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A Molecular Theory of the Nematic-Nematic Phase Transitions in 
Mesogenic Dimers. 

Alexandros G. Vanakaras,*a and Demetri J. Photinosa 

We study theoretically the molecular origins of the fascinating, and still debated, nematic-nematic phase transition exhibited 

by symmetric, statistically achiral, mesogenic dimers.  A simple molecular model that mimics the key features and symmetry 

(C2V) of this class of mesogens is presented. In the mean-field approximation, the model yields up to three positionally 

disordered phases, one isotropic and two nematic. The low temperature nematic phase (NX) has a local two-fold symmetry 

axis which is also a direction of molecular polar ordering and is tightly twisted about a macroscopic phase axis. The onset of 

polar ordering generates spontaneous chiral symmetry breaking and the formation of chiral domains of opposite 

handedness, manifested primarily by the twisting of the polar director. Within these domains the statistical balance between 

the enantiomer conformations is slightly shifted and the principal axes of the ordering tensors of the molecular segments 

twist at constant tilt angles with the helix axis. Key experimental results on the NX phase of liquid crystalline dimers are 

discussed in the light of the theoretical predictions of the model, which are also contrasted with the predictions of the twist-

bend nematic model. 

1. Introduction 

Neat liquid crystal (LC) compounds which form more than one 

nematic phase1–5 are exceptional and bring new insights and 

challenges to our understanding of the “simplest of all LC 

phases”. A fascinating example is provided by certain types of 

symmetric liquid crystalline dimers (bimesogens, for short) with 

odd carbon-number alkyl spacers exhibiting, in addition to the 

conventional uniaxial nematic phase, a low temperature 

nematic2,6–10, termed as Nx. The latter shows characteristic 

periodic stripe patterns and rope textures in thin films2 and an 

electro-optical response typically found in chiral systems, 

though the molecules are nonchiral11–14. The chiral nature of 

this phase has been confirmed NMR studies10,15–17.  

Recently, the structure of the Nx phase has received much 

attention13,18–22 and, despite the intense investigation, it is still 

debated. It has often been argued that the Nx corresponds to 

the theoretically long predicted23 twist-bend nematic phase. 

Following the first report on the experimental discovery of the 

Nx phase and the presentation of some of its distinguishing 

properties2, it was suggested17 that this phase should be 

identified with the twist-bend nematic phase (thereafter 

denoted as NTB) that had been predicted for achiral bent-core 

molecules24 as emerging from the instability of the uniaxial 

nematic phase to spontaneous bend deformations. It soon 

appeared, however, that such identification might be 

questionable. For one, experimental indications of a heliconical 

structure, a characteristic of the NTB description, were reported7 

but for a helical pitch which is nearly temperature-independent 

and only a few nanometers long. This is two orders of 

magnitude shorter than the original theoretical estimates24 and 

certainly far too short to be consistently treated in the context 

of the curvature elasticity theory on which the NTB prediction 

was based.23 Despite that, the analysis and attempted 

interpretation of a considerable volume of experimental 

observations has to date been mostly based on the 

identification of the bimesogen Nx phase as NTB.6–8,15–17,22 

However, none of these observations can be considered as 

direct proof nor does it exclude other possible phase structures. 

Moreover, the NTB interpretation appears to be in conflict with 

more recent experimental results.7,9,10 At the same time, some 

extensions, refinements and modifications of the original NTB 

model23 or of its variant for bent-core molecules24 were 

proposed.8,18,19,25 In this work we present a concrete alternative 

structural model for the Nx phase, starting from the molecular 

symmetries and interactions.  

The molecules are modelled as pairs of uniaxial rods which are 

connected in a way that permits only intramolecular torsions 

which generate distinct conformations, thus capturing 

minimally the key features of the prototypical symmetric CB-Cn-

CB dimer molecules (Figure 1). We demonstrate that, within a 

certain range of the molecular parameters of the model, a 

phase transition from a uniaxial achiral nematic phase (N) to a 

lower temperature nematic phase of locally polar and chiral 

order is obtained. Based on these results we propose a detailed 

picture for the molecular organization of the NX phase which 

accounts for the occurrence of this phase in some types of 

dimers and not in others and provides a consistent 

interpretation for the known experimental results on the 

structure and the macroscopic properties of the NX phase.  
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2. A toy-model of nematic bimesogens. 

For the symmetric dimer molecule with identical rod-like 

mesogenic cores, we adopt the simplified geometry of Figure 1. 

The directions of the mesogenic rods are denoted by the unit 

vectors L , L . The “spacer” vector, connecting the midpoints 
of the mesogenic rods, is denoted by dd z  and defines the 

direction of the molecular z -axis. The mesogenic cores form a 
fixed angle   (the molecular “bend” angle) with the spacer 

vector and the molecule has a twofold symmetry axis 

perpendicular to z , let’s identify it with the molecular y axis. The 

z  axis is also an axis of reflection-rotation by an angle   (the 

molecular “torsion” angle) which has fixed magnitude but can 

assume opposite signs    , thus restricting the possible 

conformations of the dimer molecule to just two. These are 

mutual enantiomers and will be denoted by a conformation 

index 1s   . The conformations are taken to have intrinsically 

equal weights, thus rendering the molecule statistically achiral.  

 
Figure 1. Molecular structure of BC-C9-CB (a) and molecular geometry of idealized dimer, 

side(b) and top (c) view, with the labelling of the molecular axes and mesogenic units. 

Despite the extreme simplification of the molecular structure, 

this minimal representation conveys the crucial features of the 

actual dimer molecules: (i) molecular flexibility with statistical 

achirality (ii) the distance between the two mesogenic units 

cannot exceed an upper bound (the extended spacer length) (iii) 

the orientations of the mesogenic cores, relative to each other 

and to the spacer end-to-end direction, are not evenly 

distributed but show clear statistical biasing about well-defined 

values26. The usual symmetric rigid bent-core (V-shaped) 

molecular model, with angular aperture between the molecular 

“arms” equal to 2  , is obtained as a limiting case of the 

model in Figure 1 when the torsion angle is set to vanish ( 0   

) and the distance d  is set at sind L  , with L  denoting the 

length of the mesogenic unit. 

Keeping the formulation of the intermolecular interactions at an 

analogous level of simplicity, a pair of molecules, 1 and 2, is 

assumed to interact via pair a potential 1,2V  that is made up 

additively of terms involving only the four intermolecular pairs 

of mesogenic core segments in the two dimers: 

1 2 1 2 1 2 1 21,2 1,2 1 2 1 2 , , , ,( , , , , ) L L L L L L L LV s s v v v v        R , where 1,2R  is 

the intermolecular vector, connecting the origins of the 

molecular frames of dimers 1 and 2, in conformations 1s , 2s  and 

orientations 1 , 2  of their respective molecular frames in the 

macroscopic frame of axes , ,X Y Z . The core-core potentials 

1 2 1 2 1 2, , , 1 2( , , )L L L L L Lv v R L L , depend on the intermolecular vector 

1 2,L LR connecting the mid-points of the core segments and on 

the unit vectors 1 2,L L  specifying the directions of these 

segments in the macroscopic frame.  

The assumed molecular symmetry can lead to three types of 

positionally disordered fluid phases, to which we hereafter 

restrict our attention. These are the isotropic fluid phase (I), the 

uniaxial nematic phase (N) and a nematic phase with possible 

transverse polar ordering, and therefore locally biaxial 

arrangement of the molecules. The latter phase, which will be 

tentatively termed as NX, could in principle present chiral 

ordering as well, due to the existence of chiral molecular 

conformations, and to the overall bent molecular shape . In any 

case, this phase should present at least a local two-fold 

symmetry axis associated with the two-fold symmetry of both 

conformations accessible to the constituent molecules. 

