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Deformation of a soft helical filament in an axial flow
at low Reynolds number†

Mohammad K. Jawed,a and Pedro M. Reis∗ab

We perform a numerical investigation of the deformation of a rotating helical filament subjected
to an axial flow, under low Reynolds number conditions, motivated by the propulsion of bacteria
using helical flagella. Given its slenderness, the helical rod is intrinsically soft and deforms due to
the interplay between elastic forces and hydrodynamic loading. We make use of a previously de-
veloped and experimentally validated computational tool that models the elasticity of the filament
using the Discrete Elastic Rod method and the fluid forces are treated using Lighthill’s Slender
Body Theory. Under axial flow, and in the absence of rotation, the initially helical rod is extended.
Above a critical flow speed its configuration comprises a straight portion connected to a localized
helix near the free end. When the rod is also rotated about its helical axis, propulsion is only
possible in a finite range of angular velocity, with an upper bound that is limited by buckling of the
soft helix arising due to viscous stresses. A systematic exploration of the parameter space allows
us to quantify regimes for successful propulsion for a number of specific bacteria.

1 Introduction
Slender helical rods under hydrodynamic loading may undergo
geometrically nonlinear deformation; a canonical example of
which is the flagellum of a bacterium. The rotation of one or
more of these rod-like helical structures generates a propulsive
force that enables the translation of bacteria1. At the microscopic
scale of flagella, viscous loading generated by the fluid dominates
over inertia, and flagellar propulsion occurs in the low Reynolds
number or Stokes regime1. The combined effect of the hydrody-
namic forces on flagella arising from the viscous medium coupled
with their slenderness-induced flexibility (or softness) can result
in geometrically nonlinear deformed configurations 2–5. More-
over, the deformation of a flagellum under axial flow has enabled
measurements of its bending rigidity6 and has allowed for the
probing of the controlled transformation between different poly-
morphic forms7. This experimental work has motivated a series
of computational studies that have numerically analyzed the ob-
served modes of deformation8,9. However, these simulation ef-
forts either used Resistive Force Theory10,11, which cannot yield
quantitative agreement with experiments12, or considered linear
deflections, thereby overlooking the geometrically-nonlinear de-
formations. The importance of these nonlinearities has indeed
been highlighted by the synthesis of microscale helical ribbons
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and the quantification of their modes of deformation under axial
flow13. Motivated by this context of natural and artificial flagella,
we have recently combined precision model experiments with nu-
merical simulations to study the propulsion of a soft filament ro-
tating about its helical axis, clamped at one end fixed in space14.
Beyond a critical angular rotation speed, we found that the hy-
drodynamic forces can cause the filament to buckle and exhibit
strong geometric-nonlinearities. This threshold was found to be
approximately within one order of magnitude of the operating
angular speed during locomotion of some well-studied bacteria.
Inspired by these results, we now place emphasis on the effect of
axial flow on this instability mechanism and its effect on propul-
sion.

Here, we perform a systematic numerical investigation of a ro-
tating helical filament deformed by an axial flow (see Fig. 1),
under low Reynolds number conditions. Our goal is to establish
a description for the configurations that ensue. Our system is in-
spired by the dynamics of a bacterial flagellum, but, for simplicity
and to avoid loss of generality, we have decided not to consider
the hydrodynamic effects of the cell body. We consider the com-
bined effect of rotation and translation of the flow with respect to
the filament to quantify the resulting propulsive force, as well as
characterize the underlying mechanical instabilities. Our numeri-
cal model couples the Discrete Elastic Rod (DER) method15–17 for
a geometric-nonlinear elastic description of the slender filament,
with Lighthill’s Slender Body Theory (LSBT)10 to account for the
important long-range hydrodynamic interactions between distant
portions of the filament.
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Exploiting the robustness and efficiency of our computational
approach, we first map out the elongation of the initially heli-
cal rod as a function of the axial flow speed, our primary con-
trol parameter, and the other relevant geometric, material, and
fluid properties. Motivated by the swimming (translation) of uni-
flagellated bacteria through their rotating flagellum, our explo-
ration is then extended to include a rotating helical rod under
axial flow. We evaluate the minimum and maximum angular ro-
tation velocity for successful propulsion in our reduced model set-
ting. These two bounds coalesce at a critical axial flow speed,
such that propulsion is not feasible beyond this threshold. We
then survey this limiting range for biologically relevant parame-
ters to assess their pertinence to propulsion.

