 explained

that the renormalized bending rigidity in linearized curvature

elasticity (for nearly flat membranes) can be written as:‡‡

κeff = κb +
α

2π
kBT logN (40)

wherein α is a universal constant and N is the number of

molecules in the system. Assuming weak rippling in nearly

flat membranes, he predicted α = −1. Peliti and Leibler56

also reexamined this problem and obtained α as −3. Later on,

Kleinert77 rigorously discussed the origins of these discrepan-

cies and highlighted the care needed in choosing the integra-

tion measures in path integrals as well as some algebraic errors

in expanding the energy formulation in terms of the fluctuation

field. He confirmed that α =−3. In the following, we will re-

visit this problem to study the coupled effects of geometric

‡‡ We highlight that in many works on this topic, the bending energy density

is assumed to have the form of 1
2

κ ′
b(1/R1 + 1/R2)

2 in which R1 and R2 are

the principle curvatures radiuses. In this form, the mean curvature is consid-

ered to be: H ′ = 1/R1 + 1/R2, while in the present work, we consider half

of this value as mean curvature— H = (1/R1 + 1/R2)/2. Accordingly, the

bending energy of a sphere, based on our assumption is obtained as: 2πκb,

while in some works, the bending energy is assumed to be 8πκ ′
b. Therefore,

the change in the bending modulus in some of the references we have cited

is: α
8π kBT logN. A comparison between these two forms, shows that any

variation in κb, used in our model, is four times larger than those in other

works. 56,75–77

8 | 1–17

Page 8 of 17Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



and constitutive nonlinearities. We note in passing that, in a

somewhat controversial and later work,76, argued for the use

of curvature as the proper integration measure and obtained

α =+1. This result is however widely disputed.

Consider now a spherical vesicle (described by linearized

elasticity) with a bending rigidity of c1 and radius r0. The

bending energy can be computed to be:
∫

1
2
c1

1

r2
0

dA0 = 2πc1.

Also, at finite temperature, the free energy of the vesicle can

be obtained using Equations (28) and (34):

F0 =−kBT logZ0

= αF +
kBT

2
∑

q∈KN

logG(q)

= αF +
kBT

2
∑

q∈KN

(

logc1q4 − c2

c1q2
+ · · ·

)

(41)

The above expression shows that contribution of geometric

nonlinearity, produces additional terms in the Taylor expan-

sion of the free-energy. The "additional free energy" can be

interpreted as the change in apparent bending stiffness:

∆F =
1

2
kBT ∑

q∈KN

(

c2

c1q2
+

c2
2

2c2
1q4

+ · · ·
)

:= 2π(c1 −κeff) (42)

Thus, the effective bending stiffness, can be calculated up

to first order as:

κeff = c1 −
c2

4πc1
kBT ∑

q∈KN

1

q2
(43)

The summation is calculated using integration over all possi-

ble modes:

∑
q∈KN

1

q2
=
∫

2l +1

l(l +1)
dl

= logN (44)

Substituting the above integral into Equation (43), we obtain

the effective bending rigidity as:

κeff =
1

2
κb

(

1+
6ℓ2

c

r2
0

+χ

)

− α ′

4π
kBT logN (45)

where χ has been previously defined in (39) and α ′ is:

α ′ =
c2

c1

=
12+ 60ℓ2

c

r2
0

1+ 6ℓ2
c

r2
0

+χ
(46)

lc= 4 nm

lc= 3 nm

lc= 2 nm

Helfrich Model

5 10 15 20
0.5

1.0

1.5

2.0

2.5

3.0

r0�d

Κ
e
ff
�Κ

b

Fig. 3 Renormalized bending modulus for different values of ℓc.

Solid red, green and blue correspond to ℓc = 4nm, ℓc = 3nm and

ℓc = 2nm, respectively. Dashed line is obtained from Helfrich linear

model in which ℓc = 0. The data has been calculated with

κb = 20kBT and d = 5nm.

Note that in the limit of ℓc → 0 the above expression re-

duces to that of conventional linearized curvature elasticity

model77. For quantitative comparisons, we have calculated

the bending stiffness, for a range of vesicle size with different

values of ℓc. The results are shown in Figure. 3 where we com-

pare four different cases. The horizontal axis is the normalized

radius of the vesicle r0/d where we set d = 5nm. Solid blue,

green and red lines correspond to ℓc = 2nm, ℓc = 3nm and

ℓc = 4nm, respectively. The dashed line corresponds to the

case of ℓc = 0 which reduces to Helfrich quadratic model75.

