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Fatigue refers to the changes in material properties caused by repeatedly applied loads. It has been widely studied for, e.g.,

construction materials, but much less has been done on soft materials. Here, we characterize the fatigue dynamics of a colloidal

gel. Fatigue is induced by large amplitude oscillatory stress (LAOStress), and the local displacements of the gel are measured

through high-frequency ultrasonic imaging. We show that fatigue eventually leads to rupture and fluidization. We evidence four

successive steps associated with these dynamics: (i) the gel first remains solid, (ii) it then slides against the walls, (iii) the bulk

of the sample becomes heterogeneous and displays solid–fluid coexistence, and (iv) it is finally fully fluidized. It is possible

to homogeneously scale the duration of each step with respect to the stress oscillation amplitude σ0. The data are compatible

with both exponential and power-law scalings with σ0, which hints at two possible interpretations in terms of delayed yielding

in terms activated processes or of the Basquin law. Surprisingly, we find that the model parameters behave nonmonotonically as

we change the oscillation frequency and/or the gel concentration.

1 INTRODUCTION

Fatigue refers to the changes in material properties caused by

repeatedly applied loads1. Fatigue is quite universal and af-

fects a broad range of materials from metals2 to biomaterials

such as adhesion clusters of cells3. In metals, the microscopic

events associated with fatigue depend on the load and usually

weaken the material. For example, if loads are above a cer-

tain threshold, microscopic cracks form at stress concentrators

such as the surface, persistent slip bands, and grain bound-

aries1,4–6. Eventually a crack reaches a critical size, prop-

agates, and the structure fractures7,8. Here, we address the

question of fatigue in a soft material namely a colloidal gel.

Under a constant stress, colloidal gels, like many other vis-

coelastic solids such as foams or emulsions, flow only above

a critical stress referred to as the yield stress σy. This stress-

induced fluidization is involved in virtually any application of
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colloidal gels, and it is essential to correctly measure and con-

trol this yield stress to ensure the safe and proper use of the

material. Yet it has been shown in recent years that many phe-

nomena may affect the way a material yields9–12. Slippery

boundary conditions may induce the solid-body motion of the

material without bulk fluidization12. Long and complex tran-

sient regimes may show coexistence of fluid and solid phases

before a liquid-like stationary state is reached13. In partic-

ular colloidal gels are prone to so-called “delayed yielding”

where it may take a very long time for a weak gel to yield un-

der a constant stress14–16. For instance, a gel can fail under

its own weight after several hours or days17,18. This “gravita-

tional collapse” has been associated to the progressive weak-

ening of the gel network due to thermally activated localized

rearrangements19 or to the interplay between the poroelas-

ticity of the gel and gravitational compression20,21. Delayed

yielding has also been investigated in gels subjected to a con-

stant shear stress imposed by a rheometer, including carbon

black gels22,23, thermo-reversible protein gels24 or weak gels

of polystyrene particles15. In all cases, the gels are eventu-

ally fluidized after complex transient regimes. These dynam-

ics have been related to activated processes: the applied shear

stress σ decreases the energy barrier for bond breakage lead-

ing to failure times that decrease exponentially with σ 14,16. In

this work we focus on the interplay between fatigue and yield-

ing of carbon black gels under cyclic shear, a phenomenon

which is comparatively much less documented in soft matter

than the case of constant load.

In a previous paper devoted to large amplitude oscillatory
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shear stress (LAOStress) experiments27, we have first shown

that the classical procedure to determine the yield stress σy

displays surprising results. In an oscillatory experiment at a

constant frequency f , where the amplitude σ0 of the shear

stress is ramped up with time t, σy is defined as the stress

amplitude at which the loss modulus G′′ overcomes the elastic

modulus G′ 28–30. In carbon black gels, σy depends on the ve-

locity of the applied stress ramp27: σy decreases as the ramp

rate increases. This result is inconsistent with physical aging,

where both G′ and σy have been shown to increase31. This

rate dependence of σy is here one of the hallmarks of fatigue.

To better characterize this fatigue-induced yielding, we per-

formed further LAOStress experiments27, this time keeping

the stress amplitude constant to σ0 = 11 Pa. An extensive

time-resolved analysis of the strain response, of the rheolog-

ical Fourier spectra, and of standard Lissajous plots (stress

vs strain or shear rate) coupled to simultaneous ultrasonic

imaging, showed that the gel dynamics involved two differ-

ent timescales, τw < τ f , where τw is associated with failure

at the walls, and τ f with a slower heterogeneous fluidization

involving solid–fluid coexistence until the whole sample be-

comes liquid-like. The spatial heterogeneities observed as the

gel slowly fluidizes suggested a fragmentation of the initially

solid-like gel into macroscopic domains eroded by the sur-

rounding fluidized suspension.

Here, we thoroughly address the influence of the stress am-

plitude and of the frequency, as well as that of the carbon black

concentration, on such a scenario. In Sect. 2, we first recall the

sample preparation method and the specifications of the appa-

ratus for combining standard LAOStress rheology and ultra-

sonic imaging in order to probe the local displacement within

carbon black gels during LAOStress experiments. In Sect. 3,

we show that τ f results from the accumulation of multiple

yielding processes: the gel first remains solid, at τw it starts

sliding against the walls, at τb it displays a bulk solid–fluid co-

existence, and at τ f it is finally fully fluidized. While the raw

times τw, τb and τ f seem to display two different behaviours

for low vs high stresses σ0 as also observed under a constant

load in Refs.14–16,22,23, scaling the durations of the succes-

sive yielding processes τw, τb − τw and τ f − τb with σ0 allows

us to describe the whole stress range within a single scaling.

These results are further discussed in Sect. 4 where we com-

pare our data with an extension of the delayed failure model16

to oscillatory shear (Appendix 2) and with the Basquin law.

