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Monte Carlo simulations are used to investigate the phase behavior of hard cubes, truncated cubes, cuboctahedra and truncated
octahedra when confined between two parallel hard walls. The walls are separated by a distance H* which is varied to accom-
modate a different number of layers, from a monolayer up to approximately 5 layers, hence allowing us to probe the transitional
phase behavior as the system goes from a quasi-2D geometry to a quasi-3D bulk behavior. While our results do reveal some
phases whose structures resemble those that have been observed before for such systems in 2D and 3D spaces, other phases are
also detected, including buckled phases, rotator plastic phases, and solids with significant translational disorder. Ordered phases
formed for H* values that are a little too narrow to accommodate an additional particle layer are particularly interesting as they
tend to have complex structures. The maximum density for such frustrated phases is low compared to that of non-frustrated ones
for the same system at different H*. As the asphericity in the shapes is reduced, the simulated phases show structural features
that approach those of the phases that have been reported for hard spheres under similar confinement.

1 Introduction

Anisotropic colloidal nanoparticles have been receiving sig-
nificant attention in the scientific literature due to both their
importance as model systems to study various atomic phenom-
ena and their potential for technological applications. Much
of this interest has been fueled by the development of ro-
bust synthesis methods1–7 and the ability to tailor and con-
trol various key properties like shape, size, and the type and
strength of specific interactions. In particular, regular polyhe-
dral nanoparticles have emerged as versatile building blocks
which can be efficiently synthesized8–10 and give rise to a di-
verse range of phases11–19 due to their combination of shape
anisotropy and rotational symmetry. Controlled assembly of
these ordered structures is desirable in terms of technological
applications, specifically towards tuning their structural, me-
chanical, electrical, photonic and dielectric properties.

Apart from the shape and interactions of the individual par-
ticles, phase behavior is also affected by a strong spatial con-
finement that would preclude bulk behavior to fully develop.
In fact, both experimental20–26, and modeling27–31 studies
have found new particle structures that only form under con-
finement. Apart from its effect on the packing of simple spher-
ical particles, spatial confinement has been shown32 to control
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the ordering in various other shapes including hard rods33,
spherocylinders34, polygons35–37 and spherical caps38. Spa-
tial confinement poses an additional constraint on the assem-
bly of particles, often giving rise to structural motifs not seen
in the bulk. In the absence of any enthalpic interactions, when
the ordering is driven only by entropic forces (which are con-
strained by the accessible space), the extent of spatial con-
finement molds the types of structures that maximize the to-
tal entropy. Even an exotic and elusive phase like a qua-
sicrystal has recently been observed39 using spatial confine-
ment. Several established experimental techniques are rou-
tinely used wherein colloidal particles are confined to a few
layers, thus giving rise to a range of phases depending on the
extent of confinement40–43. Often, dense packings of confined
colloidal particles are achieved by trapping the particles in a
wedge geometry with a very small wedge angle, so that dif-
ferent sections along the plates can be approximated as paral-
lel confinements. Some of these confined systems have been
shown to have interesting tunable optical properties including
photonic band gap42,44,45 and the wedge geometry has been
shown capable of stabilizing phases that would be unstable in
the bulk case46. In this paper, we examine how spatial con-
finement affects the phase behavior of hard particles with se-
lected polyhedral shapes from the truncated cube family47. A
recent simulation study48 explored the phase behavior of these
shapes when pinned to a flat interface which mimics some ex-
periments of particle assembly performed on a fluid-fluid in-
terface. In that scenario, the centers of mass of the particles
essentially exist on a 2D plane (even if particles can freely
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rotate). Our focus, however, is on slit confinement that al-
lows for the formation of a few particle layers in between two
hard walls; such a system allows bridging the gap between the
known phase behaviors for such particles in 2D and in (bulk)
3D. The rest of the manuscript is organized as follows: in Sec-
tion II we describe the models and methods used, in Section
III we present our results, in Section IV we summarize the
global trends in phase behavior, and in Section V we provide
some concluding remarks. Additional complementary results
are given in a supporting information file (SI)49.

2 Shapes, Model and Methodology

Using Monte Carlo (MC) simulations, we studied four shapes
from the truncated cube family47 (see Figure 1) with increas-
ing level of truncation, s (the precise definition of s is detailed
in the Supplementary Information of Ref.47). Specifically, we
studied perfect cubes (C) (s = 0), truncated cubes with s =
0.4 (TC4), cuboctahedra (CO) (s = 0.5) and truncated octa-
hedra (TO) (s = 0.66). Spatial confinement was modeled by
hard walls in the Z-direction, while periodic boundary condi-
tions were used in the X and Y directions. Each shape was
studied for a range of confinements, characterized by a non-
dimensional height H* = H/ s , where s is the minimum dis-
tance between the hard confining walls that allows the particle
to exist within the walls (in at least one orientation) without
overlap with the walls. For C, TC4 and CO, s is the edge-
length of the equivalent cube that the shape is truncated from.
For TO, it is the distance between the parallel opposing hexag-
onal faces. Lengths reduced by s convey the maximum num-
ber of layers that a particular confinement value can poten-
tially allow (barring buckled layers).

