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We have studied microparticle migration on curved fluid interfaces in experiment and derived an expression for the associated
capillary energy E for two cases, i.e., pinned contact lines1 and equilibrium contact lines2, which differ from expressions derived
by others in the literature. In this problem, a particle of radius a makes a disturbance in a large domain characterized by principal
radii of curvature R1 and R2. Since a is smaller than all associated geometric and physico-chemical length scales, analysis calls
for a singular perturbation approach. We recapitulate these concepts, identify conceptual errors in the Comments about our work,
and provide evidence from experiment and simulation that supports our view.

We have studied microparticle migration on curved inter-
faces in experiment and derived expressions for the capillary
energy E for particles of radius a for pinned contact lines1

(EPIN) and equilibrium contact lines (EEQ)2. Our expression
for EEQ differs from that derived by Würger 3 . We have per-
formed experiments in which spheres2 and disks1 migrate in
agreement with EPIN. Two Comments have been published
challenging our conclusions4,5 for both contact line condi-
tions. Below, we amplify arguments originally presented in
our work1,2 to address conceptual errors in the Comments.
We then address each objection raised concerning our work,
with new evidence from experiment.

We assume that ac� 1, where c is the largest principle cur-
vature, so aH0� 1 and a∆c0� 1, where H0 is the mean cur-
vature and ∆c0 is the deviatoric curvature of the host interface
h0. We further assume that a is small compared to all other
geometric length scales (e.g., the size of the domain ∼ c−1),
physico-chemical length scales (e.g., the capillary length) and
that the particle is far from boundaries. Both h0 and the in-
terface profile in the presence of the particle h = h0 +η are
found assuming ∇h0 ·∇h0� 1 and ∇h ·∇h� 1. The distur-
bance made by the particle in the interface η depends on the
local curvature field. Since η scales with a and decays over
distances similar to a, analysis requires a singular perturbation
treatment (see, e.g., Appendix A of Sharifi-Mood et al. 2 ). In
its most general form, h0 can be expanded in powers of ac
and described in a local coordinate (r,φ) in an inner domain
which, several radii from the origin, matches to the interface
shape in the outer domain (Fig. 1(a)). The inner expansion to
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order (ac)2 is:

h0 =
r2H0

2
+

∆c0

4
r2 cos2φ , (1)

where H0 and ∆c0 are slowly varying fields in the outer
coordinate evaluated at the particle center of mass. They
emerge as coefficients in Eq. 1 from a matching procedure
performed at each power in ac. Eq. 1 is a non-uniformly valid
description of the interface, valid only for r ∼ a. Physically,
this implies that the interface can locally be described as the
sum of bowl-like and saddle-like terms. However, this simple
description cannot hold over larger length scales where, e.g.,
details of the vessel shape play a role. We find η by solving
∇2h = 0 for equilibrium (EQ) or pinning (PIN) boundary
conditions on the particle surface, and by requiring that η

tends to zero as r→ ∞. This limit implies that η and Eq. 1
should be considered over distances large compared to a, but
small compared to the outer length scale c−1. We find η to
be a decaying function of r that depends on the outer variable
only via coefficients evaluated at the particle center of mass:

ηPIN =

(
hp−

∆c0a2

4

)
a2

r2 cos2φ , (2)

ηEQ =

(
∆c0r0

2

12

)
r0

2

r2 cos2φ , (3)

where hp is the amplitude of the quadrupolar mode excited by
a particle with a pinned contact line. Both Eqs. 2 and 3 decay
to zero in the inner region. No additional ad hoc arguments
are introduced far from the particle. Nor would such argu-
ments be appropriate in evaluating the associated excess area
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Fig. 1 (a) Schematic of an inner domain which, several radii from the origin, matches to the interface shape of the outer domain. (b)
Schematic of the interface shape simulated using boundary integral methods. An interface is pinned to a micropost of radius Rm = 125 µm
with slope of 15◦–18◦. (c) Expanded view of the simulated host interface near P in a plane tangent to the interface (right) and the analytical
distortion field Eq. 1 (left). (d) Expanded view of the simulated interface near a sphere with equilibrium wetting conditions near Q in a plane
tangent to the particle center of mass (right), which agrees well with Eq. 3 (left).

of the interface, which is finite only in the inner region where
η is finite.