Accordingly, there is one phase director, denoted by the unit 

vector m , which is a local twofold symmetry axis of the NX 

phase, thus defining the only possible direction of polar 

molecular ordering in the phase. Of course, being a director of 

the phase, m  is a principal axis of any tensor quantity in that 

phase. As the free energy calculations show below, the 

thermodynamically most stable spatial configuration of the m  
director is a helical twisting of constant pitch hp  about a fixed 

axis perpendicular to m . This helix axis, which is an effective full 

rotational symmetry axis for any physical property of the phase 

that is averaged over regions of macroscopic dimensions much 

larger than the helical pitch, will be denoted by the unit vector 

hn . In the conventional uniaxial nematc phase, N, hn  reduces 

to the usual director n , i.e. the unique, inversion invariant (

n n ), full rotational symmetry axis of the phase. To 

complete the set of local phase axes for the description of the 
NX phase, we define a third unit vector hl , perpendicular to m  

and hn . With this identification of local phase axes, the 

simultaneous sign reversal    , ,h h h h  n l n l  is a symmetry 

operation of the phase, while the sign reversal m m  is not 

necessarily a symmetry operation, thus allowing for the 

description of transversely polar phases.  

Obviously, these local symmetries are compatible with a twist 

of the two-fold (and possibly polar) axis m  about the helix axis 

hn . Furthermore, the spontaneous breaking of orientational 

symmetry, which distinguishes the NX phase from N, dictates 

that the broken symmetries of the N phase will be preserved 

globally in the less symmetric NX phase. Accordingly, full 

rotational symmetry about an axis and inversion of that axis 

should be present as global symmetries in the NX phase. These 

requirements have direct implications on the possible spatial 
configurations of the local axes , ,h hn l m : Choosing the frame 

of macroscopic, phase fixed, axes , ,X Y Z  such that the Z  axis 

is along the helical axis hn , and taking into account the 

macroscopic equivalence of all the positions and directions in 
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the XY  plane, we have for the spatial dependence the two 

transverse phase axes the following possibility 
( ) cos ( ) sin ( )h Z Z Z  l X Y  and 

( ) sin ( ) cos ( )Z Z Z   m X Y . The equivalence of all the 

positions along the Z  axis implies a constant derivative 
( ) /d Z dZ k  , from which it follows that 0( )Z kZ   , i.e. 

twisting at constant pitch 2 /hp k . The macroscopic 

equivalence of the Z  and Z  directions implies the 

equivalence of both signs for the twist wave number, k . The 

phase angle 0  is arbitrary and accounts for the arbitrariness in 

the choice of the X and Y directions and of the origin of the 
macroscopic frame , ,X Y Z . Obviously, the uniformly aligned 

(untwisted) biaxial, and possibly polar, nematic phase is 

included as in this description and corresponds to a vanishing 

value of k .  

In the NX phase, the entire molecule has an orientation-
conformation probability ( , , )f s Z  that refers to the local axes 

, ( ), ( )h h Z Zn l m  at the Z  coordinate of the origin of the 

molecular frame of axes. The orientation of the molecular frame 

, ,x y z , relative to the macroscopic , ,X Y Z  is denoted by   

and the positional distribution of the molecular frame origins is 

taken to be uniform (i.e. nematic). 

To describe phase stability and transitions among the possible 

positionally uniform phases of the system, we formulate the 

free energy starting from the average interaction (the 

“potential of mean torque”) experienced by a dimer molecule 

from all the other molecules in a sample of N  molecules of 

uniform molecular density ( )N / samplevolume  at 

temperature T . This is obtained by averaging 1,2V  over all the 

positions ( 2R ), orientations ( 2 ) and conformations ( 2s ) of 

molecule 2.  

     
2

1 1 1 2 2 1,2 1,2 2 2 2( , , ) ( , , )
2 s

V s Z dR d g V f s Z


  
 

  
 

   (1) 

Here 1,2 1,2 1,2 1 2 1 2( , , , , )g g s s  R stands for the pair correlation 

function of dimers 1 and 2.  

To proceed with the determination of the potential of mean 

torque, we follow closely the Maier-Saupe (M-S) approach,27,28 

with the crucial difference that here the positional and 

orientational averaging is not done independently among the 

mesogenic units, as in the M-S model of nematics, but among 

permanently jointed pairs of such units, forming the individual 

dimer molecules. Accordingly, we make the drastically 

simplifying approximation of using for each of the four 

segment-segment terms in 1,2V  a factorized form in which the 

dependence on the relative orientations is separated from the 

dependence on the relative distance of the segments27,28, that 

is  

1 2 1 2 1 21,2 1,2 1 2 1 2 , , 1 2 , 2 1 2( , , , , ) ( , , ) ( ) ( )L L L L L Lg s s v u R P   R R L L L L

 (2) 
Here 2 1 2( )P L L  denotes the second Legendre polynomial of 

the angle formed by the intermolecular pair of mesogenic rods 

1 2,L L . The radial function 
1 2,( )L Lu R  is understood to vanish at 

short segment-segment distances 
1 2,L LR  (as molecular overlaps 

are inhibited by the pair correlation) and at large distances 

(finite range interactions). 

Thus, from each of the additive pair terms, say the 
1 2,L Lv  term, 

we have the contribution: 

 

1 1 2

2

1 1 1 2 2 , 2 2 2 2 1 2( , , ) ( ) ( , , ) ( )
2

L L L

s

v s Z dR d u R f s Z P


  
 

  
 

  L L  .

 (3) 

To carry out the integrations in the above expression we 

introduce the Fourier representation 

 

 
2

0

1
( ) ( ) , with ( ) ( ) sin

2

iq Ru R dqu q e u q u R qR RdR
q



     (4) 

and we use the rotation matrix to obtain the relations  

 

      
2 1 2 1 1 2 1

2 1 2 1 1 2 1

( ) ( )sin ( ) ( )cos ( )

( ) ( )cos ( ) ( )sin ( )

h

h h

Z Z k Z Z Z k Z Z

Z Z k Z Z Z k Z Z

    

   

m l m

l l m

 . (5) 

 

We also express the intersegmental vector as 

 

 
1 2 2 1, 2 1L L L L   R R R r r  ,   (6) 

 

where the molecular vector 
1Lr  connects the molecular centre 

of molecule 1 with the centre of the segment 1L  and is 

therefore equal to  
1 1 / 2L dr z  (respectively  

1 1 / 2L d  r z ). 