As can be readily observed, for small vesicles that have high

curvatures, the effect of nonlinearity become quite significant.

Even for a small value of ℓc = 3nm—less than the typical

thickness of the membrane—the apparent bending rigidity be-

comes significantly stiffer for sub-20 nm vesicles. Also, the

effect of nonlinearity does not vanish in the limit of the flat

membrane, when H → 0. The corresponding limits of the

normalized effective bending rigidity κeff/κb for the cases of

ℓc = 2nm, ℓc = 3nm and ℓc = 4nm are found to be 1.42, 1.76

and 2.13, respectively.

4 Size Distribution of Vesicles

Vesicles can be artificially made across a broad range of di-

ameters. However, if an ensemble of vesicles are allowed

to freely exchange molecules—artificial or nature-made—the

size of the vesicles will change for some period, until they

become thermodynamically stable. At this state, it is very un-

1–17 | 9

Page 9 of 17 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



likely to find vesicles beyond certain sizes, i.e. there is dis-

cernible maximum and minimum size-limit for the radius of

the vesicles. Depending on the experimental methods used for

the preparation of vesicles, these size limits may slightly vary

in the beginning, but eventually the experimentally observed

size distributions appear to become independent of the method

of preparation and are determined by macroscopic mechanical

and entropic properties of the vesicles78. Several experimen-

tal efforts have been dedicated to this subject78–80. The most

common method to determine the size distribution of vesicles

is via dynamic light scattering (DLS) measurements. Another

well-known method is to use cryo-TEM images81–83 and ob-

tain the size distribution histogram using statistical analysis.

In a recent work Xu et. al.41 have used a combination of these

two approaches and obtained the size distribution for a set of

lauric acid vesicles. They confirmed that the size of the vesi-

cles is distributed within a finite range with a remarkably large

cut-off radius of about 20nm. In this section, using the results

derived in the preceding sections, we aim to study the qualita-

tive effects of mechanical properties and their corresponding

entropic effects on the size distributions of small unilamellar

vesicles.

In the following we assume that the vesicles can exchange

amphiphilic molecules, while the total number of the vesicles

remains fixed. Also the spontaneous curvature is considered

to be zero, and that there is always non-zero amount of energy

cost for any non-zero curvature. Given that N is the number

of amphiphilic molecules in a vesicle, the size distribution of

the vesicles, w(N) is determined by the total free energy F and

the Boltzmann factor:

w(N) ∝ exp(−F/kBT ) (47)

We first briefly review the predictions for Equation (47) made

by conventional approaches before discussing the results unique

to this work.

The bending energy of a sphere in linearized curvature

elasticity is alway: 2πκb which is independent of the vesicle

size. This implies that regardless of the size of two vesicles,

the transfer of surfactant molecules from one vesicle to an-

other does not change the total bending energy. This, results in

a flat distribution for the vesicles’ sizes (47). The total free en-

ergy for the vesicle with N number of amphiphilic molecules

and chemical potential µ can then be written as:

F = 2πκb +Nµ (48)

Equation (48) gives rise to an exponentially decaying distri-

bution, with zero size, being the most probable size—a rather

glaring problem. To further modify the result of Equation (47),

Helfrich84 proposed to include the entropic effects in the elas-

tic energy. As discussed in the last section, in the conventional

linear framework, the thermal undulations lead to softening

effects on the effective bending modulus75. The correspond-

ing effective bending modulus is provided in Equation (40).

To account for the entropic effects, Helfrich84 substituted the

bare value of bending modulus κb by the renormalized bend-

ing stiffness κeff:

w(N) ∝ exp(
−µN −2πκeff

kBT
) (49)

The above expression has been extensively used to predict

the size distribution of the vesicles. In general, using the ex-

pression for the effective bending rigidity (40), the following

size distribution is obtained:

w(N) ∝ N−α exp(−µN/kBT ) (50)