The extension of the delayed failure model is based on acti-

vated processes and predicts that the characteristic durations

decrease exponentially with σ0, whereas the Basquin law pre-

dict a power-law behaviour. Both models fit our data well

given the small accessible range for σ0. Finally, we report a

surprising behaviour of the parameters of the delayed yielding

model and the Basquin law when varying the concentration of

the gel and the frequency of the oscillations.

2 MATERIALS AND METHODS

2.1 Carbon black gel preparation

Carbon black (CB) particles are colloidal, carbonated parti-

cles with a typical size range of 85 to 500 nm33 that result

from the partial combustion of hydrocarbon oils. These parti-

cles are widely used in the industry for mechanical reinforce-

ment or to enhance the electrical conductivity of plastic and

rubber materials34. When dispersed in a mineral oil (den-

sity 0.838 g.cm−3, viscosity 20 mPa.s, Sigma Aldrich), these

CB particles (Cabot Vulcan XC72R of density 1.8 g.cm−3)

are weakly attractive with interactions of typical strength U ∼
30kBT 35,36, where kB is the Botzmann constant and T is the

absolute temperature. From a dispersed state, the particles ag-

gregate to form sample-spanning networks of fractal dimen-

sion d f = 2.2 even at very low concentrations33. Here, we fo-

cus on such gel-forming dispersions at weight concentrations

of 4, 6 and 8% w/w.

2.2 Standard rheology experiments

The mechanical properties of colloidal gels are typically mea-

sured using standard rheology experiments. Our rheological

measurements are performed in a Taylor–Couette cell with

smooth, polymethyl methacrylate (PMMA) walls (height 50

mm, rotating inner cylinder radius 48 mm, fixed outer cylin-

der radius 50 mm, gap width 2 mm) with a stress-controlled

rheometer (ARG2, TA Instruments). The temperature is con-

trolled by a water circulation around the Taylor–Couette cell

and fixed to 25±0.1 ◦C for all experiments. The gap width of

2 mm is large enough to preclude the shear-induced formation

of vorticity-aligned structures as reported in Refs.37,38 on the

same system in confined geometries. To ensure a reproducible

initial gel state, each measurement is prepared using the fol-

lowing sequence of steps: (i) We preshear the suspension at

1000 s−1 and then at -1000 s−1 for 20 s each to break up any

large aggregates. (ii) We let the gel rest so that it can restruc-

ture by applying a zero shear rate for 2 s and then a zero shear

stress for 10 s. (iii) We probe the viscoelastic properties of the

gel by monitoring the elastic modulus G′ and loss modulus G′′

for 60 s at a very low stress in the linear regime (σ0 = 0.5 Pa at

f = 1 Hz). (iv) The sample is left to rest again for 10 s by ap-

plying a zero shear stress, which allows for possible residual

stresses stored during the previous steps to relax23,39. Finally,

the LAOStress experiment is started by applying a sinusoidal

stress of amplitude σ0 and frequency f starting at time t = 0.

The rheometer subsequently records the time evolution of the

viscoelastic moduli defined as G′ = G′
1 and G′′ = G′′

1 , where

G′
1 and G′′

1 are deduced from the compliances J′1 and J′′1 based

on the strain response at the fundamental frequency through

the standard relation40,41 G′
1 + iG′′

1 = 1/(J′1 − iJ′′1 ). The reader

is referred to Refs.23,27 for more details, especially on internal
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stresses and on issues with inertia during LAOStress.

2.3 Ultrasonic imaging under LAOStress

Several techniques allow for local flow characterization under

shear, e.g. rheo-optics42,43, particle tracking44–46, magnetic

resonance imaging47,48 or ultrasonic velocimetry49. Here, we

use high-frequency ultrasonic imaging50, a technique that is

fast enough to follow the yielding dynamics while being in-

sensitive to the opaqueness of the CB gel27. To provide ul-

trasonic contrast the gel is seeded with 1% w/w hollow glass

spheres (Potters Sphericel, mean diameter 6 µm, mean density

1.1 g.cm−3). This technique is implemented on the Taylor–

Couette experiment described in Sect. 2.2. A linear array of

128 piezoelectric transducers, immersed in the water tank and

facing the outer cylinder of the Taylor–Couette device, sends

short ultrasonic pulses with a central frequency of 15 MHz

that propagate in a vertical plane inclined by about 10◦ from

the normal to the outer cylinder. While traveling through the

Taylor–Couette cell, these pulses get scattered by the hollow

glass spheres suspended within the CB gel. For each inci-

dent plane pulse, the backscattered signal, corresponding to

the interferences of the various echoes from the hollow glass

spheres, is recorded by the transducer array, leading to an “ul-

trasonic speckle” signal with 128 measurement lines and typ-

ically 800 points sampled at 160 MHz. The data analysis con-

sists in first processing the speckle signal into a beam-formed

speckle image S(r,z, t), where r is the radial direction across

the gap (r = 0 being taken at the rotating inner cylinder and

r = 2 mm at the fixed outer cylinder) and z is the vertical direc-

tion (z = 0 corresponding to about 10 mm from the top of the

Taylor–Couette device). Then two successive speckle images

are cross-correlated in order to get the tangential displacement

∆ as a function of r and z. The space- and time-resolved capac-

ities of the technique were tested in water and in model com-

plex fluids under both steady50 and oscillatory51 shear flows.

Here we set the time interval between two speckle images to

five LAOStress oscillation periods. This allows us to map the

displacement ∆(r,z, t) of the CB dispersion between succes-

sive states separated by five oscillation cycles over 32 mm

along the vertical direction z with a resolution of 250 µm and

over the 2-mm gap with a resolution of 100 µm in the ra-

dial direction r. This temporal and spatial resolution is ideal

for following the yielding dynamics of the CB dispersion un-

der LAOStress without focusing on the intracycle dynamics22.

For full technical details, we refer the reader to Refs.27,50,51.