All shapes were treated as hard particles (with no enthalpic
interactions), which amounts to disallowing any particle-
particle or particle-wall overlaps (using the Separating Axis
Theorem50). For each of the shapes, we simulated a system of
800 particles for a range of H* values (from H* = 1 to H* =
5). At high densities, our simulations spanned between 12 to
20 particle rows (depending on H*) along each of the X and
Y dimensions to minimize finite-size effects. We also checked
our results by performing simulations on larger systems (N =
2000). For a given H* value, MC simulations were carried out
in a constant-pressure (NPT) ensemble, starting from low den-
sity liquid-like configuration and gradually compressing via
small pressure steps. Each MC cycle consisted of N transla-
tion, N rotation and 2 volume move attempts. Each pressure
step included 3 ⇥ 106 MC cycles for equilibration and 106

cycles for production. The volume moves affected the X-Y
dimensions only and after the system ordered, were allowed
to be triclinic (to relieve any remnant stress). In certain ar-
eas of the phase space where full equilibrium was suspect, we
checked our results with longer MC runs (7⇥ 106 cycles per

Fig. 1 Particle shapes studied in this work: (a) Perfect cube(C), (b)
truncated cube with truncation parameter 0.4 (TC4), (c)
cuboctahedra (CO) and (d) truncated octahedra (TO) and (e) a
schematic of particles between two parallel plates illustrating
parameters H* and s .

step).

2.1 Order parameters

We make use of several order parameters to track the for-
mation of ordered phases. Because of the geometry of our
system, the usual order parameters used for either 2D or 3D
bulk systems are not directly usable and do not carry the same
meaning in the current situation. Hence we use order parame-
ters in a slightly modified form as specified below.

To track positional ordering, we used the Y4 and Y6 or-
der parameters that are generally used in two dimensions to
track square or hexagonal bonding symmetry, respectively. To
calculate Y4 and Y6, we assign for each particle i, a complex
number characterizing its local n-fold bond orientational order
fn(ri):

fn(ri) =
1
ni

ni

Â
j=1

exp(inqi j) (1)

for n = 4 and 6. Here, qi j is the angle made by the virtual bond
between particle i and its nearest neighbor j with respect to an
arbitrary global axis, and ni is the number of nearest neighbors
of particle i. For n = 6, ni is calculated via Voronoi tessella-
tion, while for n = 4, the 4 closest neighbors are used for the
calculation to avoid the degeneracy in Voronoi construction
that can arise in such a case51. The global bond orientational
order Yn is calculated by:

Yn =

�����
1
N

N

Â
i=1

fn(ri)

����� (2)
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A key modification we make to the above definitions of fn
and Yn is that we first isolate single layers within the system
(in case there are more than one), compute fn values from Eq.
(1) using only same-layer nearest neighbors, and then calcu-
late Yn values for the set of particles in each layer. In case of
multiple layers, we report the Yn value averaged over all lay-
ers. We define the particles to be within a particular layer by
specifying a suitable Z-coordinate range, such that particles
define a layer parallel to the walls and exclude any buckling.

Additionally, we also use the Q4 and Q6 bond-order orien-
tational parameters52 to probe and monitor translational order.
These parameters are defined as:

Ql =
4p

2l +1

"
+l

Â
�l

|Q̄lm(r)|2
# 1

2

(3)

where Q̄lm(r) is given by

Q̄lm(r) =
1

Nb
Â

bonds
Ylm(r) (4)

where Ylm(r) are spherical harmonics for the position vector
r.

Like for Y4 and Y6, we also modify the definitions for Q4
and Q6 by restricting the summation to non-interfacial parti-
cles only (i.e., particles that are not in the layers closest to the
walls).

Global orientational order is gauged by the cubatic order
parameter11 P4, which is defined as:

P4 = max
n

1
N Â

i
P4(ui ·n) (5)

= max
n

1
8N Â

i

�
35cos4 qi(n)�30cos2 qi(n)+3

�
(6)

where ui for i = 1, 2, and 3 denotes the unit vectors describ-
ing the particle orientation and n is a director unit vector that
maximizes P4. However, for shapes with flat faces in confined
geometries, the director perpendicular to the walls tends to be
associated with high P4 values even in the presence of in-plane
disorder. Hence, we also use the director with the second high-
est P4 value (which is most orthogonal to the first director) as
it seems to more reliably track in-plane orientational ordering.

Different phases are identified by analyzing the trends and
features of the relevant order parameters and the equation of
state as obtained from the compression runs. The phase di-
agrams for each of the shapes are obtained as a function of
reduced pressure P* and volume fraction F. The reduced pres-
sure P* is defined as P⇤ = Ps3/kBT where s is the length used
for non-dimensionalizing H*, kB is Boltzmann’s constant and
T is temperature.

3 Results

In our ensuing descriptions, we will focus on the ordered
phases that form at high densities (above the disorder-to-order
transition pressure) and hence we disregard the low-density
isotropic fluid. Before describing results for specific parti-
cle shapes, we first outline some trends of behavior that are
shared for all systems. In the absence of any enthalpic in-
teraction, the assembly of the systems studied here is driven
purely by entropy. Hence, the systems try to minimize their
Gibbs free energy that, if not for a typically small PV con-
tribution, essentially corresponds to maximizing the entropy
for the given conditions (pressure and confinement). For a
confinement which is equal to or slightly bigger than a length
commensurate with N layers of the expected particle lattice
arrangement (i.e., H* ⇠ N), the configurations obtained under
high compression are highly ordered and can attain density
values near that of the densest bulk phase. However, when H*
is slightly less than a whole number, the system cannot pack
space efficiently, giving rise to relatively low densities at the
most compressed state where the unused space allows some
partial translational disorder. Further, such most compressed
states having relatively low densities can produce structural
motifs that would not be favored in the bulk systems. Over-
all then, H* controls the number of layers possible in the Z
direction and the symmetry of the phases observed.