We then obtain from eq(3), on adding the contributions from 

the four possible intermolecular mesogenic pairs, the following 

expression for the potential of mean torque of the dimer 

molecule in the NX phase: 

 

 0 0 1 1 1 2 2 2( , ) / ( , ) ( , ) ( , )BV s k T W s W u W s W u W s W         

, (7) 

with the angular brackets denoting ensemble average of any 

conformation/orientation/position-dependent molecular 
quantity ( , , )Q s Z  according to

 1/ 2 ( , , ) ( , , )
s

Q dZd f s Z Q s Z     and with the 

following analytic expressions for the orientation-conformation 
dependent molecular quantities iW , 0,1,2i  :  

  

2 2

0

2 2 2

3 1 3 1
( , ) cos ( )

2 2 2 2

3
sin cos2 ( ) ( )

4

3
sin 2 sin ( )( )

2

h

h h

h h

W s  

 

 

  
     
  

   

  

z n

x n y n

z n x n

, (8a) 
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2

2 *

1

2

3 1
cos ( )( )

2 2

( )( )1
( , ) sin cos2 cos ( )

( )( )2

( )( )1
sin 2 sin

( )( )2

( )( )
sin 2 cos

( )( )1

2
sin sin

h h

h

h

h

h

h

h

h

W s k



  

 

 



  
    
  
 

      
    
 

    
   

    

  
 
   





z n z n

y n y l
z n

x n x l

z l x n

z n x l

z m y n

y m z n
*sin ( )

( )( )
2

( )( )

h

h

h

k



 
 
 

 
   

      

z n
y n x m

x n y m

,(8b) 

and 

 2 2 2

2 2

2 *

2 2 2

3 1
cos ( ) ( )

2 2

( ) ( )1
( , ) sin cos2 cos2 ( )

2 ( ) ( )

( )( )
sin 2 sin

( )( )

( )( )
sin 2 cos

( )( )

h

h

h

h

h h

h

h

W s k



  

 

 

  
     

  
 

        
       

   
       

  

   



z m z l

y m y l
z n

x m x l

z l x l

z m x m

z m y l

y m z l
*

2

sin 2 ( )
( )( )

sin sin 2
( )( )

h

h

h

k

 

 
 
 

  
          

z n
y l x m

x l y m

 (8c) 

In these expressions, the dimensionless inverse pitch is defined 

as * / 2 / hk kd d p  . Note that 1W and 2W  are implicitly Z -

dependent due to the variation of the directions of the m  and 

hl  axes along the macroscopic Z  direction; accordingly there 

is an implicit Z -dependence of the potential of mean torque 

given in eq(7). This Z -dependence is not explicitly indicated in 

eq(7), and in subsequent equations, for notational simplicity. 

The overall strength parameter appearing in the potential of 

mean torque is given by  
3

4 2 (0) / Bu k T      and the 

relative strength parameters of the first and second “twist 
harmonic” contributions in eq (7) are 1 3 ( ) / (0) ;u u k u   

2 3 (2 ) / 4 (0)u u k u  . The normalized orientation-conformation 

distribution function is expressed in terms of the potential of 

mean torque as  

 
 0 1 2

exp ( , ) /
( , )

, ,

BV s k T
f s

W W W







   ,   (9) 

with  2 / exp ( , ) / B

s

d V s k T    , and the respective free 

energy of the ensemble27 is   

 

   
2 2 2

0 1 1 2 2 0 1 2

1
/ ln , ,

2
BF k T W u W u W W W W       .

 (10) 

The three composite order parameters 0 1 2, ,W W W  together 

with the inverse pitch parameter *k  are determined through 

the self-consistency condition expressed in eq(9). The latter 

leads to a set of coupled equations of the form 

( , ) ( , )i i

s

W d f s W s   , , 0,1,2,...i  These are solved 

iteratively, retaining the solutions which correspond to minima 

of the free energy and determining the respective equilibrium 

value of *k  by seeking the global minimum of the free energy 

for each set of iterative solutions.  

The following types of solutions are considered, corresponding 

to the following fluid phases: (i) Isotropic, I, with 

0 1 2 0W W W   ; (ii) uniaxial nematic, N, with 

0 1 20, 0W W W   ; (iii) biaxial apolar nematic, with 

0 1 20, 0, 0W W W   , with uniformly aligned ( * 0k  ) or 

twisted ( * 0k  ) transverse director m ; (iv)  transversely polar 

(and therefore biaxial) nematic, with 0 1 20, 0, 0W W W   , 

with uniformly aligned ( * 0k  ) or twisted ( * 0k  ) m . The NX 

phase is identified with the latter case, i.e. as a transversely 

polar (and therefore biaxial) nematic phase with twisted 
transverse director about a uniformly oriented helical axis hn . 

Our calculations yield only the I, N and NX solutions, with the 

latter, when obtained, being always more stable 

thermodynamically than the N solution.    

As the free energy is invariant with respect to the simultaneous 

reversal of the molecular torsion angle   (i.e. replacing each 

conformation by its enantiomer) and the reversal of the m  

director twisting sense (i.e. the reversal of the macroscopic 

chirality), domains of opposite chirality are equally likely to be 

present in an unbiased macroscopic sample of the NX phase. 

Also, as expected, the free energy shows no dependence on the 
phase angle 0  associated with the arbitrariness in the choice 

of the origin and the transverse directions of the macroscopic 
frame , ,X Y Z . Accordingly, the variation of this phase angle 

from one domain to the other is unrestricted, aside from 

surface terms at the interface with neighboring domains. 

Results on the relative thermodynamic stability of these phases 

and on the respective phase transitions are presented in the 

next section. It should be kept in mind that these results refer 

to unperturbed macroscopic monodomain ensembles at fixed 

density and temperature.  

3. Phase transition and order parameter 
calculations.  

Here we restrict our consideration to a range of the molecular 
angles   (the “torsion” angle) and   (the “bend” angle) that 

are relevant to the molecular architecture of the odd-spacer 

mesogenic dimers. Obviously, for very small bend angles the 

behaviour of the system tends to that of typical uniaxial rod 

nematics while for bend angles near / 2  and torsions either 

close to 0 or to / 2 , the behavior tends to that of plate-like 

nematics. Accordingly we will consider, for both angles, values 

not very far from / 4 . Furthermore, to have a concrete 

analysis of the phase transition trends and of the order 

parameter profiles, we have employed, in line with the 

simplicity of the molecular model, a very simple form for the 

radial part of the effective mesogenic core interaction in eq (4), 
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namely ( )u R w   in the range 0 aR R R  , with 0w  , and 

( ) 0u R  otherwise. This leads to the following functional 

dependence of ( )u q in Eq (4): 

 

   0 0 02 3

1
( ) sin cos sin cos

2
a a a

w
u q qR qR qR qR qR qR

q
           ,

 (11) 

which conveys in a very simple form the main physical features 

of the effective intermolecular interactions, attractive or 

repulsive, favouring the mutual alignment of the mesogenic 

units. Calculations with different forms indicate that the 

qualitative inferences of the model do not depend critically on 
the details of the functional form used for ( )u q . 

We now turn to the dependence of the possible phase 

sequences and respective transition temperatures on the 
molecular bend and torsion angles   and  . The temperature 

dependence of the potential of mean torque in eq(7) is 

controlled by the strength parameter  , which also controls 

the temperature dependence of the composite order 

parameters 0W , 1W , 2W  and of the helical pitch, through 

the free energy minimisation conditions. Accordingly, the 

parameter   can be regarded as an external parameter by 

which the effective inverse temperature of the system is 

specified. For convenience in the presentation of the phase 

diagrams we use a reference value of  , specifically the value 

( 0)N I    at the nematic to isotropic transition for the limiting 

case of 0  , corresponding to a two-rod linear dimer. We 

then express the effective inverse temperature of the system 
for any combination of the  ,   angles by means of the 

dimensionless parameter * ( , ) / ( 0)N I       .  

 
Figure 2. Calculated phase diagrams for fixed molecular torsion angle 30    and 

variable molecular bend angle   (left) and for fixed 30    and variable   (right). 

The dimensionless parameter in the vertical axis is the effective inverse temperature *

. The lines dividing the different phase regions correspond to the respective phase 

transition temperatures. The results are obtained for the molecular interaction range 

parameter values 
0 / 1R d   and 

0/ 1.5aR R  , for which, ( 0) 4.52N I    . 

