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particles embedded in it, depend primarily on the surface stresses
induced by the particles. For particles that are much larger than
the molecules constituting the interface, the surface stress due
to the particles embeds the effect of lateral particle-particle in-
teractions (electrostatic interaction, van Der Waals interactions,
capillarity, etc.)

In this paper we study such stresses in a simulation of a pen-
dant drop in which the interface is covered by a monolayer of
repulsive colloidal particles forming a curved 2D colloidal crystal.
Colloidal crystals at fluid interfaces have been used as model sys-
tems to study topological defects on curved manifolds.22,23 Col-
loidal crystals of varying degree of micro structural order often
form in systems when the particles are charged.24 In our simula-
tions, the particle-particle interaction force model is designed to
mimic a screened repulsive Coulomb interaction between charged
particles. From a fundamental perspective, considering purely re-
pulsive interactions lays the basis for understanding the interplay
between repulsive and attractive forces. Experimentally, the be-
haviour of flat monolayers of charged particles has been exam-
ined at oil-water25–27 and air-water interfaces.28 The measured
surface pressure shows a strong non-linear dependence on the
surface coverage, and is affected by polydispersity27 and cluster-
ing effects.29.

In contrast to previous pendant drop simulations, in which the
complex interface is treated as a continuum (see e.g. Ref.30),
we treat the particles as discrete objects. In simulation, surface
stresses due to particles have been investigated for flat4,31,31,32 or
spherical interfaces.33 Our work aims to highlight challenges in
measuring surface stresses from simulated interfaces presenting
non-uniform curvature. Pendant drop experiments with interfa-
cial colloids have focused on the change in surface tension upon
adsorption,34,35 changes in morphology due to the incompress-
ibility of the surface layer,36, and particle expulsion.37

Recent years have seen impressive developments in meso-
scale discrete particle simulation methods for colloidal particles,
such as the lattice Boltzman method,38 the Immersed Boundary
method, Dissipative Particle Dynamics, Rotational Particle Dy-
namics, Phase-Field Methods39,40, etc. Many of these methods
can be applied to multiphase systems involving particles interact-
ing with fluid interfaces.41 In addition to enable physical insights
into aspects of particle adsorption,35 particle ordering and dy-
namics in the interface,42,43 the effect of particle shape on self-
assembly,44–46 and the modification of the interfacial morphology
by the particles,47,48 such sophisticated numerical tools open up
the possibility of measuring accurately local mechanical and mi-
cro structural properties.

A practical difficulty with particle-resolved methods such as
lattice-Boltzmann methods is to reach a realistic separation of
scale between the particles and the drops while keeping the
computational cost manageable. To overcome these limitations
we have developed FIPI (“Fast Interface Particle Interaction”
method), a fast discrete-particle simulation method for interfa-
cial colloids. The method enables to simulate realistic systems
with thousand of particles while allowing a good scale separa-
tion. The method relies on coupling the Navier-Stokes equation
to a phase-field model, and therefore can simulate the coupling

to flow.

To calculate surface stresses from a simulation of particles ad-
sorbed to the surface of a drop two main approaches can be
adopted. For static problems, the conventional approach is to
fit the shape of the composite interface to a numerical solution
of the non-linear Young-Laplace equation. Since in general the
surface stresses are non-uniform and locally anisotropic, this ap-
proach provides a "best-fit” to the properties of the entire drop
surface (in ref.16 a shape-fitting procedure that enable to calcu-
late anisotropic stresses has been recently proposed). A second
approach is to calculate the local surface stress directly by local
spatial averaging, using an extension of Irving-Kirkwood’s expres-
sion.49 It is possible to utilise this approach even when the surface
microstructure or the drop shape are time dependent. In this pa-
per, both approaches will be adopted, and the results compared
when possible.

For bulk suspensions, the mathematical framework underpin-
ning the method of spatial averaging, which is used to “coarse
grain” particle-level quantities, is now quite established (see
Ref.50 for a review). In contrast, work on interfacial suspen-
sions where the method of area average is adopted is scarce,
and limited to theoretical investigations to derive balance equa-
tions.51–53 We are not aware of published work specifically inves-
tigating the use of the method of area average to extract surface
stresses from simulations of interfaces having non-uniform and
anisotropic curvatures.

In experiments the interfacial curvature is rarely uniform or
isotropic, and this affects the particle distribution in a non-trivial
way. On a surface of non-uniform curvature the particles will re-
distribute on the surface, adopting after surface stress relaxation
a concentration distribution consistent with the condition of zero
tangential forces on the particles. In addition, while in the case of
uniform interfacial curvature and uniform microstruture one can
average over the entire surface, non-uniform curvatures necessar-
ily require applying local averaging.