We have compared Eq. 1 to simulation (see, e.g., Fig. 4 in
Sharifi-Mood et al. 2 ); we expand that discussion here. Us-
ing a boundary integral method, Laplace’s equation is solved
to find the interface shape in a setting similar to that in ex-
periments (Fig. 1(b)), for which H0 is negligible. The host
interface shape is determined, as is the shape of the inter-
face in the presence of an attached particle. An expanded
view of the simulated host interface (Fig. 1(c)) near a point
P far from boundaries agrees well with Eq. 1. The quadrupo-
lar mode of the simulated interface agrees with h0 to better
than 2% for r = 10a, with agreement improving closer to P.
We also compare Eqs. 2 and 3 to simulation near a point Q
far from boundaries, and find excellent agreement (see, e.g.
Fig. 1(d) for ηEQ). Finally, note that, for disturbance mag-
nitudes corresponding to typical values from experiment, the
distortions decay to negligible values, (sub-angstrom heights)
within r = 10a.

Returning to analysis, we find the associated energies.

EPIN = E0− γπa2
(

hp∆c0

2
+

3a2H2
0

4

)
, (4)

EEQ = Ep +O
(
(a∆c0)

4
)
, (5)

where E0 and EP are independent of position. In experi-
ments with disks and microspheres on surfaces with negligible
H0, we find E to be consistent with EPIN; i.e., it varies lin-
early with a∆c0, with the worst coefficient of linear regression

R2 = 0.999 for all cases. We infer the curvature capillary en-
ergy by noting that the capillary energy driving the migration
is lost to viscous dissipation in creeping flow, a limit which
applies to this work. By integration along a particle path, the
energy lost to viscous dissipation can be determined from ex-
periment. Eq. 5 differs from prior work, which predicts a term
for the curvature capillary energy that goes as (∆c0)

2. These
differences arise owing to the treatment of a particular integral
that appears in the excess area of the interface:∫

∞

r0

∫ 2π

0

[
∂h0

∂ r
∂η

∂ r
+

1
r2

∂h0

∂φ

∂η

∂φ

]
r dφdr, (6)

where r0 ∼ a is the radius of the contact line on the parti-
cle. The discrepancies stem in taking r→ ∞ in evaluating this
term. Before exploring this limit, we evaluate Eq. 6 for any fi-
nite slice between the contact line and a circle in the inner do-
main r∗. For equilibrium contact lines, this integral becomes:∫ r∗

r0

∆c0
2

12
r0

4

r
dr
∫ 2π

0
(−cos22φ + sin22φ)dφ

=
r0

4∆c0
2

12
ln
(

r∗

r0

)
(0) = 0. (7)

The logarithmic term in Eq. 7 might cause concern, but the
factor multiplying it is identically zero for any finite value of
r∗. To capture the value of the integral over the entire inner
domain, we take the limit r∗ → ∞, recalling that, within the
asymptotic framework, this implies a distance several particle
radii away from the particle. The logarithmic factor then re-
mains finite, and the integral is 0. This determines a pre-factor
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of 0 for the terms quadratic in ∆c0 in EEQ Similar arguments
apply to the analysis for pinned contact lines.

In Würger 3 , this integral is recast using the divergence the-
orem. The area integral Eq. 6 can be written:

lim
r∗→∞

∮
r=r∗

er · (η∇h0)r dφ −
∮

r=r0

er · (η∇h0)r dφ . (8)

Equivalently, it can be written

lim
r∗→∞

∮
r=r∗

er · (h0∇η)r dφ −
∮

r=r0

er · (h0∇η)r dφ . (9)

In our analysis, the integrands in Eqs. 8 and 9 are well defined
quantities independent of r. Thus, in both Eqs. 8 and 9, the
two contour integrals cancel, and, as required for equivalent
representations of the same arguments, all three formulations
agree. In Würger3, η is assumed implicitly to decay to zero
faster than 1