3.1 Cubes

We show in Figure 2 the broad trends in phase behavior for
cubes in a volume fraction F vs. degree of confinement H*
phase diagram. We observe a transition from a disordered
fluid at low volume fractions (and low pressures) to a crys-
tal with square or cubic order as the system is compressed.
This behavior is similar to those observed in both bulk 3D sys-
tems and 2D hard squares36. For confinements approaching a
single layer (H*! 1), we see regions which have significant
particle orientational order and intermediate four-fold bond-
orientational order (gauged by Y4), suggestive of tetratic-like
order. The Y4 value for these confinements increases continu-
ously with pressure, giving way to a square order (see Figures
S1 and S2 in the SI49).

In the entropy-driven self-assembly of cubes, one observes
cubic crystalline ordering at sufficiently high F. However,
such perfect ordering requires commensurability between lat-
tice spacing and the available space (in the simulation box).
Under slit confinement, that requirement is not always satis-
fied along the Z axis. Hence the phase that maximizes the
entropy at high F is not necessarily a perfectly ordered cubic
phase due to the extra space resulting from the incommensu-
rability.

The dependence of phase behavior and multilayering on H*
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Fig. 2 Phase diagram of cubes as a function of volume fraction F
and confinement H*. The phase boundaries marked here are only
approximate; in particular, the isotropic-solid two-phase regions are
depicted by lines.

can be illustrated over different H* ranges (see Figure 3 for
a range of sample snapshots). For example, up to H* = 1.9,
there is space only for a single layer. So for confinements in
the range 1.1 < H⇤ < 1.9, the free volume available around
the layer increases with H*, which leads to higher misalign-
ment (in the Z-direction) as we increase H*. This can be ex-
plained by the fact that when the space available is not enough
to accommodate another layer, the system maximizes entropy
by exploring the configurational freedom available in the Z-
direction (which leads to misalignment).

As we go from H* = 1.9 to H* = 2.1 (thus increasing a
layer), the packing becomes abruptly more efficient. With
more than one layer, one can also envision displacement
modes wherein one layer slides over another. However, we
did not observe any significant inter-layer displacement. This
could be in part due to the fact that displacement modes in
the Z-direction have to be coordinated within and across lay-
ers and inter-layer sliding (on the XY plane) would prohibit
this entropic freedom. Within a single layer regime (say, 2 <
H⇤ < 3), it is the size and extent of these displacements that
characterize the phase behavior since the number of layers re-
mains the same.

We can visualize the misalignments in the Z-direction
by plotting the center-of-mass particle density distribution
along the Z-coordinate (See Figure 4) for various confinement
widths at the lowest ordering pressures (i.e., at the isotropic-
solid phase boundary). Interestingly, the Z-distributions,
which are unimodal for H* < 1.6 or so, turn bimodal, for H*
� 1.6 (for high enough volume fractions), although there is

Fig. 3 Snapshots (top-down and side views) depicting the structure
of cubes at representative confinement values (a) 1S phase at H* =
1.5 at f ⇡ 0.61 (b) 2S phase at H*= 2.1 at f ⇡ 0.85 , (c) 2S phase at
H* = 2.9 at f ⇡ 0.62 , (d) 4S phase at H* = 4.8 at f ⇡ 0.52 .

not enough space for a separate layer. In some cases (like for
H*=1.6), the Z-distributions turn bimodal only at high volume
fractions. As we can see in Figure 4, the misalignment, that
can be quantified as the spread of the distribution (as mea-
sured by the standard deviation), increases continuously from
about 0.02 at H* = 1.1 to about 0.3 at H* = 1.9. After addi-
tion of another layer, misalignment again drops to 0.04 at H*
= 2.1 and starts increasing again with H. Although the H* =
1.9 phase shows a bimodal Z-particle distribution, the parti-
cles associated with the two peaks do not exhibit local spatial
correlations and hence it is not classified as a buckled phase.

The ordered phase near the order-disorder concentration in
3D bulk has been associated with a cubic mesophase (due to
high particle mobility)11–13 or with a cubic crystal with an
unusually large amount of vacancies53. The behavior of such
low-density ordered-phases appears to be somewhat distinct in
our confined systems, especially for those H* values that are
a little too narrow to accommodate an additional particle layer
and hence have very low F and can host the largest amount of
vacancies (e.g., the system for H* = 4.8 and F = 0.52 shown
in Fig, 3d). Unlike the bulk system, vacancies now do not
seem to distribute isotropically but concentrate along the Z
axis. The broad spread of the Z-axis particle distribution (as
in Fig. 4d) could be seen as an indicator of translational dis-
order, hence making such states unusual solid phases (even
mesophases). In fact, significant translational disorder can
also be observed in the X-Y planes (see e.g., the top-down
view in Fig. 3d), although this may be a finite size effect53.
Alternatively, such misalignments could be seen as local dis-
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placement modes akin to (unusually large) phonons in a per-
fect crystal; phonon modes have been shown to be important
contributors to the free energy of hard-core ordered phases
(see, e.g., 54). Either way, such structures are rather unique
and while some taxonomy could be implemented (e.g., based
on a metric of translational Z-axis fluctuations) to mark their
presence as distinct phases in Fig. 2, we do not attempt this
here and simply note that such Z-axis particle fluctuations per-
sist even at high concentrations (for particular values of H*).