2 Definition of the problem
We consider a linear elastic rod with a right-handed helical config-
uration in its stress-free state (axial length, l, pitch, λ , and helix
pitch, R; see Fig. 1d). Its cross-section is circular with radius,
r0 � l, such that the area moment of inertia is I = πr4

0/4. The
rod is immersed in a viscous fluid with dynamic viscosity µ and
density ρ. One end of the helical rod is clamped and translated
along the negative direction of the x-axis (see Fig. 1d for details
on the coordinate system), that is equivalent to imposing a uni-
form flow with speed, v, aligned along the positive x-axis, as long
as the Reynolds number remains Re = vr0ρ/µ � 1. An angular
velocity, ω, is also prescribed to the clamped end. The sign of ω

hl
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Fig. 1 Representative configurations of a soft helix subjected to an axial
flow (aligned vertically, from top to bottom): (a) undeformed helix (v̄ = 0),
(b) stretched helix (v̄ = 10.5), and (c) localized helix (v̄ = 105). The
clamped end (black square) is rotated with the dimensionless angular
velocity of ω̄ = 0 shown in red in (a1), (b1), (c1) and ω̄ = 264 shown in
green in (a2), (b2), (c2). The physical parameters correspond to the
representative case detailed in the text. The configurations were
recorded at the dimensionless time t̄ = 0.71. (d) Schematic diagram
showing the relevant geometric quantities.

is taken to be positive, if the clamp rotates in the anti-clockwise
direction, when the helix is seen from above. The other extrem-
ity of the rod is set free. To aim for generality of the results and
for simplicity, throughout our study in a model setting we do not
consider an equivalent of the cell body. Therefore, when connec-
tions are established with the original biological system, we ne-
glect the hydrodynamic interaction between the cell body and the
flagellum, although this is an effect that should be considered in
future studies. It is also important to note that, in natural bacte-
rial propulsion, the net force and torque generated by the flagella
are canceled by the opposite force and torque from the cell body,
and thus result in a force-free and torque-free system. In our sys-
tem, since the filament is rotated at a clamped point that is fixed
in space, for any net force generated by the helical filament, there
is an equal and opposite reaction force at the clamp.

All the numerical experiments in this paper employ a represen-
tative rod that has a normalized pitch, λ/l = 0.25, and normal-
ized radius, R/λ = 0.318, unless stated otherwise. This choice is
such that these geometric parameters lie in the respective known
ranges of bacterial flagella12,18: 0.1 . λ/l . 0.4 and 0.07 . R/λ .
0.4. A characteristic velocity EI/[µl3] can be constructed from the
balance of viscous and elastic effects (EI is the bending stiffness
of the rod), and is used throughout to normalize the axial velocity
as v̄= vµl3/[EI]. This nondimensionalization scheme is verified in
detail in §4, below. Our focus is to span the regimes where elas-
ticity dominates (v̄� 1) and where viscous loading is prevalent
(v̄� 1), and capture the coupling that leads to mechanical in-
stabilities of the filament in the cross-over region at v∼ EI/[µl3].
Existing comparisons between this scenario and the natural sys-
tems have underlined the importance of this interplay14. Sim-
ilarly, the characteristic frequency obtained from the balance of
bending forces and viscous drag is used to nondimensionalize the
angular rotation speed (imposed at the clamp) as ω̄ = ωµl4/[EI]
and time as t̄ = t EI/[µl4]14. The specific dimensional physical
properties used in our simulations are provided in §3.

In Figs. 1a-c, we present a series of representative configura-
tions of deformed helices in steady state at three different values
of the axial flow speed. In the absence of rotation (Figs. 1a1,b1,c1
for ω̄ = 0), the rod assumes a helical configuration which, for high
enough values of v̄, may be localized (near the clamp, the rod
has a straight portion that is connected to a helix near the tip).
When the angular velocity is nonzero (Figs. 1a2,b2,c2), the rod
can buckle (Fig. 1a2), or the presence of a nonzero axial flow may
prevent buckling from occurring (Fig. 1b2, c2).