/
r2. That is, while Eq. 3 was presented as the lo-

cal distortion around the particle, it was not used to evaluate
the disturbance, except at the contact line. The contour inte-
gral at r∗→ ∞ is neglected in Eq. 8, while that at the contact
line is retained, yielding a finite term of order (∆c0)

2, reported
as the primary result of his analysis (such an operation would
also yield a finite term of order (∆c0)

2 for the pinning condi-
tions). However, the same reasoning would apply to the con-
tour integral at r∗→ ∞ in Eq. 9, yielding a finite contribution
at the inner contour which differs in sign from the result of
Eq. 8. Therefore, the result, in the absence of the outer con-
tour, is not defined. The disposal of the integral far from the
particle is a failure to close the contours when applying the
divergence theorem.

In his Comment, Galatola 4 invokes a divergence of the
slope of h0 as r→ ∞. To find a steep slope region in h0, he
takes r→ c−1 in Eq. 1. He recasts the contested area integral
assuming large slopes, and argues that a modified form of the
far field contour integral in Eq. 8 must be discarded. By this
manipulation, he recovers Würger’s result3 for the equilibrium
case. He applies this logic as well to the pinning case, altering
coefficients and introducing a term quadratic in ∆c0. Thus, he
concludes that the proper curvature capillary energies should
be:

EG
PIN = E0− γπa2

(
hp∆c0−

1
8

a2
∆c0

2−
a2H2

0
4

)
, (10)

EW
EQ = Ep−

1
24

r0
2
∆c0

2, (11)

where the superscripts “W” and “G” indicate Würger’s and
Galatola’s arguments, respectively. Intriguingly, in these sug-
gested forms, the quadratic term in EG

PIN drives particles to-
ward planar regions, while that in EW

EQ drives them to highly

curved regions.
We counter argue that since Eq. 1 is not universally valid,
it cannot be used to explore r ∼ c−1. In general, for in-
terfaces obeying the assumptions under which Eq. 1 is de-
rived, no steep slope regions are present. To support the as-
sumption we make of small slopes made over the inner do-
main, we can estimate slopes of h0 in Eq. 1 over the relevant
range a ≤ r ≤ 10a using typical values from experiment, i.e.,
a = 5 µm, 6× 10−3 ≤ a∆c0 ≤ 1.2× 10−2 and hp ∼ 25 nm.
We find ∇h0 ·∇h0 ≤ 3.6×10−3, and, hence, we remain justi-
fied in assuming ∇h0 ·∇h0� 1. A similar calculation shows
∇h ·∇h� 1.

Galatola further cites small departures of our data for E ver-
sus a∆c0 in the highest curvature regions of the data, which
he states would be better fit by his theory. We noted above
the linearity of the data when cast in terms of E versus a∆c0.
In Fig. 2(a), we reproduce the E versus a∆c0 data for a typi-
cal trajectory of a sphere; this was presented along with sev-
eral others in Sharifi-Mood et al. 2 . We compare our theory
to experiment for trajectories truncated ten radii from contact
with the curvature source (the micropost). In the inset, we
also show contours for EW

EQ and EG
PIN, the functional forms

with which we do not agree that were suggested in the Com-
ments, for several values of hP. These predictions do not re-
semble the data. We derive a further test of functional form
to compare to experiment. Recall that we study particle mi-
gration on interfaces formed around microposts of height Hm
and radius Rm with interface slopes at the micropost’s edge of
ψ ∼ 15◦−18◦. The resulting interface shape has H0 ∼ 0 and
∆c0(L) = 2tanψRm

/
L2, with corresponding capillary force

according to our formulation of Fcurvature = −dEPIN
/

dL ∼
d∆c0

/
dL ∼ 1

/
L3. In creeping flow, viscous drag Fdrag bal-

ances Fcurvature. Noting that Fdrag ∼ dL
/

dt far from boundaries
like walls and micropost, this implies that particles migrate
with instantaneous position L(t) which obeys a power law:

L(t) =
[
B(t f − t)+L(t f )

4
]1/4

, (12)

where B = 2πRm tanψγahp
/

CDµ is constant, CD is the drag
coefficient for an isolated particle, L(t f )∼ 10a is the final po-
sition of the particle and t f is the time at which this position is
attained. This power law is indeed obeyed (Fig. 2b inset); this
agreement would not occur for the functional forms suggested
by Galatola (see also Fig. 2(b), inset.)