2.4 Normal force measurements

In order to measure the first normal stress difference N1 during

a LAOStress experiment, we switch from a Taylor–Couette

geometry to a standard cone–plate geometry with cone diam-
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Fig. 1 Time evolution of the elastic modulus G′ (blue squares) and

loss modulus G′′ (red circles) for a carbon black dispersion at

c = 6% w/w under an oscillatory shear stress of constant amplitude

σ0 and frequency f = 1 Hz. (a) For a low stress amplitude,

σ0 = 15 Pa, the gel initially displays a solid-like behaviour

(G′ > G′′), then apparently yields (G′ = G′′) at t ≃ 700 s, and

thereafter seems to flow like a liquid (G′ < G′′). (b) For a high stress

amplitude, σ0 = 27 Pa, the gel seems to yield and flow like a liquid

from the beginning of the experiment. The insets show the

corresponding time evolutions of the strain amplitude γ0. In the

solid-like regime, the strain remains very low. γ0 then increases by

two orders of magnitudes and finally saturates at some maximum

value in the fluid-like regime. White squares indicates the times at

which the displacement field ∆(r,z, t), as obtained from ultrasonic

imaging, is illustrated in Fig. 2
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eter 5 cm and angle 4◦. Like in the Taylor–Couette geometry,

to ensure a reproducible initial state, each measurement is car-

ried out by (i) preshearing the suspension at 700 s−1 then at

-700 s−1 for 60 s in each direction, (ii) manually shearing the

gel until normal forces cancel out, (iii) letting the gel rest again

for 30 s and (iv) measuring G′ and G′′ within the linear regime

and checking that the normal force remains zero. Finally, we

start the LAOStress experiment. Calibration experiments have

shown that we can neglect the contribution of the centrifugal

force to the measurements of N1 provided that the shear rate is

below 700 s−1. We checked that the shear rate never exceeded

100 s−1 during the LAOStress experiments.

3 RESULTS

3.1 Standard rheological measurements

Figure 1 reports the evolution of the elastic and loss moduli

of carbon black dispersion at c = 6% under LAOStress for

both a “low” stress amplitude [σ0 = 15 Pa, Fig.1(a)] and a

“high” stress amplitude [σ0 = 27 Pa, in Fig.1(b)]. In both

cases, when given enough time, the sample eventually com-

pletely fluidizes: G′′ > G′ while both moduli are stationary.

However, in the low stress case, the gel remains solid until t ∼
700 s whereas, in the high stress case, the gel is apparently

fluidized from the start. To unveil the fluidization processes

involved in those two different LAOStress experiments, we

now turn to ultrasonic imaging. Note that, as shown in Ref.27

for σ0 = 11 Pa, a deeper analysis of nonlinear LAOStress

rheological data is possible through Fourier-Transform rheol-

ogy and Lissajous-Bowditch representations40,41. However,

since the present ultrasonic data are restricted to displacement

maps computed every five oscillation periods, a correlation

between time-resolved local data and intracycle information

from LAOStress measures is not yet available and is left for

future work.

3.2 Displacement field from ultrasonic imaging

Figure 2 and movies in the ESI† show the evolution of the tan-

gential displacement field ∆(r,z, t) recorded inside the Taylor–

Couette device simultaneously to the rheology experiments re-

ported in Fig. 1 with c = 6%. One can define four successive

regimes of material behaviour as characterized by different

structures of the displacement field. First, for 0 < t < τw, ∆

is constant and equal to zero across the entire gap. This means

that from one cycle to the other (or at least every five cycles

since the displacement is only sampled at 0.2 Hz), the hollow

glass spheres, and thus the gel material, returns into exactly the

same position. Together with the fact that G′ > G′′, we inter-

pret this as the behaviour of a homogeneous solid that adheres

to the walls of the Taylor–Couette cell. This regime is only

observed at low stress amplitudes, typically for σ0 . 20 Pa

[see Figs. 1(a) and 2(a) for σ0 = 15 Pa]. For larger σ0 one

directly observes the following second regime, i.e. one effec-

tively has τw = 0. For τw < t < τb, ∆ is either zero in the

bulk yet with significant values at the walls [see t = 1450 s

in Fig. 2(a)] or shows a homogeneous non-zero value in the

bulk [see t = 10 s in Fig. 2(b)]. This indicates that the gel

has yielded near the walls at time t = τw, thus creating flu-

idized lubrication layers at the walls although the bulk mate-

rial remains solid. Consequently, we observe a plug-like flow

with ∆ ∼ 0 for low stress but non-zero, constant displacement

at higher stress amplitudes, which points to a global drift of

the solid-like gel from one cycle to the other and to slippage

at the walls. Third, for τb < t < τ f , ∆ is constant over re-

gions spanning a large amount of the cell gap yet separated

by regions where ∆ shows large, fluctuating and apparently

random values. As already discussed in Refs.22,27, this is typ-

ical of a solid–fluid coexistence. Indeed in fluidized zones, the

hollow glass spheres seeding the dispersion show irreversible

displacements from one oscillation cycle to the other due to

their density mismatch with the CB gel and to their sedimen-

tation or creaming. These displacements lead to decorrelation

of successive ultrasonic speckle signals and thus to large er-

ratic variations of ∆. At low σ0, this solid–fluid coexistence

seems to occur preferentially along the vorticity direction [see

t = 2780 s in Fig. 2(a)], whereas at higher σ0, we observe a

more classical coexistence in the radial direction [see t = 230

and 290 s in Fig. 2(b)]. The fluidized zones progressively grow

and invade the whole sample until full fluidization is reached

at t = τ f . Finally, the CB suspension flows like a liquid there-

after for t > τ f .