To systematically quantify the deformation process, the sus-
pended height, h (vertical distance along the helix axis between
the clamp and the tip of the rod), is taken as a shape parameter.
We shall start by first addressing the elongation of a helix under
axial flow with ω̄ = 0, and provide a general description. We will
then account for the rotation of the helix, which generates a nor-
malized propulsive force, F̄p = Fpl2/[EI], and can induce buckling
in the rod if a critical angular velocity, ω̄b, is reached; a typical
buckled configuration is presented in Fig. 1(a). These two quan-
tities, ω̄b and F̄p, are evaluated for a few representative model
helices that are geometrically similar to some well-known bacte-
rial flagella. At a given flow speed, v̄, this allows us to estab-
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lish boundaries for minimum angular velocity necessary to sus-
tain propulsion, and the maximum angular velocity above which
buckling takes place. Furthermore, if the flow speed, v̄, is too
high, buckling may occur even before the minimum value of ω̄ to
sustain propulsion (F̄p > 0) is reached. This sets an upper bound
on the axial speed, which we quantify for our helical filaments.

3 Numerical simulation approach
The numerical tool used to study the fluid-structure interaction
problem described above combines: i) the Discrete Elastic Rod
(DER) method16 to simulate the elasticity of the structure, and
ii) Lighthill’s Slender Body Theory (LSBT)10 for a long range hy-
drodynamic force model for the viscous medium. Both DER and
LSBT have been independently validated in detail against pre-
cision experiments12,19, and likewise for the aforesaid coupled
implementation14. A detailed account for the formulation that
couples DER with LSBT, as well as boundary conditions, is pro-
vided in Ref.14.

The DER method16 represents a Kirchhoff elastic rod20 by the
centerline, γ(s), and its angular evolution, θ(s), both of which are
parameterized by the arc-length, s. The strains in a deformed rod
can then be computed from the twist, θ ′(s), curvature, |γ ′′(s)|,
and axial stretching.

The relation between the velocity, u(s), and the viscous force
per unit length, f(s), is provided by LSBT as

u(s) =
1

8πµ

(
2f(s) · (I− t(s)⊗ t(s))+

∫
f(s′) ·

(
I
|r| +

r⊗ r
|r|3

)
ds′
)
,

(1)
where t(s) is tangent to the centerline and r = r(s)− r(s′) is the
position vector of a point at s, with respect to another at s′. The
integration is performed over |r|> r0

√
e/2, where r0 is the cross-

sectional radius of the rod, and the quantity r0
√

e/2 is referred
to as the cut-off length10. The propulsive force on the clamping
point that results from the rotation of the helical filament can be
calculated by integrating the viscous force along the arc-length,
Fp =−

∫ L
0 f ·exds, where L is the contour length of the helix. In the

discrete setting, the rod is composed of a collection of N nodes
along the centerline. For the representative case we set N = 173,
such that the distance between nodes is twice the cut-off length
r0
√

e/2 in Eq. (1). At each time step in DER, LSBT is used through
Eq. (1) to relate the velocity at each node with the viscous forces
applied by the fluid on all the nodes. The positions of the first
two nodes on the rod are constrained such that the helix axis at
the clamp is always aligned along ex.

Unless noted otherwise, the rod in our numerical experiments
has a Young’s modulus E = 1255kPa, Poisson ratio ν = 0.5 (i.e.,
incompressible material), and an axial length l = 0.2m. The ratio
of length to cross-sectional radius is r0/l = 126. The density of
the rod, ρr = 1.273 g/cm3, is equal to the density of the viscous
medium, such that buoyancy can be neglected. The viscosity of
the fluid medium is µ = 1.6 Pa · s. These parameters are identical
to the experiments reported in Ref.14. Hereafter, we shall refer to
simulations with the above set of parameters as the representative
case. To ensure generality of our results and applicability across
length scales, our simulations results are presented throughout

in a dimensionless form using the nondimensionalization scheme
introduced in §2, above.

4 Deformation under axial flow
We start our investigation by quantifying the deformation of a
helix under a uniform axial flow in the ex direction, along the axis
of the helix, and sweep the relevant physical parameters. Our
goal is to obtain a generic description of the suspended height
as a function of the relevant physical parameters. Throughout
this section, the helical filament is not rotated, i.e., the angular
velocity is fixed at ω̄ = 0.