The solution of the self-consistency equations together with the 

free energy minimisation, yielding the composite order 

parameters 0 1 2, ,W W W  and the pitch *k , show that (i) for 

relatively small bend angle   and large torsion angle  , a first-

order transition from the Isotropic (I) to the uniaxial nematic (N) 
phase is obtained at a temperature N-IT  and on further lowering 

the temperature, a second-order phase transition is found from 

the nematic N to a transversely polar and twisted nematic phase 

(NX) and (ii) for larger bend angles   and relatively small torsion 

angles  , a direct first order I- NX phase transition is obtained 

at low temperatures. Representative results of the calculations 

are shown in the phase diagrams of Figure 2 for variable 

molecular bend angle at fixed torsion angle and vice versa. In 

both cases, a critical value of the variable angle is obtained, at 

which the three phases coexist and beyond which the uniaxial 

nematic phase, N, is eliminated from the phase sequence. The 

topology of these diagrams remains essentially unchanged for 
different values of the respective fixed angle (   or  ) within a 

range of 15  about the chosen value of 30  in the two 

diagrams of Figure 2. A generic feature of the  -dependence 

of the phase diagrams is the rapid lowering of the N-NX 

transition temperature with decreasing bend-angle, suggesting 

that the latter is the primary molecular feature controlling the 

stabilization of the NX relative to other competing phases 

(smectic, etc.) which are accessible to the bimesogens at low 

temperatures. A generic feature of the  -dependence is the 

disappearance of the uniaxial nematic phase N at small   and 

the monotonous decrease of the direct I-NX transition 

temperature with decreasing  . Recalling that the limit 0   

includes the rigid bent-core model, it follows that no N-NX 

transition is predicted for bent-core molecules and that the NX 

phase is obtained at relatively low temperatures, where this 

phase might be pre-empted by other, more ordered, competing 

phases. This is in accord with the fact that the N-NX transition 

has hitherto been experimentally observed in dimers but not in 

the more rigid bent-core mesogens. 

 

 
Figure 3. Calculated temperature dependence of (a) the second rank orientational order 

parameters of the mesogenic core segments, ( )L

hS , ( )L

h  and ( )L

h , defined in the main 

text, and (b) the polarity order parameter P , the biaxiality of the transverse ordering 
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of the molecular symmetry axis ( )y

h , the induced molecular chiral asymmetry 

parameter c  and the dimensionless inverse pitch *k  of the twisting of the transverse 

polar director m . The dotted line in (a) represents the calculated extrapolation of the 

nematic order parameter S  below the transition temperature, where the uniaxial 

nematic phase becomes thermodynamically unstable.  Note the different scale for ( )L

h

and c . All the results are obtained for fixed values of the molecular angles 30   

and of the interaction range parameters 0 /R d , /aR d  as in Figure 2.  

Results on the temperature dependence of the order 

parameters are shown in Figure 3, with the molecular bend and 
torsion angles fixed at 30    . Of the many possible order 

parameter combinations describing the NX phase of the system, 

we have chosen to present the following, mainly due to their 

more or less direct accessibility to experimental determination:  

(i) Orientational order parameters in the frame of the axes 
, ,h hn l m . These include the second rank order parameters 

of the mesogenic cores ( ) 23 1
( )

2 2

L

h hS   L n , measuring 

the extent of alignment of the mesogenic units along the 

helix axis hn , the order parameter ( ) 2 2( ) ( )L

h h    L m L l

, measuring the local biaxiality of the mesogenic core 

orientational ordering, and the respective local eccentricity 

parameter ( ) ( )( )L

h h h   L n L l . They also include the first 

rank order parameter P  y m , measuring the polar 

ordering of the molecular 2C  axis along the director m . The 

polar ordering of the mesogenic units, which would produce 

the spontaneous electric polarisation ( )L
P , along m , if these 

units were endowed with longitudinal dipole moments, is 

given by the order parameter ( ) cos sinLP P    L m . 

The biaxiality associated with the transverse polar ordering 

P  is quantified by the order parameter 
( ) 2 2( ) ( )y

h h    y m y l  which provides the ordering 

preference of the molecular symmetry axis y  in one of the 

transverse directions over the other.  

(ii)  The conformational imbalance parameter 

sin / sinc s     , which provides a measure of the 

induced probability difference between the two 

enantiomeric conformations, in other words, the molecular 

chirality symmetry breaking. Physically, the conformational 

imbalance is a result of the different packing efficiency of 

the two enantiomeric conformations in an environment 

with given sense of chirality. Clearly, c  vanishes in a non-

chiral phase due to the assumed equal probabilities of the 

two conformations for the isolated molecule. Generally, for 

molecules with more than one pair of enantiomeric 

conformations, the probability of each conformation s  in 

the bulk phase is obtained as ( , )sf d f s    and the 

conformational imbalance parameter ( )sc  for each pair of 

enatiomeric conformations ( s , s ) would be obtained as 

  s ss
c f f  . 

(iii) The dimensionless inverse pitch *k  of the polar director 

twisting.  

Clearly, only the hS  order parameter survives in the uniaxial 

nematic phase, where it reduces to the nematic order 

parameter S . In the NX phase, the other parameters, 
( ) ( ) ( ), , , ,L L y

h h h P c   and *k , acquire non vanishing values, with 

both signs of the polarity P , chirality c  and twisting sense *k  

being thermodynamically equivalent. Therefore domains of 

opposite polarity and handedness can coexist in different 

regions of an unbiased macroscopic sample.  

The transition from the isotropic, I, to the uniaxial nematic 

phase, N, shows the typical features of the usual, weakly first 

order, N-I transition. For the transition from the uniaxial 

nematic N to the NX phase, it is apparent from the temperature 

profiles in Figure 3, that below the transition temperature all 

the parameters grow continuously starting from their values in 

the N phase but with a change in the slope. Notably, the order 
parameter hS  grows slower, with decreasing temperature, than 

the extrapolated nematic phase order parameter S , a trend 

that has been observed experimentally in several studies7,10,15–

17. Also, the biaxiality parameter ( )L

h  remains very small in 

absolute value (<0.02) throughout the NX temperature range, 

and appears to undergo a change of sign with decreasing 

temperature. The eccentricity parameter ( )L

h  acquires 

substantial magnitude with decreasing temperature in the NX 

phase, indicating substantial deviation of the principal axes of 
the mesogenic unit ordering tensor from the ,h hn l  directions. 

We shall return to this point in section 4.4. Interestingly, the 

calculated conformational shift, quantified by the induced 

molecular chirality parameter c , remains rather small. In sharp 

contrast, the polar order parameter P  is large and grows more 
rapidly than hS  with decreasing temperature in the NX phase. 

Also the biaxiality parameter ( )y

h  of the transverse ordering of 

the molecular symmetry axis is at least one order of magnitude 

larger than the mesogenic unit biaxiality ( )L

h  and grows 

monotonously with decreasing temperature. Finally, the 

dimensionless inverse pitch *k  shows a continuous but very 

steep increase just below the transition temperature, rapidly 

reaching a nearly constant value in the rest of the NX 

temperature range. This behavior is observed experimentally by 

different methods, which also determine the pitch to be rather 

short, on the order of 10nm. The value at which *k  appears to 

rapidly level of in Figure 3b is between 0.7 and 0.8, leading to 
the calculated value of the pitch 4hp d , i.e. roughly four 

molecular lengths, in good agreement with the experimental 

estimates.  

