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of polygonal and circular graben patterns3,4. The radial symme-

try of the substrate imposes a characteristic structure to the such

cracks, as in Fig. 1(a).

On a more intermediate length scale, craquelure (Fig. 1(b,c))

is the result of differential strains between a coating and its sub-

strate5–7,14. This may be due to tension in the framing of a

painted canvas5, for example, or changes in the relative humidity

at which a painting has been stored14. Alternatively, it may result

from an artist’s choice of a pottery glaze with a higher coefficient

of thermal contraction than the clay it covers. Such craquelure

patterns are extremely hard to forge, and can thus aid in the at-

tribution of paintings6. They have been shown to be influenced

by local painting style, choice of substrate, including, for paint on

wood, even the species of wood used6,15. The analysis of similar

patterns, in dried blood (Fig. 1(d)), is also being developed as a

forensic tool, for example to help determine the relative humidity

when the blood was spilt12,16.

On the micrometer scale, recent attention has focussed on con-

trolling cracks. For example, Nam et al.8 showed how to selec-

tively initiate, refract, and stop both straight and wavy cracks in

silicon nitride thin films, vapour-deposited on silicon wafers, by

adding notches, cutting stairs, or introducing interfacial layers

between the wafer and film. Kim et al.9 instead looked at soft

substrates, with crack formation guided by strategically placed

notches along grooves; their work aims to control failure in sit-

uations, such as flexible electronics, where it must be expected.

They find the most regular results when they design for crack

spacings that are near the natural crack spacing of the brittle film.

A common feature of all these situations is that the cracking

layer is thin, compared to its lateral extent. Nonetheless, the layer

thickness imposes the natural length-scale of such problems, and

the spacing of the cracks in each case reflects this thickness9,17–19.

Here we study the model problem of contraction cracks in ‘thin’

elastic layers adhered to rigid substrates and show how the shape

of the substrate also plays an important role in determining the

geometry of the crack pattern.

For this end we choose the system of desiccation cracks in dry-

ing clays as a simple, yet representative, experiment. As clays dry

they tend to shrink, uniformly. So-called channel cracks open in

the film, to relieve its growing strain energy (see e.g.20–22). The

appropriate physical model for stress in a wet clay, poroelasticity,

has an exact mathematical analogy with the thermoelastic model

of how most solids shrink as they cool23–25. In biology, compa-

rable conditions can also result from the differential growth of

layered tissues26–28. This is known to lead to the formation of

scales on the heads of Nile crocodiles10 (Fig. 1(e)), for example,

while a similar mechanism has been proposed to account for leaf

venation patterns26,27.

2 Materials and Methods

Briefly, bentonite clay was dried over rigid patterned substrates,

where it cracked; a schematic summary of the experiment is given

in Fig. 2(a). Compared to the wet clay, the substrate is unde-

formable and unbreakable.

Each substrate consisted of a 20×20 cm2 plate. Five sinu-

soidal plates were cut from acrylic blocks by computer-numerical-
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Fig. 2 Sketch of the drying experiment, where (a) a clay slurry of

average initial thickness H dries over a sinusoidally varying substrate, of

amplitude A and wavelength λ . Both (b) linear and (c) radial wave plates

were used as substrates.

Table 1 Amplitudes A and wavelengths λ of the corrugated substrates

(wave plates) used to template crack patterns. Linear wave plates are

simply numbered, while radial wave plates are indicated by the suffix r.

Plate A (cm) λ (cm) a = A/ λ

1 0.25 2 0.125
2 0.25 1 0.25
3 0.5 2 0.25
4 0.25 0.5 0.5
5 0.5 1 0.5

1r 0.25 1 0.25
2r 0.25 0.5 0.5

control (CNC) milling, with a resolution of 200-400 µm. These

plates were corrugated; their surface z varied sinusoidally along

one direction, x, with a constant profile along the other, y, direc-

tion such that z = Asin(2πx/λ ). The wavelengths λ and ampli-

tudes A of the plates are given in Table 1. Two pairs of plates

had the same dimensionless ratios a = A/λ , in order to check

the scale-independence of the fracture patterns. Two additional

plates were prepared by 3D printing from acrylic photopolymer,

with a vertical resolution of 30 µm, and a contour resolution of 5

µm (4D Concepts). These plates had radial wave patterns, with

surface profiles (see Table 1) that varied periodically in the ra-

dial direction, r, away from the centre of the plate, such that

z = Acos(2πr/λ ). Finally, a flat acrylic plate was used for con-

trol experiments. All plates were smooth to the touch. For each

plate 10 cm high acrylic walls were glued to each edge, to make

a waterproof container.