In Fig. 2, we present time series of the dimensionless suspended
height of the rod, h̄ = h/l (normalized by the initial axial length,
l) for two instances of identical magnitude of the flow speed, but
opposite directions: v̄ = 105 (solid line) and v̄ = −105 (dashed
line), respectively. In both cases, the initial time evolution of
the suspended height is approximately linear, up to t̄ . 10−2 , al-
beit with opposite slopes as the helix is moderately extended or
compressed, respectively (see inset of Fig. 2). Eventually, both
cases asymptote to steady values. For v̄ = 105, past the initial
linear regime, h̄ reaches the steady state height of h̄ = 1.99 (see
Fig. 2b1-b4 for the corresponding sequence of configurations).
By contrast, for v̄ =−105 (see Fig. 2c1-c4), h̄ decreases with time
and eventually reaches a steady state configuration that appears
as a flipped version of the case above with positive axial speed.
When t̄ . 10−2 (Fig. 2c1), the helix compression is approximately
linear with time, and then undergoes a sudden shape change at
t̄ ≈ 10−2 (Fig. 2c2) when the free end of the helix bypasses the
clamped end (Fig. 2c3). At this point, h̄ becomes negative and
eventually reaches h̄ = 1.92 (Fig. 2c4). The primary difference
between the v̄ = 105 and v̄ = −105 cases is the imposed angle
between the helix axis at the clamp and the direction of the flow
velocity. This results in a slightly higher steady state value of the
former (h̄ = 1.99), compared to the latter (h̄ = 1.92), due to the
boundary layer of the rod near the clamp for the second case.

10-5 10-4 10-3 10-2 10-1 100
-3

-2

-1

0

1

2

3
v̄ = 105
v̄ = −105

N
or

m
. 
h
ei

g
h
t,
 

Norm. time,

h̄

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

(a)
v

v

t̄

0 0.005 0.01
0

1

2

t̄

h̄

(a)

Fig. 2 (a) Time series of normalized suspended height, h̄, of the
representative rod at v̄ = 105 cm/s (solid line) and v̄ =−105 (dashed
line). Inset: Zoomed in region of the plot shows a linear relation between
h̄ and t̄ near t̄ = 0. Time series of representative configurations for (b)
v̄ = 105 and (c) v̄ =−105 at (b1, c1) t̄ = 0.0024, (b2, c2) t̄ = 0.011, (b3,
c3)t̄ = 0.024, and (b4, c4) t̄ = 0.238.
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From here on, we focus on analyzing the steady state values of
the suspended height of the helical filament as a measure of its
deformation, for a variety of parameters and flow configurations.

-500 0 500
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2 Sim
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N
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h
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g
h
t,
 ̄h

Norm. axial velocity, v̄

v̄ = v̄+cv̄ = v̄−c

Fig. 3 Normalized suspended height, h̄, in steady state as a function of
axial speed, v, for the representative rod. The dashed line is a fit to
Eq. (2) with the parameters: C+ = 1.18±0.01 and v̄+c = 55±3 for v̄≥ 0;
C− = 1.13±0.01 and v−c = 64±4 for v̄ < 0.

In Fig. 3, we plot the steady state value of the normalized sus-
pended height h̄ as a function of the axial flow velocity. First,
when the axial flow is oriented along the ex (v̄ > 0), we find that
the suspended height increases monotonically with v̄ and eventu-
ally asymptotes to h̄ ≈ 2. For characterization purposes, we de-
scribe this h̄(v) curve heuristically as

h̄ = δ

[
1+C

(
1− e−δv/vc

)]
, (2)

where both C and vc are fitting parameters and δ can be either -1
or 1, for v̄ < 0 or v̄≥ 0, respectively. Note that C and vc can have
slightly different values for v̄ < 0 (or v̄≥ 0), which we shall distin-
guish by C− (or C+) and v̄− (or v̄+). The fit of the data to Eq. (2) is
represented by a dashed line in Fig. 3a. The parameter vc (vertical
solid lines in Fig. 3a) is hereafter referred to as the characteristic
speed and delineates the stretched helix regime (|v̄|< v̄c, Fig. 1b1)
and the localized helix regime (|v̄| > v̄c, Fig. 1c1). The parameter
C provides an estimate of elongation when v̄ approaches infin-
ity, and is termed the elongation parameter. Since the tip of the
filament is free of moments, the helical rod never reaches a com-
pletely straight configuration. On the other hand, when the axial
flow is set along the −ex direction (i.e., from free end towards the
clamped end) so that v̄ < 0, the steady state suspended height,
h̄, decreases and the helix flips over to reach h̄ = −1 at v̄ ≈ −20.
Beyond that point, the height can also be described by Eq. (2)
with δ =−1. Fitting the data for v̄ < 0 yields C− = 1.13±0.01 (vs.
C+ = 1.18±0.01 for v̄≥ 0) and v̄−c = 63.8±3.5 (vs. v̄+c = 54.7±3.4
for v̄ ≥ 0). The slight mismatch between C+ and C−, as well as
v̄+c and v̄−c can be attributed to the boundary condition at the
clamped end: unlike the case of positive axial speed, the helix
exits the clamp in the direction opposite to v̄ when v̄ < 0. Here-
after, all the measurements of C and v̄C correspond to C+ and v̄+c ,
respectively.