The major differences between prior theoretical works on this

topic, arise from the diversity in predicting the universal con-

stant α . Using α = −1 and normalizing the size distribution

to 1, Helfrich84 obtained the size distribution as:

w(N) =

(

2

N

)2

N exp(−2N

N
) (51)

where N is the mean number of molecules per vesicle and is

determined by the chemical potential µ . As well-evident, the

final distribution function described in Equation (51) is inde-

pendent of the mechanical properties of the vesicles. Further-

more, since the vesicles cannot deform beyond a certain cur-

vature and there is always a cut-off radius for the size distri-

bution of the small vesicles, such a distribution is not compat-

ible with experimental observations. To resolve the inconsis-

tency, Helfrich84 suggested that fourth order curvature elastic-

ity terms should be incorporated in the bending energy formu-

lation. Using a rather crude approximation, he demonstrated

that accounting the fourth order term can alter the size distri-

bution to make smaller sizes less probably. He modified the

probability density distribution in the following form:

w(N) ∝ Ne−AN−B/N (52)

The above distribution although slightly shifts the mean value

of the diagram to a larger size, and suggests smaller proba-

bility for smaller sizes, is incapable of predicting the correct

value for the experimentally observed cut-off radius.

In a different work, Morse and Milner16 suggested that

the free energy, due to translational and rotational entropy,

increases logarithmically with the size of the vesicle in the

following form:

F(N) = F0 +αkBT logN (53)

We note that in the present work for pure lipid membranes, we assume that

there is no entropic contributions from tilting or area change.
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Table 1 Comparison between the previous models of size distribution and the present work. In general, the distribution function can be

expressed as: w(N) ∝ Nζ exp(− f (N)). The second column in this table shows various values for the exponent ζ in different models. Also,

various forms of the function f (N) are shown in the third column. The symbols A and B are constants, representing the chemical potential

and those associated with fourth order moduli, respectively. Further, Ai in the last row are constants, corresponding to coefficients of

renormalized bending stiffness in the present model. A comparison between the listed models, shows that Helfrich nonlinear model and the

present model provide more realistic predictions of the cut-off radius in the size distribution of vesicles. Unlike Helfrich’s nonlinear model,

in the present work, the entropic effects of the constitutive nonlinearity, are taken into account to further modify the predicted size

distribution.

Model ζ f (N) Cut-off radius (rc)

E=2πκb +µN ζ = 0 AN rc = 0

Helfrich linear model: Eq.(51) ζ = 1 AN rc = 0

Helfrich nonlinear model: Eq. (52) ζ = 1 AN +B/N rc > 0

Morse and Milner: Eq. (54) ζ =−7/8 AN rc = 0

Kleinert: Eq. (55) ζ = 4/3 AN rc = 0

Present model: Eq. (58) ζ 6 3 A0N +A1/N rc > 0

+
√

A2 +A3/N +A4/N2

for which they evaluate α =+ 7
8
. Based on this, they obtained

the size distribution as:

w(N) ∝ N−7/8e−µN (54)

Unfortunately, this predicted size-distribution renders smaller

vesicles more probably not less and is somewhat contradic-

tory to the experimental observation that there exists a mini-

mal vesicle size.

Finally, we note that Kleinert53 also revisited this problem.

Renormalizing the mean and Gaussian and spontaneous cur-

vature constants, and considering their effects together within

a harmonic approximation, he obtained the following form for

the size distribution:

w(N) ∝ N7ρ2−6ρ+4/3e−AN (55)

in which he introduced the so called elastic fraction ρ ∈ (0,1)
that essentially captures the combined entropic effects of mean,

Gaussian and spontaneous curvatures. It can be readily seen

that the exponent of N has a maximum of 7/3. Nevertheless

for pure bending of the lipid membranes that does not involve

any tilt or area change, the maximum is found to be 4/3. As a

result, compared to (51) and (54) the distribution (55) predicts

smaller probability for small sizes, however, is still far from

the experimental observations.

We now turn to the use of the thermal fluctuations results

we have derived in the preceding section, in the context of

fourth order nonlinear elasticity, to derive the size-distribution.

Consider the following general form of the size distribution:

w(N) ∝ Nζ exp(− f (N)) (56)

wherein ζ and f (N) determine different forms of the distri-

butions and their dependences on N in various models. Prior

models as well as ours (to be described) may be described by

appropriate specification of ζ and f (N).