In Fig. 4, we report the three characteristic times, τw, τb and

τ f , for different values of the imposed stress amplitude of the

LAOStress experiment determined using the ultrasonic imag-

ing technique. Yielding was only observed in the range σ0 &

9 Pa. For lower values of the stress amplitude, the sample

remained solid for at least 105 s. In Fig. 4, a vertical, linear

path represents the time evolution of the gel during a constant

stress amplitude LAOStress experiment. Then, we can iden-

tify a region 0< t < τw(σ0), denoted by (a) in Fig. 4, for which

the sample is completely solid and adheres to the walls of the

Taylor–Couette cell. In the region τw(σ0) < t < τb(σ0), de-

noted by (b), the sample remains solid in the bulk but slips

along the walls of the cell. We associate this region (b) with a

fatigue process that will lead to fluidization at a later time. In

the region τb(σ0)< t < τ f (σ0), denoted by (c), the material is

heterogeneous exhibiting a coexistence of fluid-like and solid-

like regions. The solid-like zones get progressively eroded by

the fluid-like zones until the entire gel is fluidized at t = τ f . A

similar erosion process has been observed in laponite gels in

shear-rate controlled experiments52,53. At both low and high

stresses, τw, τb and τ f seem to follow an exponential law of
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Fig. 2 Time evolution of the displacement field ∆(r,z, t) as measured through ultrasonic imaging during the LAOStress experiment shown in

Fig. 1. The USV sampling frequency is 0.2 Hz so that ∆(r,z, t) is probed every five oscillation cycles. The rotor is located at r = 0 mm and the

stator position is r = 2 mm. ∆(r,z, t) is coded in linear color levels. (a) For a low stress amplitude, σ0 = 15 Pa, the gel remains completely

solid (∆ ∼ 0) for t < τw ≃ 700 s. For τw < t < τb the gel is fluidized at the rotor and the stator but remains solid in the bulk. For τb < t < τ f

the bulk material fluidizes heterogeneously along the vertical direction z. For t > τ f the gel is homogeneously fluidized. (b) For a high stress

amplitude, σ0 = 27 Pa, the gel first displays a homogeneous yet nonzero displacement field indicative of slippage at both walls. The gel

subsequently shows a heterogeneous fluidization along the radial direction r for τb < t < τ f and full fluidization for t > τ f . See ESI† for

movies that simultaneously display the data recorded by the rheometer and the displacement field ∆(r,z, t) for both low and high stress

amplitudes.
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type τ ∼ e−σ0/σ∗
). The situation is complex as one can de-

fine four different σ∗ related to τb and τ f at low and high

stresses. In Ref.22, σ∗ at high stresses associated with τ f is in-

terpreted as the stress barrier necessary to be overcome so that

the gel yields. In the creep experiments of Ref.15, a similar be-

haviour is observed and σ∗ associated with τ f is modeled in

the delayed yielding framework16. In this model, the change

of slope between the low and high stress regime is attributed

to a change of the average number of particles involved in the

weakest link of the gel network mesh. We believe that apply-

ing the delayed yielding model on τ f is however inappropriate

and that τ f corresponds here to an accumulation of multiple

yielding processes.

3.3 Normal forces

On top of this complex spatiotemporal yielding behaviour, we

observe the presence of normal forces. In Fig. 3, we measure

the first normal stress difference N1 in the high stress regime

during a LAOStress experiment in a cone–plate geometry. The

first normal stress difference N1 is directly proportional to the

normal traction N at the gel surface in the Taylor–Couette ge-

ometry, with N > 0 for a compressive traction acting on the

gel region (Appendix 1). We observe that G′′ > G′ at t = 0

s: the gel directly yields at the wall, which is consistent with

the high stress experiments in the Taylor–Couette geometry.

We observe dramatic irreproducible fluctuations of the normal

force. In our opinion, the value of the normal force might

be related to residual stress within the gel23,39. However, as

soon as the gel partially fluidizes in the bulk, for τb < t < τ f ,

we consistently measure a negative normal force. This effect

is robustly observed in all experiments as we varied the fre-

quency f or the imposed stress amplitude σ0.

To understand the effect of the normal forces on the erosion

process during the solid–fluid coexistence, we assume that de-

formations within the gel are small, and we use the linearized

theory of elasticity for the strand network which is assumed to

be isotropic. The gel is supposed uniform but partially fills the

gap. Such a model is derived is Appendix 1 and demonstrates

how normal forces directly affect the stress state within the

solid fraction of the solid–fluid coexistence. We find that the

presence of a negative normal force increases the maximum

principal stress within the gel. Therefore, if the normal force

is independent of the applied stress σ0, the correction to σ0 in-

duced by the presence of normal forces only shifts τ f to lower

stresses but does not affect the scaling.

3.4 Scaling of the characteristic times

Having excluded the normal forces to explain the different be-

haviour at low and high stresses, we turn our attention to the

duration of each yielding process. We note that at low stresses,
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Fig. 3 Time evolution of the normal force during a LAOStress

experiment for a carbon black gel at c =6%w/w and f = 1 Hz in a

cone–plate geometry at σ0 = 20 Pa. We have repeated the

experiment 5 times to check for reproducibility. (a) Time evolution

of the elastic modulus (G′, solid line) and loss modulus (G′′, dashed

line). The insets show the time evolution of the strain amplitude γ0.

The behaviour of G′, G′′ and γ0 is similar to the one observed for the

Taylor–Couette geometry (Fig. 1(b)). (b) Time evolution of the first

normal stress difference N1. Inset: average value of N1 over the 5

experiments for τb < t < τ f . The shaded area corresponds to the

standard deviation.
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Fig. 4 Dynamic state diagram of the fatigue process of a carbon

black gel at c = 6% w/w under LAOStress at a frequency of

f = 1 Hz. The characteristic times t = τw (�), t = τb (�) and t = τ f

(◦) are determined from ultrasonic imaging and define the

boundaries between different states encountered during the fatigue

process: (a) solid-like state, (b) plug-like flow i.e. solid-body

displacement with slip at the walls, (c) solid–fluid coexistence along

the vorticity direction, and (d) a fluid-like state. Solid lines are

exponential fits based on Table 1.

all the characteristic times have a similar value τw ∼ τb ∼ τ f .

However, at high stresses the presence of lubrication layer

seems to split those characteristic times apart from one an-

other. Given the fact that in addition to τ f , we have τb and

τw, we can define the duration of each event and compare the

low stress and high stress regimes. τw corresponds to the dura-

tion over which the gel remains entirely solid. ∆τbw = τb − τw

is the duration of the fatigue regime when the gel slips at the

wall but remains solid in bulk. ∆τ f b = τ f − τb is the duration

of solid–fluid coexistence. As shown in Fig. 5, the discrep-

ancy between low and high stresses vanishes when those three

durations are plotted as functions of the stress amplitude σ0.