It is worth mentioning that there is a direct analogy between

the deformation of our helical filaments due to axial flow and the
shapes of suspended curly hair21. For this later case, the defor-
mation of a suspended naturally curved rod under gravity exhibits
three qualitatively distinct configuration regimes – planar curls,
localized helices, and global helices – each of which has well-
defined phase boundaries. In the present study, the viscous drag
induced by the axial flow plays a role similar to that of gravity in
the aforementioned problem.

Having described the behavior of h̄(v) for a specific helical fil-
ament, we now seek to explore the parameter space by quanti-
fying the characteristic speed, vc, for a range of other geometric
(l,λ ,R), material (E, I), and fluid (µ) parameters. The radius of
the filament, r0, has been found to have a negligible effect on the
flow14 (confirmed again below) and is therefore not considered
as a parameter in the fluid description. The steady state shape
of the rod is set by a balance between the external viscous drag
forces and the internal elastic forces. The rod can be treated as in-
extensible due to its slenderness such that elastic forces arise due
to bending. Balancing the characteristic forces per unit length for
bending, fb ∼ EI/l2, and viscous drag, fv ∼ µvl, yields a scaling
law for the characteristic flow speed

vc ∼
EI
µl3 , (3)

for a fixed set of geometric parameters. Moreover, R/λ and λ/l
are chosen to be the dimensionless groups representing the helical
geometry. Note that the torsional stiffness is directly proportional
to the bending stiffness of an incompressible rod, and therefore,
a balance between viscous and twisting forces would have given
the same scaling law.

In Fig. 4a, we plot vc as a function of EI/[µl3] obtained from a
series of simulations in the range of 0< v̄. 104, following a proce-
dure similar to that used in Fig. 3. Starting from the parameters of
the representative case (see §3), each of the relevant parameters,
{E,r0, l,µ}, are independently and individually varied, while fix-
ing the geometric groups R/λ = 0.318 and λ/l = 0.25. We find that
all the data collapse onto a master curve that agrees well with the
scaling in Eq. (3) (solid line in Fig. 4). It is therefore appropriate
to nondimensionalize the characteristic speed as v̄c = vcµl3/[EI].
To estimate the value of vc for bacterial flagella, we extrapolate
this scaling to obtain EI/[µl3] = 10−5 m/s (represented by the ver-
tical dashed line in Fig. 4), for which we used an order of mag-
nitude estimates of (EI ∼ 10−23 N/m2)22, (µ = 10−3 Pa.s), and
(l ∼ 10−5 m)12. Our data in Fig. 4 indicates that the critical ve-
locity in bacterial regime is vc = 4.27 · 10−4 m/s. For the data
presented in Fig. 4, the normalized axial force at v = vc exerted
on the filament by the fluid is −F̄p = 148± 10. Results reported
previously7 for the force versus extension with real bacterial flag-
ella (also see numerical investigation in Ref.8) show significant
change in shape at this force level that eventually leads to the
triggering of a polymorphic transformation at normalized forces
of ∼ 102. The fact that the both of this force values is of the same
order of magnitude is intriguing but a detailed study of polymor-
phism is beyond the scope of our study.

In Fig. 4b, we plot the elongation parameter, C, used in Eq. (2),
as a function of EI/[µl3], for the same set of data used in Fig. 4a.
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Fig. 4 (a) Critical speed, vc, as a function of characteristic speed,
EI/[µl3]. The parameter sweep starts with the parameters of the
representative rod, and while keeping three of the four parameters
{E,r0,µ, l} fixed, the forth is varied. The geometric parameters, λ/l and
R/λ , are kept constant. The data can be best fitted by
vc = (42.7±0.3)EI/[µl3] (solid line). (b) The elongation parameter, C, in
Eq. (3) is obtained from the same set of data. The solid line represents
the mean, C = 1.07, that has a standard deviation of 0.01.