Slurries of potassium bentonite (Acros Organics K-10 montmo-

rillonite) were prepared by mixing a set weight of bentonite pow-

der with twice as much water, by mass. Slurries were then stirred

until smooth and immediately poured evenly into a container,

over a substrate. At this concentration the slurries behaved as

fluids, rather than pastes. These conditions avoid the memory ef-

fect29,30, whereby the flow or vibration of a yield-stress paste can

affect the way it cracks (see Fig. 1(f)). We checked that this ef-
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Fig. 5 A phase diagram showing where wavy, ladder-like and isotropic

crack patterns were seen, for the linear wave plates.

followed by cracks between these primary cracks, and at right an-

gles to them, like the rungs of a ladder. As in Fig. 4(b), additional

short cracks also often formed along the troughs of the pattern,

especially in the later stages of drying. Both variants – with par-

allel cracks appearing only over ridges, or on both ridges and

troughs – are described here as ‘ladder-like’ patterns. For thick

layers, as in Fig. 4(c), there was no obvious effect of the sub-

strate on the crack pattern, which was essentially isotropic. Time-

lapse movies showing the development of representative cases of

wavy, ladder-like and isotropic cracks are provided as online sup-

plemental information†.

Linear elastic fracture mechanics has no inherent length-scales,

other than those set by the geometry of the system under study.

If this assumption holds, then the dependence of the fracture pat-

tern on the shape of our substrates can be entirely captured by

considering two dimensionless parameters, such as the dimen-

sionless layer thickness, h = H/λ , and a dimensionless amplitude,

a= A/λ , of the substrate’s relief. Since in many situations, includ-

ing ours, the spacing of thin-film cracks scales with the thickness

of the cracking layer9,17–19, the parameter h should describe the

relative match between the natural spacing of any cracks and the

wavelength of the perturbations affecting their pattern. The di-

mensionless amplitude a describes the sharpness of the peaks on

the substrate.

For the linear wave plates we categorised each fully-dried crack

pattern by visual inspection as either wavy, straight or isotropic.

As summarised in Fig. 5, the different patterns divide up the

expected dimensionless phase space into well-defined regions. At

the boundaries between the different patterns were small areas of

coexistence, for example between wavy and straight cracks. This

coexistence represents two scenarios – either both patterns were

observed within different regions of a single experiment, or were

seen for the same h, but on different plates. For dimensionless

layer heights in excess of about h= 1, only isotropic patterns were

ever seen.

Although there are clear visual differences between the pat-

terns shown in Fig. 4, there are no well-established methods by

which they can be characterised. In order to analyse our patterns

quantitatively we therefore need to develop new order param-

eters similar to, for example, the orientational order parameter

of liquid crystals37. We present three such measurements next,
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Fig. 6 Example power spectra of ladder-like crack networks, with (a)

cracks over each ridge of the substrate and (b) cracks over the ridges

and troughs. Insets show representative sub-sections, 6 cm wide, of the

original images that were summed, vertically, to give average crack

densities along the x-axis, for Fourier processing.

based on Fourier methods, the relative orientation of the regions

outlined by the crack network and the positions of neighbouring

crack vertices.

3.1 Fourier analysis of crack patterns

The presence of evenly spaced cracks that are well-aligned with

the substrate’s features suggests the use of Fourier methods to

quantify our crack patterns. Although a two-dimensional trans-

form could be used to measure crack spacings, we focus here on

a one-dimensional approach, which allows us to measure the rel-

ative alignment and periodicity of the cracks with respect to the

linear substrates. To this end, we first collapse each binary im-

age to find the average density of cracks at each position along

the x-direction. This is done by summing over the y-direction of

the images, where cracks are represented by ones and uncracked

material by zeros. We then find the power spectrum of the crack

density as the absolute value of the square of its Fourier trans-

form, normalised to have an integrated power of one.

In cases where cracks are aligned with the substrate there are

sharp peaks in the power spectrum of the crack density when

the wavenumber ξx is an integer multiple of the wavelength λ of

the substrate, as in Fig. 6. In other words, the substrate prefers

there to be a integer number of cracks, per wavelength. The re-

sponses of all five linear wave plates were very similar: typically,

most power was found in the first or the second mode, i.e. when

ξxλ = 1 or 2, and higher order peaks were consistent with har-

monics of this main peak. Furthermore, there was a change in

the dominant mode of the power spectra around h = 0.5− 0.75.

Below this, most power was in the ξxλ = 2 peak, while above

this the ξxλ = 1 peak was also strong. Visually, the point where

these intensities cross over coincides with the transition between

patterns with cracks along every ridge (Fig. 6(a), ξxλ = 1), and

patterns with cracks along both the ridges and troughs (Fig. 6(b),

ξxλ = 2). The appearance of wavy cracks, at very small h, are as-

sociated with a decline in the power of the ξxλ = 2 mode. Since

they meander, their crack density is not as strongly localised as

the ladder-like cracks, and the Fourier analysis reflects this. The

isotropic cracks, around h = 1 or thicker, show no significant cou-
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Fig. 12 Numerical solution of a channel crack opening (a) over a peak,

(b) between a trough and peak and (c) over a trough of the substrate.