The calculated trends shown in the profiles of Figure 3 remain 

qualitatively unchanged and with minor quantitative variations 
on changing the fixed values of the molecular angles ,   by 

15  . These trends, as well as the topologies of the phase 

diagrams in Figure 2, do not change substantially for moderate 
variations of the interaction range parameters 0 , aR R  about the 

indicated values. Specifically, increasing the ratio 0/aR R  tends 

to destabilize the NX phase in favour of the N phase. Increasing 
/aR d , at fixed 0/aR R , leads to increasing values of the pitch 

(decreasing *k ) and destabilization of the NX phase. On the 
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other hand, for extremely short ranged interactions, aR d , 

the free energy of the NX phase may exhibit a second minimum 

with respect to *k . The solution corresponding to the high *k  

minimum is always more stable at low temperatures. Increasing 

the temperature is found to lead either to the merging of the 

two minima into a single shallow minimum, producing a smooth 

crossover from the high to the low *k  phase, or to the eventual 

stabilization of the large *k  solution, thus producing a first 

order phase transition from a tightly twisted NX phase to loosely 

twisted one on heating. A detailed account of this interesting 

behavior is given elsewhere.29  

To test how crucial to the above results the restriction to just 

two molecular conformations is, we have carried out 

calculations for a three state, statistically achiral, molecular 

model with intrinsically equiprobable conformations 

corresponding to torsions 0, 30    . The results show that the 

inclusion of a third state ( 0  ) does not alter the topology of 

the phase diagram presented in Figure 2. Only a slight 

destabilization of both N and NX relative to the isotropic phase 

is obtained with a relative enhancement of the stability of the 

NX over the N phase. The populations of the three states are 

equal to 1/3 in the isotropic phase while in both nematic phases 

the population of the 0   state is found to be lower29 than the 

populations of either of the 30    ; as with the two state 

model molecules, the 30     populations are equal in the N 

phase and differ in the NX phase.  

Lastly, allowing for only one torsional state, i.e a fixed single 

value of  , eliminates the N phase, as expected for chiral 

molecules, and the stable nematic phases are either of the NX 

type (i.e. polar twisted but with fixed chirality) or of the usual 

chiral nematic type, N*, depending sensitively on the values of 

the angles   and  . In particular, for / 2   and fixed  , 

our molecular model reduces geometrically to the model 

considered in ref 30. In this case we obtain a chiral nematic state, 

in agreement with the results of ref 30 which are based on 

explicitly repulsive interactions. As indicated earlier in this 

section, the effective interactions introduced through eq(11) do 

not refer directly to a specific form of intermolecular potential 

and can in principal accommodate repulsive as well as attractive 

interactions.  

4. Discussion. 

The results presented in the previous section, being derived 

directly from an explicit molecular model of the characteristic 

bimesogen structure and showing remarkable robustness with 

respect to variations of the molecular parameters, offer clear 

insights into the ordering in the NX phase and the relation of its 

distinguishing properties to the key features of the molecular 

structure. The main implications of the theoretical results and 

their testing against experiment are discussed below. 

 

4.1 The nature of the N-NX phase transition. 

The transition from the uniaxial nematic N to an unperturbed 

macroscopic monodomain NX phase is a continuous transition 

from an apolar to a polar and twisted phase. This orientational 

order-disorder transition is driven by polar molecular packing in 
the direction of the molecular 2C  (the y -molecular axis in 

Figure 1, see also Figure 4). The primary orientational order 

parameter in this transition is the transverse spontaneous 

polarisation P . The onset of transverse polar ordering is 

accompanied by spontaneous symmetry breaking of chirality, 

which is manifested by the helical twisting of the spontaneous 
polarization direction m  about a unique helix axis hn . The 

twisting is dictated by molecular packing frustration, resulting 

from the bend arrangement of the mesogenic units in the 

bimesogens and emerges as the thermodynamically most stable 

mode of optimising the mutual alignment of the mesogenic 

units while maintaining their transversely polar ordering. The 

appearance of local biaxiality, both in the ordering of the 

mesogenic units, ( )L

h , and in the molecular symmetry axis, ( )y

h

, as well as some deviation c  from the balance between the two 

enantiochiral molecular conformations, are consequences of 

this mechanism. Also, the appearance of the local eccentricity 
( )L

h , together with the suppressed growth of ( )L

hS  with 

decreasing temperature, reflect the symmetry reduction from 

vD  in the N phase to the monoclinic 2C  in the NX phase as a 

result of the onset of transverse polar ordering.  

 

 
Figure 4. Schematic illustration of the structure of the Nx phase, showing the twisting of 

the polar director m  and the preferred configuration of the toy-dimer molecules, with 

the molecular twofold axis y  tending to order along m . 

It is important to note that polar ordering is not necessarily 

generated by electric dipole interactions, as the model 

molecules are not endowed with permanent dipole moments 

(despite the fact that the prototype CB-C9-CB dimers in Figure 

1a have strong terminal dipole moments along the mesogenic 

unit axis). The polarity in this model originates from the shape 

of the molecules, which are formed by connecting intrinsically 

non polar segments into a polar structure. This structure is also 

statistically achiral, which implies that the twisting sets in via a 

spontaneous symmetry breaking mechanism.  

The statistical achirality of the individual molecules renders 

both senses of twisting (corresponding to *k ) 

thermodynamically equivalent. This leads to the formation of 

enantiochiral domains in a macroscopic unbiased sample and 
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could have significant implications on the nature of the N-NX 

transition in such samples. Thus, unless particular restrictions 

are applied, a monodomain-poly domain transition will be 

superimposed on the N-NX monodomain transition and 

therefore the experimental thermodynamic signature of an 

unbiased sample will reflect the combined effect of the two 

transitions. This may alter the strictly continuous character of 

the N-NX monodomain transition derived from the model. 

Furthermore, the thermodynamic equivalence of the two 

enantiochiral forms of domains implies that a slight chiral bias 

(chiral dopant, surface anchoring) can have a giant chirality 

enhancement effect on a NX sample, leading to complete 

elimination of the domains of the opposite handedness, as 

observed in recent experiments.21  

The local monoclinic symmetry of the NX phase obtained in 

these calculations, derives from the 2C  symmetry of the 

molecules. Relaxing the latter symmetry, for example by making 

the two mesogenic units inequivalent, opens up the possibility 

of triclinic phase symmetry and deviations from the twisting of 

the polarisation at right angles to a helical axis. Such possibility 

will not be further considered here and the discussion will be 

restricted to the monoclinic local symmetry and twisting of the 

polar director at right angles to the helix axis. Furthermore, the 

self-sorting of non-convex, chiral, two-dimensional molecular 

models is predicted to give rise to a variety of ordered fluid 

motifs31–33. However, it is generally not straightforward to 

extend such motifs to three-dimensional fluids as, in addition to 

the intrinsic dependence of phase stability on dimensionality, 

the molecular packing modes can undergo radical changes, and 

even the property of molecular shape chirality may be lost, on 

going from two to three dimensions.  

 
 

4.2 The direct I-NX transition. 

As illustrated in the phase diagrams of Figure 2, the combination 

of large molecular bend angles   with relatively small torsion 

angles   tend to destabilize the uniaxial nematic phase, thus 

giving rise to direct transitions from the isotropic to the NX 

phase. This is a first order transition, with the order parameters 
( )L

hS , ( )L

h , *k  changing discontinuously across the transition 

from 0 to nearly their saturation values, the spontaneous 

polarization P  showing a discontinuous jump to large values 

and further increasing with decreasing temperature and with 

the conformational shift c  and biaxiality ( )L

h  showing also 

discontinuous jumps, albeit of small magnitude. Experimental 

evidence of this transition has been reported recently.21 The 

present model relates the condition of appearance of the direct 

I-NX transition to the molecular structural features. Of course, 

the possibility of this transition being, under the same 

conditions, pre-empted by a transition to a smectic or crystal 

phase, cannot be dismissed within the present model, which is 

restricted to positionally disordered phases only. In any case, 

the observation of the direct I-NX transition stresses the nature 

of NX as a thermodynamically distinct nematic phase, in contrast 

to its interpretation as structural deformation of the N phase 

resulting from an anomaly of its elastic constants. It should also 

be noted that the spontaneous twisting of the polar director m 

found here is a defining feature of the NX phase and not merely 

one of the possible textures that can be exhibited by a biaxial 

phase.34  

 

4.3 Manifestations of the NX molecular ordering.  

The model implies strongly polar and chiral molecular ordering 

in the NX phase, with tight twisting of the polar direction m . 