For a fixed geometry of the filament, the variation of C on EI/[µl3]

is negligible, with a standard deviation that is less than 1% with
respect to its mean value 〈C〉 = 1.07 (horizontal solid line in
Fig. 4b). This finding further supports our nondimensionalization
procedure.

We proceed by describing the dependence of the characteris-
tic speed, v̄c, and the elongation parameter, C, on the geometric
parameters of the helix. Since a closed form solution is out of
reach for us, we perform a numerical survey where we individu-
ally vary the normalized pitch, λ/l, and normalized helix radius,
R/λ , while keeping the remaining parameters fixed at the values
of our representative case (except with an increased axial length,
l = 0.4m, to ensure that the cross-sectional radius is always negli-
gible compared to λ and R). The results of this parameter sweep
are plotted in Fig. 5a where we find that the heuristic form

v̄c =Cg (l/R−λ/R) , (4)

provides a good description of the data, with Cg as a fitting pa-
rameter. The dashed lines in Fig. 5a represent the fits of the ex-
perimental curves with different values of λ/l to Eq. (4), from
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Fig. 5 (a) Normalized characteristic speed, v̄c as a function of
normalized helix radius, R/λ , at different values of normalized pitch, λ/l
(see legend). The dashed lines are fits of Eq. ( 4) to the data with
Cg = 9.78±0.30. (b) Dependence of the elongation parameter, C, on the
normalized helix radius, R/λ , for different values of λ/l (see legend).
The dashed line is the prediction from Eq. (5).

which we obtain Cg = 9.78±0.30.
To describe the dependence of the elongation parameter on

the geometry of the rod, we evaluate C during the parameter
sweep described above, and in Fig. 5b, plot it as a function of
R/λ , for different values of λ/l. Since the originally helical rod is
stretched and becomes approximately straight for axial flows with
v̄c � 1, the suspended height asymptotes to its contour length,
L = l/cos(2πR/λ ). From this, and without any fitting parameters,
we can estimate

C = cos
(

2πR
λ

)−1
−1, (5)

which is plotted as a dashed line in Fig. 5b. Eq. ( 5) is found to be
in good agreement with the simulation data. There is, however, a
slight overestimation due to the fact that for v̄� v̄c there is still a
small boundary layer region with a curved configuration near the
tip and the rod never stretches to be perfectly straight.

Thus far, we have quantified the extension of a non-rotating
soft filament subjected to axial flow, and provided a heuristic de-
scription of the deformation process, in dimensionless form, as a
function of a wide range of the geometric and physical param-
eters. Combined, Eqs. (2), (4) and (5) allow us to predict the
deformation of the helical filament under axial flow, including in
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regimes that are relevant for bacterial flagella.

5 Rotating filament under axial flow

Natural flagella rotate about their helical axis, simultaneously to
the translation (swimming) motion of the bacterium. For the re-
mainder of our study, we address the combined effect of rotation
and translation on the deformation of a single helical filament.

It is known that a rotating helical rod fixed in space (v̄= 0) gen-
erates a propulsive force, Fp, and undergoes a buckling instability
when a critical angular velocity, ωb, is reached14,23. In a previ-
ous study14, we have shown that ωb scales with the characteristic
frequency, EI/[µl4], as mentioned in §2, and can be nondimen-
sionalized to introduce the dimensionless critical angular veloc-
ity, ω̄b = ω̂bωbµl4/[EI], where ω̂b is a numerical prefactor that
depends on geometry alone. We have also shown that the propul-
sive force drops past ω̄ > ω̄b, and thus ω̄b sets an upper bound on
the maximum possible propulsion attainable by a helical filament.
We now augment these previous findings to also consider the ef-
fect of translation at a prescribed axial speed, v, in addition to the
rotation of the helical filament at a prescribed angular velocity,
ω. Our goal is to explore and rationalize the combined effect of v
and ω on the onset of buckling of helical filament, as well as the
maximum propulsive force that can be attained.