In our model, substituting Equation (45) into Equation (48),

the total free-energy for a given size of the vesicle can be writ-

ten as:

F = 2πκeff +µN

= πκb

(

1+
6ℓ2

c

r2
0

+χ

)

− α ′

2
kBT logN +µN (57)
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Helfrich Model
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Fig. 4 Size distribution of vesicles with different values of ℓc. In

this figure, the horizontal axis is the normalized radius of the vesicle

ξ = r0/d and the vertical axis is the probability of finding vesicles

within a certain radius. Dotted blue curve corresponds to the size

distribution as predicted by linear curvature elasticity84. The solid

magenta is obtained assuming ℓc = 3nm, which results in a shift in

the size distribution, to larger sizes. Also the dotted red line

corresponds to ℓc = 10nm which dramatically changes the cut-off

radius as well as the mean radius of the vesicles. Based on the

experimental data41, shown in purple color, we have estimated the

characteristic length for this kind of lauric acid vesicles to be about

ℓc = 3nm. For our calculations, we have set κb = 20kBT and

d = 5nm.

where χ and α ′ are defined in (39) and (46) respectively. Us-

ing Equation ((49)) we propose the following size-distribution:

w(N) ∝ Nα ′/2 exp(− f (N)) (58)

where

f (N) =
1

kBT

(

µN +
A1

N
+

√

A3 +
A4

N
+

A5

N2

)

(59)

Here we have substituted r2
0 in (57) by NA0/4π where A0 is

the area per amphiphilic molecule. Other Ai are coefficients

that depend on κb and ℓc. Note that the exponent α ′ in Equa-

tion (58) is not a constant and varies with the radius of the

vesicle. On the other hand, in addition to the term 1/N, the

contribution of the term 1/
√

N in the exponential function dra-

matically reduces the probability for finding small vesicles.

These two effects together result in a notable shift in the size-

distribution diagram towards larger sizes when compared to

other models16,53,84.

A comparison between the results of our model with ex-

perimental data41 is made in Figure. 4, where we have plotted

the size distribution for three different cases. In this figure,

the horizontal axis is the normalized radius of the vesicle r0/d

and the vertical axis is the probability of finding vesicles with

a certain radius. Dotted blue curve corresponds to the size

distribution within linear curvature elasticity84 as presented in

Equation (51). The solid magenta is obtained from the present

nonlinear model, assuming ℓc = 3nm and the dotted red line

corresponds to ℓc = 10nm. Finally, we may estimate the char-

acteristic length ℓc to fit our results to those obtained from the

experiments. A comparison between our results and experi-

mental data41 in Figure. 4 shows that the corresponding char-

acteristic length for this type of composition is roughly about

ℓc = 3nm. Even though this value is in the same order as the

thickness of the membrane, at finite temperature it can dra-

matically change the size distribution of the vesicles through

thermal fluctuations. Finally, the experimentally observed cut-

off radius is clearly evident in our model.

5 Discussion and Concluding Remarks

One of the main results derived in this paper is a closed-form

expression for the spectra of the thermal fluctuations of spher-

ical vesicles duly incorporating nonlinear curvature elasticity

terms. In conjunction with our results, either molecular dy-

namics simulations or experimental flicker spectroscopy may

now be used to extract nonlinear elasticity properties. The

renormalized bending rigidity due to thermal fluctuations is

found to be size-dependent and a dramatic stiffening is pre-

dicted to occur for small sub-20 nm vesicle sizes.

The conventional models (based on linear curvature elas-

ticity) that purport to describe vesicle size-distributions typ-

ically fail to adequately capture a few qualitative aspects of

the distribution for small vesicle sizes. We have used our an-

alytical expression for the renormalized bending stiffness in

the nonlinear framework, to study the size distribution of vesi-

cles. Although, all the existing models predict a Gaussian size

distribution, the problem of the cut-off radius–below which

the vesicles are not likely to exist– is inadequately predicted

and as evident from our predictions, the size-distribution is

considerably more complex. A possible explanation for the

instability of vesicles with sizes below the cut-off radius is the

entropic repulsive forces between the amphiphilic molecules.