Due to this twisting, the polar ordering is averaged out over 

distances of a few nanometers, and this makes it difficult to 

directly identify its effects by the conventional electrical/optical 

methods. On the other hand, the same twisting is associated 

with the chirality of the molecular order. This has direct 

manifestations through the periodic stripe patterns2, the chiral 

electro-optic response11–14 and, notably, the NMR spectra of 

site-labelled bimesogens10,15–17, because such spectra can 

provide direct quantitative information on the anisotropically 

averaged interactions of a molecule with its environment. 

Specifically, a chiral environment causes the doubling of certain 

spectral lines which would collapse into a single line in a non-

chiral environment.35 Furthermore, as the frequencies of the 

spectral lines, whether in a chiral or achiral environment, are 

related to the orientational order of the respective molecular 

segments, the spectra allow the quantification of the 

orientational molecular ordering and of the chiral asymmetry, if 

present, in such ordering. Due to the extreme simplification of 

the molecular structure in the present model, it cannot be used 

directly to extract quantitative inferences from the spectra of 

actual bimesoges. It can however be used to elucidate certain 

crucial qualitative features of the NMR spectra in the NX phase. 

For example, the model provides for the quadrupolar 

frequencies Q  of a dueteriated site that is rigidly attached to 

the mesogenic units the following expressions 
( )~ L

Q hH Z
S   ,   (12a) 

( ) ( )1 3
~ cos2 ( )

2 4

L L

Q h hH Y
S Z        , (12b) 

for the helical axis hn  oriented  parallel ( )H Z  or 

perpendicular ( )H Y  to the spectrometer magnetic field. 

According to (12b), Q  generally depends on the Z  

coordinate and therefore the spectrum obtained from the 

entire sample should be a superposition of spectral lines from 

different parts of the sample along the helix axis, yielding a 

broadened spectral line-shape. However, as the value of the 

biaxiality order parameter ( )L

h  is persistently found to be two 

orders of magnitude smaller than hS , the model predicts that, 

to within 1-2%, the frequencies Q H Y
    of the “π/2 flipped” 

spectra are Z-independent and equal to half the aligned 

spectrum frequencies Q H Z
   . This is precisely the 

experimental result reported for CB-C9-CB.10  

As the above NMR method cannot provide direct information 

on the polar ordering of the NX phase, we briefly discuss 

electrical and optical methods in the context of polar ordering 

investigation. For electrically polar mesogenic units the polar 

Page 8 of 14Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 9  

Please do not adjust margins 

Please do not adjust margins 

ordering would give rise to a strong spontaneous electric 

polarisation which couples linearly to an applied electric field. 

However, due to the tight twisting of the spontaneous 

polarization vector, rather high field strengths would be 

required to produce appreciable electro-optic effects. 

Specifically, with the helical pitch being two orders of 

magnitude below optical wavelengths, a uniformly aligned NX 

sample will appear optically uniaxial, with the optical axis 
coinciding with the helix axis h Zn . Applying an electric field in 

the transverse direction, the helical structure is deformed and 

this shifts the effective optical axis away from the Z  axis. In 

addition to the direct linear coupling with the spontaneous 

polarization, contributions to the distortion of the helical 

structure are possible from the usual bilinear dielectric coupling 

and from the flexoelectric coupling, in analogy with the 

distortion of the helix in conventional chiral nematics36. The 

distortions are estimated to be rather small and, in general, it is 

not straightforward to sort out the contributions from the 

different couplings.29 Lastly, the birefringence associated with 

effective optical uniaxiality of the NX phase is observed 

experimentally to decrease with decreasing temperature and, 

for certain dimer compounds, in the low temperature range of 

the N phase as well.6 This apparently anomalous temperature 

dependence of the birefringence seems to follow in some dimer 

compounds the temperature dependence of the order 

parameter ( )L

hS  across the N-NX transition6 or to show a steeper 

decrease in others.7 The latter case could be due to a change in 

the values of the effective molecular polarizability components 

as a result of the substantially different averaging of the 

intermolecular interactions in the N and NX phases, thus 

reflecting, albeit indirectly, the effects of the strongly polar 

ordering. Therefore, the conventional optical and electro-

optical experimental observations seem to provide only indirect 

information into the polar ordering of the molecules in the NX 

phase. 

 

4.4 Apparent similarities and important differences from the 

nematic twist-bend model. 

The considerable values of the eccentricity parameter ( )L

h  

indicate that the helix axis hn  is not the axis of maximal 

alignment of the mesogenic segments , L L . In other words, it 

is not a principal axis of their ordering tensor. To determine the 

principal axis frame of this tensor for a given value of the Z 

coordinate, i.e. on a given plane perpendicular to the helix axis, 

we note that the director m , being a symmetry axis, is 

necessarily one of the three principal axes. The other two, 

denoted by ( ) ( ),L Ln l , are obtained by diagonalising the ordering 

matrix through a rotation of the ,h hn l  axes by an angle ( )L , 

with ( ) ( ) ( ) ( )tan 2 2 / ( / 2)L L L L

h h hS    . The temperature 

dependence of the principal order parameter 

( ) ( ) 23 1
( )

2 2

L LS   L n , obtained as the major eigenvalue of the 

ordering matrix, together with the respective biaxiality order 

parameter in the principal axis frame ( ) 2 ( ) 2( ) ( )L L    L m L l  

and the rotation angle ( )L , are shown in Figure 5 . As expected, 
( )LS  is larger than the calculated extrapolation of the nematic 

order parameter S  below the transition temperature (dotted 

line in Figure 3) and grows monotonously with decreasing 

temperature. The angle ( )L  increases rapidly below the 

transition and moderately at even lower temperatures. 

Notably, the biaxiality parameter ( )L  increases monotonously 

and is about an order of magnitude larger than ( )L

h  of Figure 

3(a). It should be stressed that none of the ( ) ( ),L Ln l  axes is a 

symmetry axis, as the ordering about either of them is highly 

polar (obviously, the order parameter P  y m  remains 

invariant under the rotation about m) and therefore, unlike m, 

they cannot be termed “directors”.  

 

Figure 5. Temperature dependence of the principal order parameter ( )LS  of the 

mesogenic units, of the biaxiality order parameter ( )L  in the principal axis frame 

(top) and of the rotation angle ( )L  of the later frame relative to the helix axis 

frame (bottom). The plots are calculated from the values of the order parameters 
( )L

hS , ( )L

h  and ( )L

h  in Figure 4. Shown on the same diagrams are the principal 

order parameters ( )dS , ( )d  and the rotation angle ( )d  associated with the 

spacer segment d . 

Following the twisting of the director m , the principal axes 
( ) ( ),L Ln l  also twist on moving along the helix axis h Zn , 

maintaining constant “cone angles” ( )L  and ( ) / 2L  , 

respectively, with the helix axis. The tilted twisting of ( )L
n  bears 

a resemblance to the heliconical arrangement of the nematic 

director n  in the twist-bend model, NTB, of the nematic 

phase.23,24 However, the resemblance is only superficial 

because, unlike the nematic director n , the principal axis ( )L
n  

is not a symmetry axis, global or local.  
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The remarkably elegant and clear original proposal23 of the twist 

bend model was formulated in the framework of the curvature 

elasticity theory for uniaxial nematics. Therein, the fundamental 

strains are gradients of the director orientation, which are 

explicitly considered to be small enough as to not modify the 

uniaxial molecular ordering at any point of the director field. 