In Fig. 6a, we plot the normalized height, h̄, as a function of
ω̄ for a helical rod (with the geometric and physical parameters
of the representative case, see §2) in an axial flow with v̄ = 1.05.
At ω̄b ≈ 225 , the suspended height drops sharply to h̄≈ 0.5 when
buckling occurs. Typical shapes of the deformed helix prior to
buckling (ω̄ = 132) and after buckling (ω̄b ≈ 225) are shown as
insets in Fig. 6a. The corresponding dimensionless propulsive
force, F̄p = Fp/[EI/l2], normalized by the characteristic bending
force, is presented in Fig. 6b as a function of ω̄. The propulsive
force is negative up to ω̄∗ ≈ 100, indicating that the axial flow
(v̄ = 1.05) dominates in this regime. In the intermediate regime
ω̄∗< ω̄ < ω̄b, the propulsive force is positive. For microorganisms,
this surplus force would translate into locomotion of the cell body.
Buckling occurs at ω̄b, and, as a result, the propulsive force drops
dramatically and becomes unsteady beyond this critical rotation
velocity14. The oscillations of the Fp signal in the post-buckling
regime are due to the complex configurational changes of the de-
formed filament, a detailed description of which is beyond the
scope of this study. The maximum propulsion, FM , that can be
generated at a given v occurs immediately prior to ω̄ = ω̄b. The
normalized maximum propulsive force, F̄M = FM l2/[EI], is indi-
cated in Fig. 6b by a star.

As a summary of the findings thus far, our results suggest that,
for a given geometry of the helical filament (i.e., R/λ and λ/l)
and axial flow velocity, v, successful propulsion requires the fol-
lowing two conditions on the angular velocity: (i) ω > ω∗ such
that the propulsion is high enough to overcome the drag from the
translational motion and F̄p is positive, and (ii) ω < ωb to ensure
that the hydrodynamic loading does not lead to buckling of the
filament.
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Fig. 6 (a) Normalized height, h̄ as a function of angular velocity, ω for a
helical rod with the physical and geometric parameters of the
representative case (see §2), with a fixed axial flow speed of v̄ = 1.05.
Buckling occurs at ω̄ = ω̄v (b) Normalized propulsive force,
F̄p = Fpl2/[EI], as a function of ω, with the same parameters as in (a).
The vertical dashed and solid lines correspond, respectively, to the
lower limit (ω = ω∗) and upper limit (ω = ωb) of the angular velocity for
feasible propulsion. The point marked with a star, corresponds to the
maximum propulsive force, F̄M , immediately prior to buckling at ωb

6 Biological implications
We now frame the results presented above to the context of bac-
terial locomotion, in particular regarding the limits of successful
propulsion. We consider a series of helical filaments with geome-
tries that were inspired by and taken to be similar to naturally
occurring bacterial flagella, the details of which are provided in
Table 1.

Table 1 Geometric parameters of model helices.

Model flagellum R/λ λ/l Bacterium12,24

1 0.12 0.17 Caulobacter crescentus (Wild)
2 0.11 0.20 Rhizobium lupini (Curly)
3 0.19 0.25 Rhizobium lupini (Normal)
4 0.09 0.36 Escherichia coli (CCW)
5 0.09 0.37 Escherichia coli (stopped)
6 0.09 0.25 Salmonella (Wild)
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Making use of our computer simulations, we systematically an-
alyzed the combined rotating and translating motion for these
model filaments. We first identified the angular buckling velocity
for the non-translating case, ω̄b(0), and then calculated the rela-
tive shift in buckling, defined as ∆ω = [ω̄b(v)− ω̄b(0)]/[ω̄b(0)], as a
function of the dimensionless axial flow speed, v̄. The results are
plotted in Fig. 7a, where we find that the critical angular veloc-
ity at which buckling occurs can be increased significantly (i.e.,
the onset of buckling can be delayed) as v̄ is increased, across all
of the configurations. For example, ∆ω ≈ 1 for v̄ ∼ 20, meaning
that the critical angular velocity for buckling is increased by up to
∼ 100%, with respect to the case when the filament is not trans-
lated. On the other hand, a higher v̄ is also accompanied with
higher value for the propulsive force required to sustain the axial
motion. However, increasing v̄ also has the effect of increasing ωb,
which makes some room for more propulsive force to be exerted.
This results in a delicate interplay between v̄ and the maximum
propulsive speed that can be attained, which we quantify next for
the same model helices under consideration.