The three cases correspond to A = 0.2, and λ = 4, 6, and 8, respectively.

The deformations caused by the cracks are exaggerated, so as to be

visible, while the greyscale shows how much of the pre-crack stress σ∗
xx

is released by the crack – with black shown where all the stress is

released, and white where the crack does not affect the stress at all.

The location of the displayed cracks are those that maximise G(ψ) for

the different geometries.

and the opening displacements of the crack, δ , as in21,45. This is,

essentially, the sum of the forces on the incipient crack surfaces,

acting over the distance they travel as the crack opens. The strain

energy released, per unit area of new crack, is thus

G =
1

2ℓ

∫ 1

1−ℓ
δxσ∗

xx +δzσ
∗
xzdz. (6)

For a simulation with a specific A and λ we calculated the pre-

crack stress field once, using ψ = 0, and used this solution to find

σ∗ at different positions along the substrate. We then calculated

the opening displacements of a crack at different ψ. Accounting

for the opening displacement to either side of a crack can be done

by letting δx = ux(ψ) + ux(−ψ), and δy = uy(ψ)− uy(−ψ). This

gives us the values of G for cracks growing along the substrate at

different ψ, ranging from the crest of the sine wave, to its trough.

For a flat substrate, this problem has been studied in detail by

Beuth21, Xia and Hutchinson22 and Yin et al.47,48. They showed

that G scales as

G =
πσ2

0 ℓ

2Ē
g, (7)

where g is a dimensionless parameter that only depends on the

elastic mismatch between the cracking film and its substrate, and

where Ē = E/(1− ν2) and σ0 = −p(1− 2ν)/(1− ν). For exam-

ple21, for ν = 1/3, g = 0.71. We confirmed their solutions with re-

spect to the exponential decay of the height-averaged stress away

from the crack22 and the dependence of g on ν 21 and the depth

of fracture21,47, and checked that g was independent of the aver-

age film thickness, the film’s elastic modulus E and the capillary

pressure p. The mesh used, and the horizontal domain length,

were found to be sufficient to agree with these known solutions

to within 1%.

For an uneven substrate G depends on location, measured here

by the offset ψ. As the clay dries the relative shape of G(ψ) will

not change, but rather its magnitude will simply increase along
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Fig. 13 Modelling the straight-to-wavy transition. (a) Predicted positions

of the first cracks, based on the offset ψ where the energy release rate

G is maximised. Red diamonds and blue circles show the experimental

parameters where ladder-like or wavy cracks were seen, respectively

(from Fig. 5). (b) Energy landscapes of Ḡ(φ ) for three conditions,

indicated by (1-3) in (a), which cross over the straight-to-wavy transition.

Under these conditions there is a bifurcation from one energy maximum

for a crack on the top of a ridge, to two preferred locations, on either side

of the ridge.

with the capillary pressure. The Griffith criteria predict that frac-

tures can only grow once G reaches some critical value, Gc, which

is a material parameter (see e.g.45). The first cracks in the brit-

tle drying layer should therefore form at the positions where the

strain energy released by these cracks, i.e. G, would be a maxi-

mum, as these are the first places where G = Gc. For a Poisson

ratio of ν = 1/3, we calculated how G varied with position in a

wide range of experimental conditions, from A = 0.01–0.90 and

λ = 0.5–8.0. To focus only on geometric effects we used Eq. 7

to rescale G by the relative stiffness 2Ē/πσ2
0 , so that Ḡ = ℓg. The

results are summarised in Fig. 13(a), which shows the values of

ψ that maximise G for various A and λ . Depending on the shape

of the substrate and the thickness of the clay, the preferred posi-

tions of the earliest cracks can be either (i) over the peaks of the

substrate, (ii) over the troughs or (iii) at pairs of points displaced

to either side of each peak. Examples of the displacement field,

and energy release rate of all three cases are shown in Fig. 12.