Fig. 4 Z-coordinate particle distribution at various confinements for
cubes and TC4s at the lowest pressure where the ordered phase
occurs. Accompanying snapshots for each case show the extent of
misalignment in the Z-direction. Dotted lines indicate the physical
bounds of the space that a particle center of mass can span for the
given H* value. Different colors indicate whether the particle is
above or below the mean Z-coordinate.

Overall, the phase behavior we observe for cubes in slit con-
finement for H* < 2 is broadly similar to those observed in
earlier studies of squares in 2D36 and of freely rotating cubes
whose centers are restricted to lie on a flat interface48. How-

ever, crucial differences emerge from the fact that slit con-
finement results in more extra space available as layer spac-
ing incommensurability increases, which results in particle in-
plane misalignment and displacement modes akin to phonons
in bulk crystal.

3.2 TC4

TC4 is a truncated cube with 80% of its corners cut off (s =
0.4). We chose this shape since it has been shown to exhibit
a mesophase behavior47 in 3D bulk systems that is signifi-
cantly different from that of either cubes (s=0) or cuboctahe-
dra (s=0.5).

Fig. 5 Phase diagram of TC4 as a function of volume fraction F and
confinement H*. The nomenclature for the phases is as follows: the
number represents the number of layers; S or SD represent square
and distorted square phases respectively while BR and SR represent
buckled rhombic phase and square rotator phase, respectively. The
phase boundaries marked here are only approximate.

For TC4s we observe a phase behavior whose broad fea-
tures are similar to those of cubes as F increases: a disordered
fluid giving way to a distorted square crystal (see Figure 5) and
decreasing concentrations at the isotropic-solid phase bound-
ary and at the densest state within a particular H* range as-
sociated with an integer number of layers. However, between
H* = 1.9 and H* = 2.1 we see different phases altogether.

Near H* = 1.9, we see a buckled rhombic phase (1BR),
wherein the particles get subdivided into either being close
to the upper or the lower wall. This is reflected in the Z-
coordinate distribution (see Figure 4). They still do not have
enough space to form a separate layer (nearest neighbor par-
ticles tend to be at different heights in the Z-direction), and
hence they form an imperfect buckled phase with rhombic
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bond-orientational order (see Figure 6b). We note that we
identify a buckled phase by a combination of a bimodal Z-
distribution and snapshots of the system (like in Fig. 6b) that
reveal the presence of spatially correlated rows of particles at
different heights. Together, they are complementary indica-
tors of a system frustrated between configurations involving
complete layers.

Fig. 6 Snapshots (top-down and side views) depicting the structure
of TC4s at representative confinement values: (a) Single layer
distorted square (1SD ) phase at H* = 1.5 and f ⇡ 0.55, (b) Buckled
rhombic (BR) phase at H*= 1.9 and f ⇡ 0.46, (c) Two-layer rotator
square (2SR) phase at H* = 2.0 and f ⇡ 0.46, (d) Two-layer
distorted square phase (2SD) at H* = 2.9 and f ⇡ 0.57. Particles are
colored for ease of visualization and identification of layers only.

In contrast, at H* = 2.0 when the confinement width is
enough to allow two separate layers, we see the formation of
a two-layer square rotator (2SR) phase (between F = 0.39 to
0.47), eventually giving way to a two-layer square (2S) phase.
The rotator phase is characterized by a reduced orientational
order despite strong positional order. Above F = 0.47, the sys-
tem attains moderate orientational order, although some parti-
cles are still not oriented parallel to the wall (see Figure S4 in
the SI49).

As we go beyond H*= 2.0, the only ordered phase we en-
counter has layers with a distorted square symmetry, with all
particles oriented parallel to the wall (no rotator phase is de-
tected). The phase behavior follows an overall trend of de-
creasing densest packing until an extra layer can be added,
which results in a jagged upper phase boundary similar to that
seen for cubes. Although TC4s in the bulk exhibit a rotator
mesophase near the isotropic-solid transition, we did not ob-
serve a mesophase over the upper range of H* values studied
here. This is likely due to having an insufficient number of

layers in the Z-direction to approach bulk 3-D behavior.

3.3 Cuboctahedra (COs)

We also examined COs (s = 0.5) which, like TC4s, also show
a rotator mesophase in their bulk 3D phase behavior12,47.

Fig. 7 Phase diagram of CO as a function of volume fraction F and
confinement H*. Green shaded areas represent two-phase
coexistence regions. Vertical dashed lines give approximate
locations of phase boundaries.

Compared to TC4 or cubes, we observe for COs a rather
different and richer phase behavior (see Figure 7 and 8). For
small confinements ( 1 < H⇤ < 1.5), we observe a distorted
square phase just like TC4 and cubes. However, for 1.5 
H⇤ < 1.7 we see a hexagonal rotator phase (1HR) leading to a
buckled rhombic (1BR ) phase at higher F, similar to that seen
for TC4s (see Figure 4). A hexagonal rotator phase, that acts
as a precursor to the 1BR phase, contains particles with a sig-
nificant six-fold bond-orientational order (Y6) while having
little or no global orientational ordering (see Figure S5 in the
SI49). At high volume fractions, the particles in the 1BR phase
exhibit some segregation along the Z-coordinate, without the
formation of a separate layer akin to the behavior of the 1BR
phase in TC4s (see Figure 9 a-d).