In the following we summarize the key issues related to

fourth-order moduli as discussed in prior works put in the con-

text of what we have found:

• The first one is regarding the magnitude and signifi-

cance of the fourth order modulus. Typically ℓc is as-

sumed to be of the order of the thickness of the mem-

brane. Based on this assertion, the higher order con-
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Fig. 5 Size distribution of vesicles with negative fourth order

modulus is shown qualitatively in this figure. In sharp contrast to

experimental observations known so far, the distribution is

discontinuous and is not a Gaussian distribution. Small-size vesicles

are more probable not less. Finally, beyond a certain size, the vesicle

becomes unstable. This plot is obtained by ℓc = 2nm. For larger

values of ℓc, the unstable region is shifted to larger sizes.

tributions of the bending energy are usually ignored in

studying the mechanical response of the vesicles. Our

results, however, demonstrate that thermal fluctuations

of small unilamellar vesicles are significantly influenced

by the higher order modulus even for small values of

ℓc. Furthermore, for nearly flat membranes, wherein

the curvature dependency vanishes, the nonlinearity can

still significantly suppress the undulations and hence in-

crease the apparent rigidity. For example, using ℓc =
2nm which is less than the thickness of the membrane,

a correction of about 40% is obtained in the apparent

bending rigidity. In order to highlight some of the dis-

crepancies between our results with the prior works the

reader is referred to a recent work by Harmandaris and

Deserno85. Using molecular dynamics simulations, these

authors employed the well-known idea of tether-pulling

experiments86,87 to study the fourth order correction of

the bending energy for cylindrical vesicles consist of

pure DPPC lipid molecules. Their results indicate that

the quadratic energy function proposed by Helfrich is

valid for a wide range of curvature radii up to the thick-

ness of the membrane. The entropic effects are assumed

to be intrinsically embedded in the simulations. Never-

theless, we speculate that, for tethered membranes, due

to the high surface tension, the undulations are signifi-

cantly suppressed and hence the role of entropic effects

in the apparent bending stiffness were not adequately

taken into account. This can be explained by recogniz-

ing the fact that the fluctuations of the out of plane dis-

placement field in the presence of surface tension vary

as: 〈h2〉 ∝ 1/σ . According to the relation between the

surface tension and the radius of the vesicle R ∝ 1/
√

σ ,

to reduce the size of the vesicle to just a few times of

the thickness of the membrane, a relatively high tension

field is required to overcome the entropic effects. It has

been observed in experiments that if such tension field is

abruptly removed, the vesicle will undergo an entropic

instability88.

In a different work Li et. al.89, also using molecular

dynamic simulations, have computed the elastic prop-

erties of the membrane, including fourth order moduli.

Unlike the work by Harmandaris and Deserno85, these

authors carried the their simulations for various volume

fractions of hydrophilic molecules. Interestingly, their

results on free energy calculation also demonstrate that

the higher order contribution of bending energy, is rel-

atively small and the difference between their results

and those obtained within Helfrich model is no more

than 10%. Also, they obtained values for the fourth or-

der moduli which surprisingly depend on the topology

of the vesicles– negative values for spherical and pos-

itive values for cylindrical vesicles. This is puzzling

to us since the properties, in principle, or for the un-

derlying material not a topological structure. A pos-

sible explanation for observation of such contradictory

results in their analysis is that the contribution of the

intrinsic topology— spontaneous Gaussian and mean

curvatures— is not taken into account. Strictly speak-

ing, a flat membrane does not transform to spherical

shape, unless an energy cost is considered for fission or

fusion. In this manner all the free energy should not be

referred to only bending energy. Hence, the free energy

of cylindrical and spherical shapes should be analyzed

using the different reference states.

• The second issue regarding the fourth order modulus is

related to the sign of the modulus. In the present work,

the higher order modulus is assumed to be positive from

the outset. However, it has been argued that the fourth

order modulus is negative when dealing with different

co-surfactants90. Also it has been argued that a negative

fourth order elastic modulus is a possible explanation

for the mechanism of lipid protein sorting91. We note

that, in the presence of different compositions, various

stable phases might be observed that can be described

in terms of different spontaneous mean and Gaussian

curvatures or alternatively different bending stiffnesses.

We however, believe that a change in the molecular struc-

ture of the membrane, results in both mechanical and
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topological transformations. For pure lipid membranes,

a positive fourth order correction of bending energy is

required to explain the experimentally observed size dis-

tribution of vesicles—as evident from Figure. 5 which

clearly demonstrates how unrealistic the size-distribution

results will be if a negative fourth order modulus is used.

• Finally, we note that that, when the area-size of the

membrane becomes comparable with its thickness, the

notion of high-q cutoff necessary in the functional in-

tegration becomes dubious. For the smallest size vesi-

cles, we come dangerously close to that limit. However,

given the close agreement of our results with experi-

mentally observed vesicle size-distributions, we specu-

late that our results are at least qualitatively reasonable.
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