Only under such conditions does it become allowable to 

describe the elastic deformations of the director field in terms 

of just three fundamental elastic constants (bend, splay, twist). 

The appearance of molecular polarisation as a result of director 

field deformations was introduced through flexoelectric and 

flexopolarisation coefficients and the possibility of stabilizing a 

twist-bend deformation of the uniaxial nematic director field, 

with the characteristic helical pattern, was demonstrated. 

Clearly, to be consistent with the length-scale of validity of the 

curvature elasticity description, the helical pitch should be well 

above the molecular length-scale. Subsequent estimates of the 

NTB helical pitch for bent-core molecules were24 on the order of 

300nm. Also, the appearance of the vector describing the bend 

deformation (the bend vector b ) necessarily generates a polar 

asymmetry perpendicular to the local uniaxial nematic director 

n . Obviously, this asymmetry refers to the length-scale of the 

director field deformation and not to any intrinsic local 

molecular ordering about n . Thus, the model presented here 

and the NTB model refer to largely different length scales 

(molecular vs continuous-medium description) and to 

fundamentally different local molecular ordering. The NTB 

model has locally uniaxial molecular order and macroscopically 

bend (and therefore polar) deformation of the director field; in 

contrast, our molecular model of the NX phase shows locally 

polar (and therefore biaxial) molecular ordering in a 

macroscopically uniaxial medium. These profound differences 

further diminish the significance of the superficial resemblance 

between the two models with respect the characteristic helical 

modulations. In fact, as we demonstrate immediately below, 

trying to establish a formal analogy between the two models in 

terms of the concepts used for the formulation of the NTB 

model, i.e. the bend vector, the tilt pseudovector, the 

flexoelectric coefficient etc, leads to inconsistencies, ranging 

from the appearance of a multitude of bend vectors, bend 

elastic constants, heliconical angles, etc, for the same 

compound and temperature, to completely meaningless values 

for elastic constants, flexoelectric and/or piezoelectric 

coefficients. 

To pursue the superficial resemblance with the NTB model a bit 

further, we disregard for the moment the fact that ( )L
n  and ( )Ll  

are not directors and we define for these principal axes the 

analogue of a “bend vector”, as 
( ) ( ) ( ) ( ) ( )L L L L L    b n n l l . We also define the “tilt 

pseudovector” of these axes as 

     ( ) ( ) ( ) ( ) ( )L L L L L      ξ n Z Z n l Z Z l  and the analogues 

of the “twist pseudoscalar”, ( ) ( )

( ) ( )L L

Lt   n n n  and 

( ) ( )

( )
( )L L

L
t   
l

l l . Then, noting that the twist pseudoscalar for 

the m director is simply ( )mt k    m m , and that ( )L
b  and 

( )Lξ  are in the direction of m , we obtain the relations:  

 
2

( ) ( ) 2 ( )

( ) ( )( ) ( )
, ,L L L

m L m L mL L
t t t t t t t    n nl l

b ξ ξ  (13) 

which relate the bend vectors and the twist pseudoscalars of 
( )L

n  and ( )Ll  to the twist of the m  director and the respective 

tilts. These are simply geometrical relations, reflecting the 

generation of the twisting and bending of the ( )L
n and ( )Ll  

principal axes from the pure twisting of the director m , and the 

“tilting” of these axes. In the present model, this tilting is a 

consequence of the loss of rotational symmetry about the 

nematic director as the transverse polar ordering sets in.  

It is important to note here that, as with any nematic phase of 

monoclinic symmetry,37 the bend vector ( )L
b , the tilt 

pseudovector ( )Lξ  and the twist pseudoscalars ( )Ltn , 
( )L

t
l

 are, in 

principle, not unique attributes of the phase as whole but refer 

to particular molecular segments. Thus in the NX phase of 

flexible molecules consisting of several orientationally 

inequivalent groups of segments (for example, not identical 

mesogenic units, flexible spacer segments), there is a different 

set of b , ξ , tn , t
l

 for each such group. As an illustration, the 

three-segment toy dimer of Figure 1, consisting of the two 

identical mesogenic segments , L L  and a “spacer” d , has, in 

analogy with the order parameters of the mesogenic segments, 

a set of parameters associated with the ordering of the d  

segment (the z   molecular axis) and yet another set for the y  

molecular axis (twofold symmetry axis of the molecule). The 

latter axis orders along the director m , therefore showing 

“cone angle” of π/2, 0b  and 0ξ , in other words no “cone” 

and no bend at all. The respective principal values of the order 

parameter ( )dS , the biaxiality ( )d  and rotation angle ( )d  

connecting the helix axis hn  to the principal axis ( )d
n of the 

ordering tensor of the d  segment, are shown in the 

temperature dependence graphs of Figure 5. Clearly, the “tilt” 

angle ( )d  differs from ( )L , although in this case the difference 

is small, due to the near rigidity of the toy-dimer (only   

torsions allowed) and the limited phase biaxiality of the 

mesogenic segments. However, an immediate implication of 
( ) ( )L d   is that the respective bend vector ( )d

b , the tilt 

pseudovector ( )dξ  and the twist pseudoscalars ( )dtn , 
( )d

t
l

 will 

differ from those of the , L L segments. Of course, ( )d
b , ( )dξ , 

( )dtn , 
( )d

t
l

 satisfy the analogues of eq(13), relating them to the 

director twist mt , which is the only measure of deformation that 

refers to the phase as a whole and not to particular segments. 

This is an essential distinction between the NX phase and the 

uniaxial nematic phase N, wherein the bend, splay and twist 

deformations refer to the nematic director n  and are therefore 

segment-independent. This distinction applies also to the 

relation between phase polarity and modulations: In the N 

phase, the flexoelectric coefficients are phase properties 

relating the appearance of polar order as a result of the vector 

deformations of the director n . If these relations are carried 

over directly to the NX phase, the flexoelectric coefficients 

become segment-dependent. For example, establishing a 

formal relation between the bend vector ( )L
b  and the 
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polarization vector P  of the phase according to ( ) ( )L L

beP b  

would imply a bend flexoelectric coefficient ( )L

be  that is different 

from the flexoelectric coefficient ( )d

be  relating the d-segment 

bend vector ( )d
b  to P . Similarly for the piezoelectric 

coefficients, relating the polarisation to the tilt vector. For 

example, ( ) ( )L L

peP ξ  and the analogous expression involving 

( )dξ  would imply different piezoelectric coefficients ( ) ( )L d

p pe e . 

On the other hand, within the present model, the ratios of 

piezoelectric to flexoelectric coefficients are segment-

independent and equal to the twist pseudoscalar of the phase, 

i.e. ( ) ( ) ( ) ( )/ /L L L L

p b p b me e e e t k    , which merely expresses the 

appearance of the bend as a combined result of the primary 

twisting of the m  director and the tilting of the respective 

principal axis, both of which originate from the transverse polar 
ordering along the local 2C  axis.  