For 1.8  H⇤ < 2.3, we again see a square rotator (2SR)
phase which upon compression leads to a 2-layer distorted
square (2SD) phase (see Figure 8 b). The 2SR phase is stable
for a large range of volume fractions (e.g., for 0.38<F< 0.58
when H* = 2). For 2.3  H⇤ < 2.6, we do not observe a rota-
tor mesophase, although we detect the formation of a distorted
square phase (2SD) similar to that observed for smaller H* val-
ues.

For 2.6  H⇤ < 3.0, we see a hexagonal rotator phase, 2HR
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(a phase with six-fold bond orientational order but without
global particle orientational order), that gives way to a dis-
torted rhombic phase (2RD). In this case, while the first transi-
tion (isotropic to 2HR) is seen to be discontinuous, the second
transition (2HR to 2RD) appears to be continuous (see Figure
S6 in the SI49).

Fig. 8 Snapshots (top-down and side views) depicting the structure
of COs at representative confinement values: (a) Buckled rhombic
(1BR) phase at H* = 1.7 and f ⇡ 0.48, (b) Two-layer rotator square
(2SR) phase at H* = 2.0 and f ⇡ 0.69, (c) Three-layer distorted
square phase (3SD) at H* = 3.2 and f ⇡ 0.68, and (d) Three-layer
distorted rhombic phase (3RD) at H* = 3.8 and f ⇡ 0.60. Particles
are colored for ease of visualization and identification of layers only.

Between both 3 < H⇤ < 4 and 4 < H⇤ < 5 we see a recur-
ring trend in the phase behavior. Within each of these regions,
for small values of H* the isotropic phase transitions into a
square rotator phase SR, which has layers with high Y4 values,
that upon further compression goes into a distorted square (SD)
crystal. For larger values of H*, however, the isotropic phase
transitions into a hexagonal rotator phase HR that upon com-
pression gives way to a distorted rhombic crystal (RD). This
change is likely due to differences in the availability of space
in the Z-direction associated with H*. In the 3 < H⇤ < 3.4
and 4.0 < H⇤ < 4.5 ranges, the space is almost commensurate
with a cubic-like ordering, leading to high four-fold bond ori-
entational ordering. In the 3.4 <H⇤  3.9 and 4.5 < H⇤ < 5.0
regions, the extra space is not enough to accommodate an extra
layer, but is large enough to significantly modify the preferred
particle structural arrangement.

Overall, we see a larger variety of phases in COs compared
to cubes or TC4s. While the buckled and square rotator phases
are also observed for TC4s, only COs give rise to the distorted
rhombic (RD) phase and hexagonal rotator (HR) phase. COs

are also able to arrange into distinct structures in the regions
where the extra space in the Z-direction is relatively large but
insufficient for an extra layer.

Fig. 9 Z-coordinate particle distribution at various confinements for
COs and TOs. Except for TOs at H*=2.3, all plots are at the lowest
pressure where the ordered phase occurs. Accompanying snapshots
for each case show the extent of misalignment in the Z-direction.
Dotted limiting lines indicate the physical bounds of the space that a
particle center of mass can span for the given H* value. For TOs at
H* = 2.7, the distribution correspond to F = 0.50 where the 2BS
phase forms. Additional plots at lower F are given in Figure S9 in
the SI 49.

3.4 Truncated Octahedra (TOs)

All the particle shapes studied so far are largely ‘cube-like’
and hence form cubic or distorted cubic lattices at high den-
sities in the 3D bulk state16. TOs form a space-filling BCC
lattice in bulk 3D conditions. Among the shapes studied, TOs
have the largest truncation parameter (s = 0.66) and the small-
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est asphericity.
A distinctive feature of a cubic or distorted cubic lattice is

that it can be seen as the stacking of parallel layers of par-
ticles. This is important in a confined slit-geometry since the
confining walls introduce fixed dividing planes which can pre-
determine the orientation of the particle layers of a (near) cu-
bic lattice. For the BCC packing of TOs, however, any planar
cut to the lattice leaves gaps in the lattice, thus leading to in-
efficient packing. This can be clearly seen from the maximum
volume fractions (achieved in our MC compression simula-
tions), that are significantly lower than not only unity but also
those achievable for cubes (which are also space-filling in the
bulk).

Fig. 10 Phase diagram of TO as a function of volume fraction F
and confinement H*. Green shaded areas represent two-phase
coexistence regions. Vertical dashed lines give very approximate
locations of phase boundaries.

An important difference between TOs and other shapes re-
lates to the particle orientations when the closest approach be-
tween two particles occurs, which is also the shortest width
of a particle. For cubes, TC4s and COs such a distance is the
edge-length of the cube they were truncated from (and hence
the distance between opposing square faces). However, for
TOs, this minimal distance is that between opposing hexag-
onal faces. This means that for the smallest values of H*
studied (⇡ 1.2), TOs tend to be aligned such that the hexago-
nal faces are parallel to the wall. We call this structure a HP
phase, denoting a phase with hexagonal bond-order and with
the hexagonal face parallel to the walls (see Figure 10). For
H* = 1.4, however, we see the HT phase which also has hexag-
onal bond-order (with high values of Y6), but the hexagonal
face is tilted with respect to the wall. This is because, with the
availability of more space in the Z-direction, TOs can increase
their configurational entropy by exploring more particle orien-

tations.
A set of snapshots depicting representative phases is given

in Figure 11. For 1.4 < H⇤  1.7, we see a buckled rhombic
(1BR) phase that is similar to those observed for the previous
shapes. For (1.7 < H⇤ < 2.0), we see a familiar two-layer
square rotator (2SR) phase that eventually goes into a square
phase (2S) upon compression. For (2.1  H⇤ < 2.6), we see
a single transition leading to a two-layer distorted rhombic
(2RD) phase, that has high Y6 bond-orientational order and
high global orientational order (see Figures S7 and S8 in the
SI49). We get complementary information about the layering
and translational order of these phases along the Z-axis from
their Z-coordinate particle distribution (see Figure 9 e-h).