We have therefore fitted the data with a single exponential or

a single power law for each one of the three durations. Given

the narrow range of experimentally accessible values of σ0, it

is difficult to discriminate between exponential and power-law

fits (see Table 1 for the values of the best fit parameters in both

cases). Still, this scaling allows us to distinguish three succes-

sive yielding phenomena: yielding at the wall, bulk yielding

and clusters yielding. The gel hierarchically yields in time

and each successive yielding process requires a higher stress

barrier σ∗ or a lower exponent α .

4 DISCUSSION

4.1 Basquin model and delayed failure model

Gaining insight into the physical principles governing our ex-

periments from a theoretical perspective remains a challenge.

The entire process shows multiple yielding time scales, which

suggests that many mechanisms are at play. The gel first yields

at the wall: interaction between the wall and the gel should

thus be taken into account. The gel then yields heteroge-

neously in the bulk, producing large clusters that eventually

fluidize, which suggests that a mean-field theory is inappropri-

ate. Keeping those difficulties in mind, and given the fact that

no theoretical approach currently responds to all those criteria,

we examine two models: the Basquin model and the delayed

failure model. Both models rely on a mean-field approach. We

shall therefore apply them on homogeneous processes only,

such the duration τw of the initial solid regime and that of the

fatigue regime ∆τbw.
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Fig. 5 Scaling properties of the characteristic durations as a function of the applied stress amplitude σ0. (a) Flow state as a function of time.

(b) τw, ∆τbw and ∆τ f b vs σ0. Red solid lines are exponential fits (∆τ = Ae−σ0/σ ∗
) to the data whereas blue dashed lines in the insets are

power-law fits (∆τ = Bσ−α
0 ) to the same data. (c) Sketch of the gel structure between the stator and the rotor.
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A (104 s) σ∗ (Pa) B (107 Paα s) α

τw 9±1 103 1.2±0.2 8±1 107 10.5±1.1

∆τbw 1.6±0.2 5.7±1.1 1.0±0.1 3.6±0.5

∆τ f b 1.7±0.2 6.4±1.0 3.1±0.3 3.4±0.4

Table 1 Parameters used in Fig. 5 to fit the data by an exponential

(∆τ = Ae−σ0/σ ∗
) and by a power law (∆τ = Bσ−α

0 )

The power-law behaviour of the yielding characteristic

times is reminiscent of the empiric Basquin law32, where

τ f ∼ σ−α
0 . This law can be derived from a fiber bundle

model54. The gel is then represented by a set of parallel fibers

organized on a regular lattice. When the bundle is subjected to

an increasing external load, the fibers behave like linear elastic

springs until they break for a given failure load. To recover the

Basquin law, Kun et al.54,55 modified the fiber bundle model

and considered a mean-field approach in which the network

strands form a random network and fail either due to imme-

diate breaking or to aging through damage accumulation. To

capture damage recovery due to healing of micro-cracks or

thermally activated rebinding of failed contacts, Kun et al.54,55

introduced a memory term which scales exponentially with a

characteristic time of the system. In this framework, α is di-

rectly related to the growth law of local damage as a func-

tion of the local stress. High values of α mean that the mate-

rial is prompt to accumulate damage. Fits of the experiments

give αw = 10.5 and αbw = 3.6 for τw and ∆τbw respectively

(see Table 1). The value of αbw is close to the Basquin ex-

ponents found in recent creep experiments on carbon black

gels (α ∼ 2–3)23, carbopol microgels (α ∼ 3–8)56 and ca-

sein biogels (α ∼ 5)57 but very high when compared to met-

als (α ∼ 0.1)58 and to asphalt (α ∼ 0.5)54,55. Soft gels are in-

deed prone to accumulate damage and therefore they are much

more sensitive to stress than metals. We also note that our data

show no hint of a critical stress as measured in Refs.23,56.

To model the exponential behaviour of the characteris-

tic times of the yielding gel, we turn to the delayed failure

model16. This is also a mean field approach, based at the

micro-scale on Kramers’ transition state theory59. Here, the

particles form percolating strands where n is the average num-

ber of colloids in the cross-section of the strand at its weakest

point. When no stress is applied, thermal fluctuations are as-

sumed to dissociate or associate interparticle bonds at rates

kD and kA respectively, with kD < kA for attractive gels. A

constant C with units of compliance is also postulated, which

converts the applied stress σ into work Cσ with units of kBT .

This work lowers the interaction potential across each bond.

Two strand-breaking processes were then proposed: one for

high-stress case, leading to sequential bond-breaking within

a strand and an activation stress σ∗ = 1/C, and one for the

low-stress case which allows for re-association of bonds (heal-

ing) within the strand and an activation stress σ∗ = 1/nC.

Both bond-breaking processes lead to an exponential scaling

of the time-to-failure. In Appendix 2, we adapt the theoreti-

cal frame developed for failure of colloidal gels under a con-

stant load to cyclic loading. As for creep experiments, the

delayed failure model for cyclic loading yields an exponential

behaviour of the characteristic failure time τmod with respect

to σ0: ∆τ = Ae−σ0/σ∗
. However, the prefactor A to this expo-

nential is greater than that of the creep, and leads to a longer

failure time: gels resist better to oscillations than to creep for

the same activation stress σ∗ and applied load σ0. For ∆τbw,

we find σ∗ ≈ 5.7. In this model n and C are coupled and

cannot be measured independently; we take values similar to

those of Ref.16, kD = 0.26 s−1, kA = 1.5 s−1, 1/C = 28.5 Pa

and n = 5 as benchmarks for further discussion. In the case of

τw, σ∗ ≈ 1.2 is much smaller, implying that the gel is weaker

in the wall region. Keeping C constant, it requires to divide n

by ∼5 which means that the CB particle strands develop fewer

links with the walls as compared to the bulk. Conversely,

keeping n constant, it requires to divide 1/C by about 5 which

means that the CB particles have a much weaker interaction

with the walls than between themselves.