Clearly, a description in terms of multiple, segment-dependent, 

material properties, for the sake of analogy with the NTB model, 

is not convenient. However, even so, this analogy cannot be 

pushed further; in fact it completely collapses on noting, for 

example, that both the bend vector and the tilt pseudovector of 
m , as well as of the y  molecular axis, vanish and therefore no 

meaningful relation between the polarity and the bend can be 

established through a flexoelectric coefficient for either of 

these axes. Stated briefly, the twisting and bending of various 

principal axes ( ( )L
n , ( )d

n , etc.) that can be formally defined for 

segmental ordering tensors, and the associated heliconical 

configurations, fall out naturally from the model as by-products 
of the onset of polar ordering along the local 2C  axis. Quite 

unlike the NTB model, which features a single bend vector and a 

single cone angle and a single twist pseudoscalar, the various 

bending vectors, tilts, and twists are in general segment-

dependent and, as such, they are not unique characteristics of 

the order deformations in the NX phase. However, they all 

derive from the fundamental deformation of the phase, which 

is the pure twisting (no bend) of the director m . 

To become applicable to the low temperature nematic phase of 

bimesogens, the original NTB model has been modified, in some 

ways or even redefined19,38. First of all, a spontaneous twist-

bend resulting from instabilities associated with the elastic 

constants would be expected to be of much larger, and strongly 

temperature dependent, pitch than actually observed for 

bimesogen systems. Secondly, the description of the 

modulations in the NX phase in terms of the three elastic 

constants of the nematic phase is not meaningful as neither 
( )L

n  nor hn  have the symmetries of the director n  of the 

uniaxial apolar nematic phase. It was also shown recently25 that 

the key assumption of the NTB model for bent-core molecules24, 

i.e. a negative bend elastic constant, is not necessary for the 

formation of a heliconical configuration. An attempt19 to 

reconcile the original NTB model with such observations, and to 

introduce polar ordering, starts out with symmetric rigid bent-

core molecules and a locally uniaxial and apolar mean field 

whose director n  is pre-deformed in a heliconical 

configuration. The pitch and conical angle of this configuration 

are determined by requiring the pre-deformed n  to align 

optimally with both arms of the bend molecule. The bend vector 

of the so imposed deformation becomes an axis of polar 

ordering and, of course, the pitch of the imposed helical 

deformation comes out to be of a few molecular lengths and to 

be essentially temperature independent. Not surprisingly, the 

bend elastic constant is found to decrease with decreasing 

temperature. Obviously this modelling moves in the reverse 

direction from our fully molecular formulation, wherein the 

tilted twisting emerges simply through the diagonalisation of an 

ordering tensor in an intrinsically polar and twisted medium, as 

opposed to being a forced deformation of an ad-hoc director 

field. Moreover, as shown above, the heliconical configuration 

of some entity which is not endowed with the symmetry 

properties of the nematic director n , does not necessarily 

imply a twist-bend deformation. A further, well-known, 

example is the heliconical configuration in the chiral SmC*, 

which has the same symmetry, albeit in a layered structure and 

with much larger pitch than the bimesogen NX phase, but is of 

course not termed a “twist-bend” phase. Quite recently, 

calculations starting from crescent-like rigid molecules38 

produced a nematic phase with tightly twisted polar ordering of 

the same symmetries as found here for the NX phase. The phase 

is termed NTB as well. According to the previous discussion, this 

is quite different from the original well defined model of the 

twist-bend nematic23, to which we exclusively refer as NTB  in 

the present work. Aside from that, an apparent difficulty with 

the applicability of various rigid bent-core models is that the 

predicted polar-twisted nematic phases38,39 are not observed in 

real bent-core molecules but in the much more flexible 

bimesogens. The situation has a straightforward explanation, 

given in section 3, within the present model.  

The fundamental differences between our molecular model and 

the NTB model in the description of the orientational ordering of 

the molecules have direct implications on the interpretation of 

the related experimental measurements. Thus, for the uniaxial, 

apolar nematic director under a twist-bend deformation8,15,16,24 

as defined in the NTB model, the respective expressions for the 

spectral frequencies in eq. (12a) would be10: 

  2

0~ 3cos 1 / 2Q H Z
S     ,  (14a) 

 2

0~ 3(sin sin ( )) 1 / 2Q H Y
S        (14b) 

where S  stands for the order parameter of the mesogenic 

segments in the frame of nematic director n, and 0  is the 

constant tilt angle of the heliconical twist-bend deformation of 

n. While the expression in (14a) is the equivalent of that of eq. 

(12a) (simply replacing  ( ) 2

03cos 1 / 2L

hS S   ), the 

expression for the “ / 2 -flipped” spectra in eq (14b) is 

completely different form the one in eq. (12b) and implies 

substantial variation of the spectra with the position Z  along 

the helix, therefore broadened line-shapes, in sharp contrast 

with the measurement.10 To remedy this discrepancy of the NTB 

interpretation, it has been claimed15 that the translational 

diffusion of the dimer molecules is fast enough (within the chiral 

domains but not across them) to average out the Z  

dependence in eq. (14b). Of course, no assumption of such 
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selectively fast diffusion is necessary for the interpretation of 

the spectra according to eq. (12b). 

 5. Conclusions.  

Based on a simplified molecular model of flexible achiral 

mesogenic dimers and on standard statistical mechanics 

approximations for the formulation of the free energy in 

nematics, we have developed a fully molecular theory for the 

low temperature nematic phase, NX, exhibited by certain odd-

spacer dimer liquid crystals.  

The transition from the uniaxial nematic N to the NX phase is 

found to be driven by the onset of transverse polar ordering of 

the molecules, dictated by the packing of their intrinsically polar 

shapes. The NX phase has local monoclinc symmetry, with its 

single director m  defining the direction of polar ordering. The 

spontaneous symmetry breaking of phase apolarity results in 

the helical twisting of the director m  about a perpendicular 

direction of macroscopically full rotational symmetry. The pitch 

of the twisting is a few molecular lengths and both senses of 

twisting are thermodynamically equivalent, allowing for the 

formation of domains of opposite chirality.  

The biaxiality of the local ordering of the mesogenic units and 

the chiral shifting of the molecular conformations are found to 

be rather small. The combination of the pure twist of the 

director m  with the monoclinic local symmetry is shown to 

produce a tilted-twisted (heliconical) configuration of the 

principal axes of the ordering tensors of the molecular 

segments and, more generally, of any tensor property. The pitch 

of the heliconical configurations is determined by the pitch of 

the pure twist of the director, m , whilst the conical angle is not 

unique and varies with the molecular segment or tensor 

property considered. This is contrasted with the twist-bend 

model, NTB, picture wherein the director itself assumes a 

heliconical configuration, which is therefore common to all 

molecular segments and tensor properties. It should be stressed 

that our work does not in any way dispute the validity and 

physical consistency of the originally proposed twist-bend 

nematic model23; what is put into doubt is the applicability of 

this model to the specific low-temperature nematic phase 

found in bimesogens. Obviously, this does not preclude the 

possibility of the twist-bend model providing an excellent 

description for a class of nematics to be experimentally 

identified in the near future; more so, as liquid crystal science 

has never seized to surprise and fascinate. 

The results of the molecular theory are found to account 

successfully for key experimental observations on the NX phase, 

to call into question the proposal that the N-NX transition is 

driven by a negative bend elastic constant and to provide 

consistent interpretations on certain controversial points 

regarding the NX phase structure, symmetries and molecular 

ordering. Based on insights from crucial NMR experiments10 it 

has been suggested that the NX phase consists of domains of 

opposite chirality, having a unique direction of magnetic 

alignment about which the mesogenic units show essentially 

uniaxial orientational ordering. A detailed molecular picture of 

the structure within these domains, which of course could not 

be obtained solely from the NMR experiments, is consistently 

provided by the molecular theory presented in this work. 
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