Fig. 11 Snapshots (top-down and side views) depicting the structure
of TOs at representative confinement values: (a) Hexagonal parallel
(HP) phase at H*=1.2 and f ⇡ 0.53, (b) Buckled rhombic (1BR)
phase at H* = 1.6 and f ⇡ 0.56 , (c) Two-layer rotator square (2SR)
phase at H* = 1.9 and f ⇡ 0.66, (d) two-layer buckled square (2BS)
phase at H*= 2.8 and f ⇡ 0.67, (e) three-layer hexagonal rotator
(3HR) phase at H*= 3.3 and f ⇡ 0.51, (f) three-layer distorted
rhombic (3RD) phase at H*= 3.3 and f ⇡ 0.64. Particles are colored
for ease of visualization and identification of layers only.

For 2.6  H⇤ < 2.9, we see a phase not seen for other
shapes, that has local coordination similar to the BCC struc-
ture of bulk TOs, but it has the 111 plane of the putative BCC
structure parallel to the wall. This creates hills and trenches in
the structure near the wall where TOs cannot pack space effi-
ciently. Thus, the particles separate into four different sets of
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heights along the Z axis, even though there is space for two full
nominal layers only (see Figure 9 h). Such an arrangement is
similar to the buckled phase seen for smaller H* values, except
that it now has two full layers. Also, instead of the rhombic or-
der previously detected in buckled phases, this phase has lay-
ers with a square order (with inner-layer particles possessing
BCC-like local bond coordination as detectable by the Q4 and
Q6 order parameters; see for example Figure S10 in the SI49).
We will refer to this phase as a two-layer buckled square phase
(2BS) although a different acronym could be more informa-
tive (e.g., one that incorporates its interlayer BCC symmetry).
Since we obtain the phase behavior primarily from compres-
sion runs, we see grain-boundary defects in the 2BS ordered
phase which do not easily anneal away even after longer com-
pression runs.

For H* > 3.0, we first see the formation of a hexagonal ro-
tator phase, 3HR (having high Y6 order parameter but little
or no global orientational order), that upon further compres-
sion changes into a distorted rhombic phase (RD), with the
number of layers increasing with H*. In a small window after
H*> 3.5, we observe a buckled square phase (3BS) once more,
but now with additional layers. For H* > 3.9, we again see the
HR ! RD transition seen before for 3 <H*< 3.5. Near H* ⇡
4.8, we once more see a buckled square phase, but now with
4 nominal layers (4BS). Importantly, the 3RD and 4RD phases
also possess a BCC character as seen in their Q4, Q6 values
(see Figure S11 in SI49). One could then say that the BS type
of phase arises when (due to the layer commensurability with
H*) a BCC structure fits into the slit so that hexagonal facets
of the TOs lie parallel next the walls (see, e.g., Fig. 11d), while
the 3RD/4RD type of phase arises when the BCC structure now
fits with hexagon-hexagon edges of the TOs pointing towards
the walls (see, e.g., Fig. 11f). It is unclear for how long these
RD $ BS reorientation transitions of the BCC structure (with
respect to the wall planes) will keep occurring as H* increases
(for high F), or whether one of such orientations will become
dominant as the bulk behavior ensues. In either case, the dens-
est packings we observe are not close to 1 (as they would be
for the space-filling phase in the bulk), but they steadily in-
crease as the confinement is reduced.

Overall, the distinctive features of the phase behavior of
TOs are likely due to their high truncation parameter (that
makes them significantly different than cubes) while having
low shape anisotropy (and low asphericity). The buckled
square phases (2BS, 3BS and 4BS) are unique to TOs and ap-
pear when the BCC motifs (that TOs would favor in the bulk)
can fit inside the slit in a particular orientation. We note,
however, that the 2BS and 3BS phases tend to pack particles
much less efficiently than the neighboring RD phases (as seen
in the low density they attain under maximum compression),
and hence are favored only for small windows of H* in the
range of H* examined. This may be the reason why we do not

observe a 1BS phase for very narrow slits. Also noteworthy is
that certain confinements cause TOs to form dense structures
quite dissimilar from their preferable bulk BCC packing, such
as a two-layer square rotator phase (2SR).

4 Remarks on global trends

In an attempt to consolidate our main results and to detect
any broad trends in phase behavior across the different par-
ticle shapes that we studied, a global albeit qualitative phase
diagram is constructed in Figure 12. We use the asphericity
parameter (A) as a way to approximately rank the shapes (not-
ing that low values are useful to identify particle shapes prone
to exhibit rotator phases12). We adopt here the following def-
inition:

A = 1� S⇤

S
(7)

Where S is the surface area of the actual particle shape and S⇤

is the surface area of the sphere having the same volume as
the particle (A is closer to zero for a more sphere-like shape).
We note that for the four particle shapes studied A and s (the
truncation parameter) exhibit the opposite trends; i.e., larger s
values correspond to smaller A. In the A vs. H* phase diagram
(for 1< H* < 5) of Figure 12, besides the 4 shapes studied in
this work we also include data for hard spheres from Ref.30 to
illustrate the limiting case of particles with no asphericity.