Figure 13(a) also replots the observations from Fig. 5, cor-

responding to the conditions where wavy and ladder-like cracks

are found; the new axes here highlight the low-h region of in-

terest. For all experiments where straight cracks were seen the

model correctly predicts that the first cracks should appear over

the ridges of the substrate. Where wavy cracks are seen, the

model instead generally predicts two stable positions for cracks,

along the sides of the ridges. Although our model has no dynamic

component, this empirical agreement of the division of phase-
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Fig. 14 Modelling the straight-to-isotropic transition. For (a) the colour

indicates the difference between the maximum and minimum values of

Ḡ. The red circles have a radius proportional to the crack orientation

order parameter, S2, for each experiment. The most well-ordered

patterns correspond to the patch of high ∆Ḡ around the centre of the

image. Panel (b) shows how S2 is well-correlated with ∆Ḡ, between

experiments where straight or isotropic patterns were seen, and

corresponding simulations.

space suggests that the wavy cracks result from cracks moving

back and forth between their two bistable positions. The bound-

ary between the straight and wavy cases corresponds to a forward

pitchfork bifurcation, as sketched in Fig. 13(b).

To consider the more gradual transition from ladder-like to

isotropic cracks, we looked at the relative variations in Ḡ, defin-

ing ∆Ḡ as the difference between the maximum and minimum

values of Ḡ(ψ), for each value of A and λ studied. If ∆Ḡ is small,

then there is only weak guidance for the cracks, and they should

appear more random than in cases of larger variation of energy

release rate. We tested this hypothesis by comparing ∆Ḡ with

the crack alignment order parameter of our experiments. First,

we calculated ∆Ḡ for each point in our simulation, mapping the

results in Fig. 14 alongside the data showing S2 for our vari-

ous experiments with linear wave plates. This figure shows that

there is a neighbourhood of driving parameters, centred around

λ/H = 2.2 and A/H = 0.6, where ∆Ḡ is large. There is another

area of strong contrast at high A/H and λ/H, and the lower val-

ues of ∆Ḡ between these two regions corresponds to the straight-

to-wavy transition of Fig. 13. Our experiments pass through the

central region, and show their most well-ordered patterns as they

do so. To quantify this agreement, we then calculated ∆Ḡ for the

conditions corresponding to each experiment where ladder-like

or isotropic cracks were seen. As shown in Fig. 14(b), there is in-

deed a good correlation between the range of energy release rates

allowed for any particular geometry, and the relative alignment of

the cracks that formed over it.

Finally, we note that some insight into the limits of our results

can be gained through a qualitative comparison to channel cracks

in flat films and coatings. Here the stresses relaxed by the crack

will decay away over a length comparable to the thickness of the

film20,22. This effect can also be seen in Fig. 12. For a wavy

substrate this limit is approached when the amplitude of the re-

lief goes to zero, and under such conditions isotropic cracks with

a spacing ∼ H are clearly expected. However, for finite A/H the

limit can still offer insight. For very long wavelength ripples, large

λ/H, each crack will see a local environment, of size ∼ H, that

is approximately flat. Since, for a perfectly flat film, the critical

cracking stress will scale as 1/
√
ℓ (see21,22 or invert eq. 7), the

cracks in this limit should form first over the troughs of the pat-

tern, as the layer is deepest there, and will break at the lowest

stress. This intuitive result matches our model predictions for

conditions of large enough relative wavelength (i.e. see the lower

right corner of Fig. 13). Although these conditions were not

probed by our experiments, we would also expect an isotropic

pattern in this case, but one with a local modulation of the crack

spacing reflecting the changes in local thickness. For the opposite

limit, of very sharp features where λ/H ≪ 1, the region around

any crack will sample many ridges and troughs, and these local

variations will tend to cancel each other out (see Saint-Venant’s

principle e.g.49); again, isotropic cracks would be expected. In

other words, for finite-amplitude relief a brittle layer must filter

out the high and low-frequency information of its substrate, and

any contraction cracks that form should reflect this.

5 Conclusions

Our results explore the effects of an uneven substrate on the de-

velopment of contraction cracks in thin films, and are inspired by

natural patterns of cracks around buried craters, paintings, and

vapour-deposited thin films. We showed that the wavy, periodic

undulation of a substrate can cause the ordering of a crack pat-

tern that forms above it, and has the strongest influence on this

pattern when the thickness of the cracking layer is comparable to,

or slightly smaller than, the periodicity of the substrate.

Generally we found that for increasing layer thickness the crack

pattern changed from one with wavy cracks running along the

troughs of the substrate, to straight cracks appearing over each

peak and trough of the substrate, to straight cracks on only the

peaks of the substrate, and finally to a disordered or isotropic pat-

tern. The wavy-to-straight transition was the most abrupt change,

as evidenced by examples of single experiments that were wavy

on one side of the plate, and straight on the other. All these pat-

terns were quantified by Fourier methods and orientational or-

der parameters, similar to the nematic order parameter of liquid

crystals, which are easily adaptable to other types of crack net-

works. Finally, we showed how the transitions between pattern

type could be explained by a simple finite-element model of chan-

neling cracks advancing over uneven relief, regardless of whether

those cracks were driven by drying, cooling or the differential

growth of crocodilian skin.
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