Which model is best suited to interpret the present exper-

iments remains an open question. The fiber bundle model

can solely support longitudinal deformation which allows for

studying only loading of the bundle parallel to fibers so that

its use to model our experiment performed under shear is at

best qualitative. Moreover, the Basquin law stipulates that

the gel will always fail even at very low stresses. Experimen-

tally, it seems that below roughly 9 Pa the gels remains solid,

even though it cannot be excluded that it fails after some very

long time exceeding experimental time scales. In the delayed

yielding model, a divergence of the time-to-failure can be ex-

plained through the dominance of healing in the competition

between healing and rupture of strands. A predictive capabil-

ity for this critical stress is not yet available. We also note that

σ∗ = 6±1 Pa roughly matches the stress below which it seems

impossible for fatigue to eventually fluidize the gel.

4.2 Influence of the frequency of the LAOStress

So far we have discussed the measurements and the interpre-

tation of the scaling behaviour of the characteristic times with

σ0. We now focus on two parameters that are likely to modify

the scaling parameters of τ f with σ0, namely the CB concen-

tration c and the oscillation frequency f . In general, f and c do

not qualitatively affect the fatigue scenario described in Fig. 4.

Moreover, in the high stress regime, the τ f (σ0) data are well

fitted both by an exponential and by a power law. Figure 6

shows the values of σ∗ and α as a function of f and c.

As for exponential fits, the stress barrier σ∗ increases

sharply with c. This seems reasonable since a concentration
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increase reinforces the backbone structure of the gel. On the

contrary, the exponent α found from power-law fits does not

display any systematic evolution with c. Although we probe

higher σ0 for higher c, the susceptibility of the gel appears to

be independent of c within the fiber-bundle model interpreta-

tion of the Basquin law.

The major advantage of oscillatory experiments compared

to creep experiments22,23 is that LAOStress is frequency-

resolved. Figure 6(a) shows that σ∗ first increases with f at

low frequencies, then reaches a maximum around f =0.4±0.15

Hz and finally decreases for higher frequencies. The delayed

yielding model does not predict any frequency dependence of

σ∗ (see Fig. 7(a) in Appendix 2). Yet, we know that the gel

rebuilds it-self on time scales that are below 1 s22. Therefore

decreasing the frequency should leave more time for the gel to

heal between two successive oscillation cycles and make the

gel more resistant to stress. This could explain the decreasing

curve σ∗( f ) at high frequencies. On the other hand, α dis-

plays a minimum around f =0.4±0.15 Hz while the Basquin

model also does not predict any frequency dependence since

it only depends on the number of cycles. Yet the increase of α
at high frequencies is qualitatively consistent with the previ-

ous healing argument that leads to increased susceptibility to

stress as f increases. We note that Z. Shao et al.60 have also

observed a puzzling, nonmonotonic frequency dependence in

the yielding process of flocculated microgel suspensions. Cur-

rently, we do not have any sensible argument to interpret the

nonmonotonic variations of α or σ∗ with f as reported in

Fig. 6, and more specifically their low-frequency behaviour.

5 CONCLUSION

We have investigated the dynamical fatigue scenario in

LAOStress experiments on carbon black gels based on local

measurements through ultrasonic imaging. The present re-

sults reveal that the material undergoes successive yielding

processes at spatial scales intermediate between the gel mi-

crostructure and the size of the shearing geometry. These

processes hardly show in standard LAOStress data and illus-

trate the need to complement rheology with time-resolved lo-

cal measurements whenever time-dependence and/or spatial

heterogeneities are suspected. Such an approach is only start-

ing to emerge in the case of oscillatory shear61 and most pre-

vious LAOS studies on time-dependent materials have been

restricted to global measurements, sometimes coupled with

structural characterization62–64.

Here, in the case of a carbon black gel above a critical value

of the stress amplitude (σ0 & 9 Pa for c = 6% w/w), we have

determined three characteristic times for delayed yielding un-

der LAOStress: within the time interval 0 < t < τw the gel

remains solid, within τw < t < τb the gel yields at the walls

but remains solid in the bulk, and within τb < t < τ f , we ob-
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Fig. 6 Evolution of (a) the stress barrier σ∗ and (b) the power-law

exponent α with the oscillatory stress frequency f for a carbon

black gel at c = 4 (�), 6 (•) and 8% w/w (�). Lines are included to

guide the eye.

serve solid–fluid coexistence associated with negative normal

forces. Beyond τ f , the sample flows like a liquid. Those

characteristic times scale differently with the applied stress σ0

at low and high stresses. However this difference vanishes

when we scale the characteristic durations of each process τw,

τb − τw, τ f − τb with σ0. Such a scaling allows us to distin-

guish three successive yielding processes: yielding at the wall,

bulk yielding and clusters yielding.

Those durations are functions of the applied stress and can

be empirically fitted by an exponential, although a power law

cannot be ruled out due to the limited range of the stress

amplitude. To gain insight into those multiple yielding pro-

cesses, we have used the delayed yielding model extended

to LAOStress (τ ∼ exp(−σ0/σ∗)) and the Basquin model

(τ ∼ σ−α
0 ). Both models fit reasonably well the data. This

analysis shows that each successive yielding process requires

a higher stress barrier, σ∗ or a lower exponent α . According

to the Basquin model, our gels are prompt to accumulate dam-

age and are much more sensitive to stress than asphalt54 or

metals58. According to the delayed failure model, the carbon

black particles have a weaker interaction with the walls than

between themselves which justifies that the gel yields first at

the wall and then in bulk.