Fig. 12 Qualitative summary phase diagram of main ordered phases
encountered in different confined polyhedra of the truncated cube
family with different asphericity A values (A=0 corresponds to hard
spheres) and different separations (H*). For any given A, each
colored bar represents a phase with the bar appearing lower (higher)
corresponding to the ordered phase occurring at lower (higher)
volume fraction. For hard spheres, while bars represent intermediate
phases of complex or mixed character.
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Note that for hard spheres the lack of orientational order
renders some of our phase classification superfluous; e.g.,
phases SD and SR simply become S. For hard spheres, how-
ever, we do not include all the phases that have been iden-
tified; in particular, intermediate phases that have a complex
structure have been left as white bars. In Figure 12, similar
colors are used to represent phases with similar structure (pri-
marily in terms of translational order) regardless of number of
layers; for example, light and dark red bars are for phases with
layer of square bond order symmetry while light and dark blue
bars are for phases with layers of hexagonal symmetry. For a
given color type, the use of a darker/lighter shade is intended
to convey the strength of the symmetry; e.g., a darker red has
a stronger square symmetry than a lighter red. The following
approximate trends are observed:

• As asphericity decreases, there is an increasing proclivity
for phases with layers with hexagonal bond-order sym-
metry (in dark and light blue) to appear, taking over H*
areas that (at low A) were occupied by phases with square
bond-order symmetry (in dark and light red).

• As asphericity decreases, the number of layers that can
fit in the channel (for a given H*) increases; e.g., 4-layer
phases can occur even for H* < 4.

• As asphericity decreases, the tendency for intermediate
phases (occurring in between n and n+1 layered phases
and between hexagonal and square bond order symme-
try) increases.

• As asphericity decreases, the differences between a ro-
tator and the non-rotator version of the same phase (of
similar translational ordered) expectedly diminishes.

• One-layer buckled phases seem to be favored in systems
with medium to low asphericities; if fact, it occurs for all
systems except for cubes.

Along the asphericity axis of Figure 12, the transition from
CO to TO to sphere phases is not gradual. In some respects,
the phases in COs would seem to more closely correspond
to the phases in the spheres (e.g., the alternation of phases
with square and hexagonal symmetry with increasing number
of layers as H* increases). Despite having a slightly lower
asphericity than COs, TOs seem less prone to form layered
phases with square symmetry. This illustrates that, expectedly,
asphericity alone is not a complete descriptor of phase behav-
ior (just as is case in the bulk) and that the particular way how
certain shapes pack affects the types of symmetries that are
favored. For instance, TOs show a preference for their (bulk)
space tessellating packing, with the 2BS and 3BS phases being
detected only for this particle shape.

Finally, we can also compare these results to previous cal-
culations for polyhedra confined to a surface48. In the region

1 < H⇤ < 1.8 or so, our system provides only enough room in
the Z-direction for the particles in a monolayer to undergo ro-
tations; such narrow-slit constraints can be conjectured to be
similar to the flat-interface constraints for a monolayer sys-
tem where the center of mass of the particles are confined
to a stay on a flat surface. We indeed see a similar behav-
ior for cubes in both scenarios. For TC4s on a flat interface,
structures with both six-fold and four-fold orientational order
were observed48 as intermediates between the liquid and crys-
tal phases. In our case, six-fold ordered structures are absent
but we observe a buckled rhombic (1BR) phase that has high
Y6 order parameter at H* = 1.9. For COs, both narrow-slit and
flat-interface constraints lead to the formation of a hexagonal
rotator phase (HR) as well as a rhombic phase, which in our
case is also buckled (due to the extra space along the Z axis).
For TOs under flat-interface constraints, a hexagonal rotator
(HR) phase is seen, which leads to a rhombic phase upon fur-
ther compression. In our case, we see a similar phase behavior
with HP, HT and BR phases, all of which show 6-fold bond-
ing symmetry. We also note that experiments of interfacial
self-assembly of nanoparticles with a cantellated cube shape
(approaching a rhombicuboctahedron) have detected the for-
mation of a buckled phase with octahedral symmetry55.

5 Conclusions

We investigated the phase behavior of four representative
polyhedral shapes from the truncated cube family, namely,
cubes, TC4s, COs, and TOs, when confined inside a slit with
hard walls separated a distance H*. The central aim was to ex-
plore the transitional phase behavior as the system goes from
a quasi-2D geometry (for strong confinement, small H*) to a
quasi-3D bulk behavior (for weak confinement, large H*). The
choice of shapes was motivated by the growing availability of
experimental methods that readily allow synthesis of nanopar-
ticles with these shapes and by the theoretical and simulation
studies that have predicted a rich bulk 3-D behavior for such
systems.