In Fig. 7b, we present the variation of the normalized maximum
propulsive force, F̄M (directly associated with ω̄b), as a function
of the normalized axial speed, v̄, and find that there is a regime
for which F̄M becomes negative. This implies that no propulsion is
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Fig. 7 (a) Relative shift in buckling, ∆ω , as a function of normalized axial
velocity, v̄, for the different values of {R/λ ,λ/l}, specified in Table 1. The
geometric parameters of our model helices, were inspired by results in
the literature 12,24, for some well-known natural bacterial flagella. (b)
Dependence of the normalized maximum propulsive force, F̄M , with v̄.
Similarly to Fig. 5, the material and fluid parameters correspond to the
representative case, however, with l = 0.4m to ensure that r0� λ ,R.

possible for this high values of v̄ since the helical filament buckles
due to the build up of viscous loading even before the net propul-
sion is positive. For the filament geometries that we have studied,
this threshold occurs approximately within the range 15 . v̄ . 30.
Therefore, the buckling instability sets an upper limit on the axial
speed of the flexible helices. In other words, for a given filament
with prescribed material, geometric and fluid parameters, there
is a maximum translation speed above which the generation of a
propulsive force is unfeasible, at any angular velocity.

In order to relate our findings with bacterial locomotion, we
consider the order of magnitude estimates obtained from the liter-
ature — (µ = 10−3 Pa.s), (EI = 10−23 Nm2)22, (v = 20 µ m/s)3,24,
and (l = 10 µ m) — and obtain v̄ = 2. Note that the estimates
for EI reported in the literature6,25 range from 10−24 Nm2 to
10−22 Nm2, which lead to the bounds 0.2 < v̄ < 20. This estimated
range does for the most part fall below the threshold axial speed
identified above from our simulations (v̄ ≈ 15 ∼ 30, see Fig. 7b),
which, despite the lack of existing high quality experimental data
for EI for a more accurate comparison, is consistent with our anal-
ysis. Furthermore, using biological parameters, the angular buck-
ling velocity for the non-translating case for our model flagella lie
in the range 2 ·102 .ωb(0). 2 ·103 Hz, which is comparable to the
rotation rate of natural flagella3,24. It is important that for some
species (e.g. E. Coli and Salmonella), a more direct comparison
to the natural system would require for the interaction between
multiple flagella to be taken into account, which is not considered
in our analysis.

7 Conclusion
We have described and quantified the deformation of a soft heli-
cal filament that is simultaneously rotated and loaded by a uni-
form axial flow at low Reynolds number. Computer simulations
were performed to systematically explore the parameter space of
the system. Our framework could potentially be used to assist in
experimental measurements of the mechanical moduli of bacte-
rial flagella by quantifying the elongation of the filament under
prescribed flow conditions and comparing the measured charac-
teristic flow speed, vc, against our predictions. Our study also
highlights the fact that, even in the absence of active polymor-
phism7, an initially helical rod can dramatically change its shape
under an imposed axial flow. Moreover, for a given axial flow
speed, we uncovered lower and upper bounds on the angular ro-
tation speed for successful locomotion. For high enough values of
the axial flow speed, these two limits can coalesce such that lo-
comotion is no longer feasible, regardless of the angular rotation
speed.

We considered specific geometries that were motivated by natu-
ral bacterial flagella, and quantified the characteristics of propul-
sion, as well as the conditions for instability. For simplicity and
specificity, we focused exclusively on single helical filaments as
reduced model systems for flagella. Future studies should also
include the coupling with the hydrodynamics of the cell body,
which, combined with our framework, should provide a more
detailed model for a self-propelling uni-flagellated bacterium.
Moreover, given our implementation of non-local hydrodynam-
ics through Lighthill Slender Body Theory, the case of multiple
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helices could also be considered to model the propulsion of multi-
flagellated bacteria, e.g. E. coli and Salmonella. For this purpose,
the flexibility of the DER framework can be further augmented to
add relevant ingredients, such as self-contact and hydrodynamic
interaction with cell body. Beyond a first step towards a better
understanding of the role of flexibility in the propulsion of bacte-
ria flagella, our findings may also be used as design guidelines for
artificial flagella26, and provide enhanced understanding to port
learning from nature into biomimetic engineering systems.
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