The yielding process also depends on the concentration of

the gel and on the applied frequency in a complex manner that
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remains to be fully understood. Another interesting line of

enquiry, left for future study, is the effect of the particle–wall

interactions on the yielding at the wall. Presumably, weak

or repulsive particle wall interactions would reduce the time-

to-failure τw at the wall, while strong attractive particle–wall

interactions could prolong τw, or even re-localize initial yield-

ing to the bulk. In the same spirit the influence of surface

roughness, which has already been addressed in carbon black

dispersions submitted to a steady shear stress23, should also

be investigated and modelled in the case of LAOStress.

Another line of research concerns microstructural investi-

gations of carbon black gels under LAOStress. Indeed it was

recently shown that time-resolved small-angle neutron scat-

tering could be used to quantify structural anisotropy during

LAOStress experiments and to detect butterfly patterns char-

acteristic of stress-induced density fluctuations.65 Such a tech-

nique would prove very useful to make a clear link between

our mesoscopic observations of the solid–liquid transition and

microscopic structural parameters during the successive yield-

ing processes.

Finally, there is some similarity between the cyclic fatigue

of the colloidal gel and the very high cycle fatigue (VHCF)66

observed for metal alloys. When subjected to a cyclic stress

far below the yield stress, microcracks develop dispersed

within the crystal grains. These microcracks multiply and

grow until they reach the grain boundaries. This triggers an

avalanching crack growth and ultimate macroscopic failure.

Similarly to carbon black gels, the time-to-failure for VHCF in

metals decays exponentially with the stress amplitude. Hence,

despite the very different microstructures of metals and col-

loidal gels, there are striking similarities in their fatigue be-

haviour that presumably derive from thermally-activated mi-

croscale processes governing irreversible damage.

Appendix 1: Normal forces model

To potentially understand the origin of the normal forces dur-

ing the solid–fluid coexistence, we assume that deformations

within the gel are small and we use the linearized theory of

elasticity for its strand network. The strand network is further

assumed to be isotropic. We take the gel to be in a state of uni-

form, plane strain, with zero deformation in the z direction of

the Taylor–Couette geometry. We also neglect the curvature

of this geometr. Thus, we introduce a rectangular coordinate

frame, with base vectors {~e1,~e2,~e3}, so that~e1 is the shear di-

rection and~e2 is the shear gradient direction. We seek to derive

the stress ¯̄σ of the gel network material, not including con-

tributions from the interstitial solvent in the gel region since

those do not affect interparticle forces within the gel. From

the plain strain geometry, we have σ13 = σ31 = σ23 = σ32 = 0.

The remaining stress components depend on the boundary

conditions. When the gel region fills the gap of the geome-

try and adheres to the walls, the boundary condition is

σ12 = σ(t),

while we have ε11 = ε22 = ε33 = 0 inside the gel, where ¯̄ε

denotes the Euler–Almansi strain tensor. The above yields the

well-known simple shear solution

σ12 = σ21 = σ(t),

while all other stress components vanish for infinitesimal

strains. The principal tensile stress then becomes identical to

the applied shear stress σp(t) = σ(t).

During solid–fluid coexistence, the gel only fills a fraction

of the gap, and the boundary conditions on the gel become

σ12 = σ(t), σ22 =−N(t),

where N(t) is the normal traction at the gel surface, with N > 0

for a compressive traction acting on the gel region. From

the geometry, ε11 = ε33 = 0 inside the gel. Hooke’s law for

plane strain and the equilibrium equation for an isotropic, lin-

ear elastic material in plain strain, then gives

(1−ν)σ11 −νσ22 = 0 (1a)

σ33 −ν(σ11 +σ22) = 0 (1b)

where ν is the Poisson modulus of the gel. The stress tensor

becomes

¯̄σ =





− ν
1−ν N(t) σ(t) 0

σ(t) −N(t) 0

0 0 − ν
1−ν N(t)



 . (2)

The normal traction N(t) at the gel surface can then be writ-

ten as a function of the first normal stress difference N1(t) =
σ11 −σ22:

N(t) =
1−ν

1−2ν
N1(t), (3)

meaning that this normal traction only differs by a constant

factor in the order of one from the first normal stress differ-

ence for any realistic value of ν . The principal tensile stress is

obtained by computing the maximum eigenvalue of ¯̄σ , which

gives

σp(t) =−
1

2(1−ν)
N(t)+

√

1−4ν(1−ν)

4(1−ν)2
N2(t)+σ2(t).

Therefore, the presence of a negative normal force increases

the principal stress on the gel and vice versa.
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Appendix 2: Delayed failure model for cyclic

loading

The delayed failure model is a mean field approach that de-

scribes the dynamics of the fraction of remaining strands, x, in

a yield surface of a colloidal gel subject to a creep experiment

at constant stress σ(t) = σ0. At start, the gel is completely

solid and x =1. The dynamics is then driven by type ordinary

differential equation (ODE) of birth/death type16:

dx

dt
=−KD(x,σ(t))x+KA(1− x); (4)

KD(x,σ0) = K0 exp( nCσ0
x

) is the dissociation rate of the

strands and KA is their association rate. KD depends on local

parameters such as kA and kD, respectively, the association and

dissociation rate of the individual colloids, n the average num-

ber of colloids in the cross section of a strand at its weakest

point, the temperature T , the range of the attraction between

colloids δ , and the initial area density of strands ρ0. Indeed,

the exponential behaviour of KD is related to an activated pro-

cess where the stress barrier necessary to break a strand com-

posed of n colloids in its cross section is 1/nC = ρ0kBT/δ .

The complete expression of the amplitude of KD can be found

in Ref.16.