While we found some common trends in all four shapes,
there were aspects of their phase behavior that were unique to
each particular shape. The common trends help us understand
the generic effects of geometric confinement. We observed
a saw-tooth-like pattern in the ordered-state densest packing
as a function of H* that is associated with how efficiently the
particles use the available space while accommodating some
integer number of layers. The phase behavior is particularly
interesting for monolayers as H*! 2, since the relatively large
free space associated with the frustration of a second layer
allows the possibility of alternative structures that can maxi-
mize entropy. Except for cubes, we detect the formation of
buckled phases for all the other shapes within the range 1.5 <
H⇤ < 2. For the H* values we investigated, however, the phase
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behavior does not converge to the bulk-3D behavior, although
confinement effects weaken significantly for H⇤ > 3. As the
asphericity in the shapes is reduced, our simulated phase dia-
grams show features that approach those of the phase behav-
ior observed for hard spheres (HSs) in parallel-plate confine-
ment30. Our simulated phase behavior for strong confinement
(so that only a monolayer is allowed) also shows some sim-
ilarities to that of freely rotating polyhedra whose centers of
mass are confined to a flat surface48. All of our results are
based on compression simulations only; complementary ex-
pansion runs were not performed as the densest packed con-
figurations were unknown for most of the confinements of in-
terest. Hence the phase boundaries outlined in this work are
only approximate and some of the phases detected may even
be metastable. However, they represent the most likely out-
comes of typical particle confinement experiments that enact
a gradual compression process akin to our simulation proto-
col. Our results could be further refined by identifying dens-
est packed structures for varying confinement using, e.g., the
Floppy Box Monte Carlo method56.

The considerable effect of geometrical confinement on the
phase behavior of truncated-cube type polyhedral nano- or
micro-particles suggests that this provides an effective experi-
mental route to engineer novel phases in these systems. Future
studies could investigate how dynamic changes of the confine-
ment may affect structure, assessing the robustness of some of
the phases reported here and whether such changes could be
coupled with phase transitions. Towards creating functional
nanomaterials with tunable material properties, several strate-
gies such as shape anisotropy, shape bi-dispersity, enthalpic
‘patchy’ particles are often used. Our work adds to the body
of work that has shown that geometrical confinement can also
effectively tune the particle structure and hence any structure-
dependent property of interest.

Acknowledgements

Funding support is gratefully acknowledged from DOE (Of-
fice of Basic Energy Sciences, Division of Materials Sciences
and Engineering under award Grant No. ER46517). The au-
thors also thank Dr. U. Agarwal and V. Thapar for useful ex-
changes.

References
1 P. A. Buining, C. Pathmamanoharan, J. B. H. Jansen and H. N. W.

Lekkerkerker, Journal of the American Ceramic Society, 1991, 74, 1303–
1307.

2 L. M. Liz-Marzan, M. Giersig and P. Mulvaney, Langmuir, 1996, 12,
4329–4335.

3 O. Cayre, V. N. Paunov and O. D. Velev, J. Mater. Chem., 2003, 13, 2445–
2450.

4 F. van der Kooij, K. Kassapidou and H. Lekkerkerker, NATURE, 2000,
406, 868–871.

5 D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton and P. S. Doyle,
Nature materials, 2006, 5, 365–369.

6 C. J. Hernandez and T. G. Mason, The Journal of Physical Chemistry C,
2007, 111, 4477–4480.

7 C.-Y. Chiu, Y. Li, L. Ruan, X. Ye, C. B. Murray and Y. Huang, NATURE
CHEMISTRY, 2011, 3, 393–399.

8 Y. Sun and Y. Xia, Science, 2002, 298, 2176–2179.
9 O. C. Compton and F. E. Osterloh, Journal of the American Chemical

Society, 2007, 129, 7793–7798.
10 D. Seo, J. C. Park and H. Song, Journal of the American Chemical Soci-

ety, 2006, 128, 14863–14870.
11 B. S. John, C. Juhlin and F. A. Escobedo, J. Chem Phys., 2008, 128,

044909.
12 U. Agarwal and F. A. Escobedo, Nature materials, 2011, 10, 230–5.
13 U. Agarwal and F. A. Escobedo, J. Chem. Phys., 2012, 137, 024905.
14 J. Henzie, M. Grünwald, A. Widmer-Cooper, P. L. Geissler and P. Yang,

Nature Materials, 2012, 11, 131–7.
15 P. F. Damasceno, M. Engel and S. C. Glotzer, Science, 2012, 337, 453–

457.
16 S. Torquato and Y. Jiao, Nature, 2009, 460, 876–879.
17 J. H. Conway, Y. Jiao and S. Torquato, Proceedings of the National

Academy of Sciences, 2011, 108, 11009–11012.
18 Y. Jiao, F. H. Stillinger and S. Torquato, Phys. Rev. E, 2009, 79, 041309.
19 J. de Graaf, R. van Roij and M. Dijkstra, Phys. Rev. Lett., 2011, 107,

155501.
20 P. Pieranski, Phys. Rev. Lett., 1980, 45, 569–572.
21 P. Pieranski, L. Strzelecki and B. Pansu, Phys. Rev. Lett., 1983, 50, 900–

903.
22 D. H. Van Winkle and C. A. Murray, Phys. Rev. A, 1986, 34, 562–573.
23 J. A. Weiss, D. W. Oxtoby, D. G. Grier and C. A. Murray, The Journal of

Chemical Physics, 1995, 103, 1180–1190.
24 S. Neser, C. Bechinger, P. Leiderer and T. Palberg, Phys. Rev. Lett., 1997,

79, 2348–2351.
25 I. Cohen, T. G. Mason and D. A. Weitz, Phys. Rev. Lett., 2004, 93,

046001.
26 I. Cohen, B. Davidovitch, A. B. Schofield, M. P. Brenner and D. A. Weitz,

Phys. Rev. Lett., 2006, 97, 215502.
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