Finally, we address the weak deviations from linearity noted
by Galatola in E vs. a∆c0 for particles ∼ 10a from contact
with the micropost. Such deviations occur because of hydro-
dynamic and near field capillary interactions with the micro-
post. Of these, hydrodynamic interactions have the longest
range. (In this calculation, since a

/
Rpost = 0.04, we neglect

the curvature of the post for particles close to contact.) We
present a typical near-post trajectory in Fig. 2(c). Far from
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Fig. 2 Curvature capillary energy of microspheres. (a) Comparison of predicted curvature capillary energy (solid black line) to that observed
in experiment (red solid circle) for a single microsphere migrating near a post. Inset: Comparison of observed capillary energy with functional
forms for EG

PIN for several values of hp (dashed pink hp = 5 nm, dotted violet hp = 7 nm and dashed green hp = 20 nm), and EW
EQ (dashed

dark blue). (b) Comparison of experimental particle trajectory far from the micropost against predictions using Stoke’s drag and EPIN (solid
black line), and EG

PIN (dashed green line). Inset: Particle trajectory shown in log-log plot showing agreement with power law predicted for
EPIN. (c) Comparison of experimental particle trajectory against theory with Stoke’s drag, i.e., CD = 1 and Brenner’s drag for a spherical
particle approaching a solid wall. Inset demonstrates the far field.

the micropost, the trajectory agrees with a trajectory predicted
from EPIN and Stoke’s drag on an isolated particle. Closer
than∼ 10a from contact, however, hydrodynamic interactions
dominate. Using Brenner’s drag formula6 for a sphere near a
wall and EPIN, predicted trajectories agree remarkably with
experiment with no adjustable parameters. This agreement
fails very close to the wall, where the functional form of h0
and η must be amended owing to the presence of the wall.
Note, however, for distances from the micropost between 10a
and 5a, the near-post particle trajectories are well described
by our arguments for pinned contact lines when hydrodynamic
interactions with boundaries are addressed.

In his comment, Würger considers a particle centered in a
curved interface enclosed by a bounding circle at Rout assum-
ing a� Rout. Imposing either pinned or equilibrium boundary
conditions at Rout, he retains reflected modes from the wall,
with first contribution being of order (r0

/
Rout)

4. He then ar-
gues that η must be zero at r = Rout, neglects the outer contour
integral in Eq. 8, and recovers his prior result3. We counter
that, in the asymptotic analysis, such reflected modes do not
occur, as the distortion η decays to zero for r� Rout. Since
η is not finite near the wall, it is not influenced by the con-
ditions there. The invocation of such boundary conditions on
η at limits corresponding to vessel dimensions is a conceptual
error within the framework of an asymptotic analysis.

While the geometry proposed by Würger does not corre-
spond to that used in our experiments, we can discuss the

magnitude of the particle sourced disturbance and that of the
suggested reflected modes for conditions corresponding to
our experiments. We studied particles within 10a of contact
with the micropost. The coefficient of the particle-induced
quadrupole in ηEQ, r2

0∆c0
/

12 is ∼ 5 nm in our experiments.
This term decays as a2

/
r2. Thus, at r = 10a, the disturbance

would be ∼ 5× 10−11 m, a quantity too small to be con-
sidered finite in a continuum framework. If, however, this
magnitude were deemed significant, one would generate re-
flected modes ∼ r2 whose magnitude near the particle would
be (r2

0∆c0
/

12)(r4
0
/

R4
out) ∼ 5× 10−15 m. The retention of

terms of this magnitude, and their integration over extended
domains is not proper.

To conclude, in this response, we show the Comments call-
ing our results into question are based on a conceptual mis-
understanding of the implications of limiting processes in sin-
gular perturbation analyses. This is an interesting and poten-
tially important example of effects owing to small inclusions
in large domains, which have many physical manifestations in
colloidal science.
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