Instead of looking at a creep experiment where σ(t) = σ0

we now consider LAOStress experiments where the local

stress on the strands is taken to be σ(t) = σ0|sin2π f t| in

Eq. (4). Taking sin2π f t instead of |sin2π f t| would lead

to KD ∼ 0 when the sin function becomes negative, which

does not correspond to the actual situation where the sam-

ple experiences the same dissociation rate independently of

the sign of the applied shear stress. We then discretize x into

xm = x(m/ f ), the fraction of the strands in the gel at the mth

cycle, m being an integer. Integrating Eq. (4) over the mth load-

ing cycle with respect to time, while assuming that x changes

only marginally during each cycle, gives a recurrence relation

xm+1 − xm = −xm

∫ (m+1)/ f

m/ f
K0 exp

(

nCσ0

xm

|sin2π f t|

)

dt

+
KA

f
(1− xm)

= −
K0

f
xmϒ

(

nCσ0

xm

)

+
KA

f
(1− xm), (5)

with initial value x0 = 1, and where

ϒ(a) = 2

∫ 1/2

0
exp(a|sin2πs|)ds. (6)

Using again that xm+1 − xm is small, the recurrence equa-

tion (5) can be approximated by a differential equation, now

n C (Pa−1) 1/nC (Pa) kD (s−1) kA (s−1)

∆τbw 5 0.033 6 0.26 1.5

Table 2 Parameters used in the numerical resolution of the delayed

failure model for LAOStress and chosen so as to roughly match the

values of ∆τbw in Fig. 5. Note that different sets of parameters can

give the same solutions to the ODE. Indeed n and C are coupled and

as long as the stress barrier 1/nC is constant, the solutions are

identical.

viewing m = f t as a real number:

dx

dt
= f

dx

dm
=−K0ϒ

(

nCσ0

x

)

x+KA(1− x). (7)

This ODE describes how distributed damage evolves under

cyclic loading conditions. To the knowledge of the authors,

no numerical solution exists to Eq. (7). For a sufficiently large

KA > 0, that is if ruptured strands are assumed to re-associate,

the numerical solutions show that x converges toward a non-

zero equilibrium value related to the ratio KA/K0: no failure

can be predicted with certainty. Still, experimentally we al-

ways observe a binary behaviour of the yielding process: ei-

ther σ0 is too small and the suspension remains solid, x = 1

over some seriously long time, or the suspension eventually

completely fluidizes, x= 0. We therefore restrict the following

discussion to the fluidization process and assume that KA = 0.

The numerical solution of the ODE in Eq. (4) with KA =
0 gives the strand density remaining attached x as a function

of various parameters such that K0, the oscillation frequency

f and the amplitude of the applied stress σ0. As shown in

Fig. 7, x decreases from 1 to 0 as a function of time: the gel

gets completely fluidized. In this model, provided that the

oscillation inverse frequency is small compared to the yielding

time, the frequency does not influence the yielding process

[see Fig. 7(a)]. σ0 sets the timescale of the fluidization process

[see Fig. 7(b)]. We extract two characteristic times from this

numerical resolution: the time τ f luid = t(x = 0) at which x = 0

and the characteristic yielding time τosc defined as the inverse

slope of the tangent to x at t=0. τosc is the time that matches

the closest the definition of the experimental duration τw, the

time necessary for the gel to yield at the wall or ∆τbw, the

duration necessary for the gel to yield in bulk. Indeed, in both

those regimes and in the region of interest x is close to 1. Note

that τ f luid should not be compared to τ f as the model assumes

an homogeneous yielding of the strands; experimentally we

know that this is not the case. The model is thus only optimal

to describe the experiments close to x = 1 when the gel is solid

and Fig. 7(c) only shows τosc vs σ0.

Although no analytic solution is available for Eq. (7), we

can find a solution for the limit x close to 1. The solutions of

Eq. (7) crucially depends on the properties of ϒ. For strong
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Fig. 7 Resolution of the delayed failure model for LAOStress.

(a) Density of strands x remaining solid under LAOStress as a

function of time for different frequencies at a constant applied stress

amplitude σ0 = 6 Pa. (b) Density of strands x remaining solid under

LAOStress as a function of time for different applied stresses at

f = 1 Hz. (c) Characteristic times obtained by solving Eq. (7)

numerically τnumerical
osc (�), and Eq. (9) analytically (−). τ

analytical
creep

(−−) is the analytical solution of the delayed failure model for the

corresponding creep experiments given in Eq. (11). The parameters

of the model are displayed in Table 2.

gels16, like carbon black gels, failure is only observed at ex-

perimental time-scales if nCσ0 ≫ 1. Therefore, the asymp-

totic behaviour of ϒ for large σ0 is pivotal. For large values

of σ0, the integral defining ϒ is dominated by the short inter-

val near s = 1/4 where the sine function has its maximum.

Consequently, we may use a Taylor expansion for sin2πs

around s = 1/4 and change the limits of the integral to ±∞,

this way obtaining

ϒ(a)≈ 2

∫

∞

−∞

exp

{

a

[

1−
(2πs−1/4)2

2

]}

ds =

√

2

πa
ea,

(8)

for a & 1. Using this approximation with Eq. (7) gives

dx

dt
=−K0

√

2

πnCσ0
e

nCσ0
x x3/2 +KA(1− x), x(0) = 1. (9)

Given that the solution is reminiscent of an exponentially

decaying function, we obtain a characteristic time-scale for

fatigue failure of strong gels with KA = 0, simply by taking

τosc =

(

x
dx
dt

)

t=0

=

√

2/π

K0
(nCσ0)

1/2e−nCσ0 , nCσ0 ≫ 1.

(10)

This can be compared to the corresponding time in a creep

experiment, τcreep, which was previously found to be15,16

τcreep =
1

K0
(nCσ0)

−1e−nCσ0 . (11)

The numerical solutions to Eq. (7) with KA = 0 compare ex-

cellently with the analytical solution of Eq. (9) when sampled

at the frequency f , nCσ0 ≫1 and x close to 1 [see Fig. 7(c)].

To conclude, the delayed yielding model shows that the

characteristic failure time varies exponentially with σ0 for

both LAOStress and creep experiments: τosc ∼ τcreep ∼
exp(−σ0/σ∗). The intimate relation between creep and cyclic

fatigue originates from the common microscopic process gov-

erning failure at low stresses in the case of this relatively

strong colloidal gel. σ∗ = 1/nC represents the stress barrier

necessary to break the gel. In the case of oscillations, σ∗ is

frequency-independent.
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