In this paper, following work on bulk suspensions,54–56 we de-
rive an expression for the interfacial stress similar to Irving and
Kirkwood’s expression by considering a tangential stress balance
and using a Taylor expansion of the surface averaging filter func-
tion. Irving and Kirkwood originally derived their formula for the
bulk stress by considering the forces between molecules across an
element of surface and using an expansion of the density-density
correlation.57 The derivation we propose is easier to interpret in
terms of colloidal interactions and makes the link between in-
terfacial stresses and inter-particle forces clearer. For instance,
our derivation shows that for pair-wise interactions, the fact that
lateral forces can be expressed as the divergence of a stress re-
sults from Newton’s action-reaction principle. We demonstrate
through numerical experiments that the isotropic contribution to
the stress calculated from the Irving-Kirkwood expression con-
verges to the surface tension calculations based on fitting the
shape of the interface to the Young-Laplace equation. In addi-
tion, the Irving-Kirkwood formula enables the direct calculation
of the anisotropic (or deviatoric) component of the surface stress,
which is related to the surface shear elasticity. We investigate
the spatial distribution and magnitude of the anisotropic surface

2 | 1–12

Page 2 of 12Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



stresses in static and transient simulations. As it was recently
demonstrated with the use of principles of interfacial continuum
mechanics, anisotropy and uniformity are intimately linked, as
surfaces with non-uniform stress should also display non-isotropic
stress, and vice versa.16

2 Simulation method

We simulate a pendant drop covered with a monolayer of identi-
cal spherical particles. As in classical pendant drop experiments,
the drop is held at the top and deforms under gravity. Simulating
this problem requires a numerical method that tracks the shape
of the composite interface and the position of each particles. For
this purpose, we developed a fast Eulerian-Lagrangian method
for interfacial colloids, FIPI, which will be briefly described in
the following. The method has been thoroughly validated and its
complete analysis will be the subject of a forthcoming publication.

At each time-step, FIPI solves the following set of Eulerian
equations:

∂φ

∂ t
+u ·∇φ = ∇ ·M∇ξ

−∇p+µ∇2u+ρg+ξ ∇φ +
Np

∑
α=1

Fα δ (x−xα ) = 0

∇ ·u = 0. (1)

This system of equations couple a Cahn-Hilliard equation for the
phase variable φ to the incompressible Navier-Stokes equations
for the fluid velocity u(x, t), where x is an Eulerian point and t

is time. The momentum equation, which is treated in the low-
Reynods number limit, includes a gravitational term ρg, a gradi-
ent term ∝ ∇φ , and a particle forcing term. In the particle forcing
term the sum is extended to the Np particles present in the com-
putational domain.

In the absence of the summation term, eqn (1) is the standard
formulation of the phase-field method for a two-phase flow of two
immiscible incompressible fluids (see e.g. Ref.58). The function ξ

is the chemical potential, which is prescribed as ξ =
λ

ε2
(φ 3 −φ)−

λ∇2φ , where λ is the mixing energy parameter. Gradients of the
chemical potential drive the formation of a diffuse fluid interface
of thickness ε at a rate set by the mobility parameter M.59 The
surface tension of the bare interface is σ0 = 2

√
2ε/3.

The particle forcing term ∑
Np

α=1 Fα δ (x − xα ), which contains
delta forces applied at the position of the particles, represents the
sum of the forces Fα per unit volume that each particle α exerts
on the surrounding environment. The force Fα is the sum of two
contributions: a hydrodynamic force Fhd

α representing the hydro-
dynamic drag that particle α exerts on the fluid, and an interface-
particle capillary force contribution F

ip
α . In contrast to particle-

resolved methods, in FIPI both terms are modelled. The hydro-
dynamic drag is modelled as Fhd

α = 6πµa
(

Up,α −U f ,α

)

, where a

is the particle radius, Up,α is the particle velocity and U f ,α is the
fluid velocity at the particle position. The interface-particle inter-

action term is modelled as

F
ip
α =

{

Aπσ0dn, if |φ(xα , t)| ≤ φ∗

0, if |φ(xα , t)|> φ∗ , (2)

where 0 is the null vector, n is the unit normal vector from the
interface to the particle center, d is the minimum distance be-
tween the particle centre and the interface, and A is a parameter
that characterises the magnitude of the capillary adhesion force.
The interface-particle interaction force model in eqn (2) gives a
potential well centered at the interface that drives the adsorp-
tion of each particle and keeps the particle in the interface. The
interface-particle interaction force is truncated when the phase-
field variable evaluated at the particle position, φ(xα , t), is larger
in magnitude than a specified truncation parameter φ∗.

In the current implementation of FIPI, the mapping between

φ(xα , t) and d is given by the formula d =

∣

∣

∣

∣

∣

√
2

2
ε log

1+φ(xα , t)

1−φ(xα , t)

∣

∣

∣

∣

∣

.

This formula is obtained by inverting the static one-dimensional
solution of the Cahn-Hilliard equation. The interface-particle in-
teraction force in eqn (2) is truncated when |φ(xα , t)| is larger
than φ∗ = 0.964; this value for the truncation parameter corre-
sponds to d = 2

√
2ε.

The position of each particle can be calculated by taking into
account that the sum of F

ip
α and Fhd

α must balance the inertia of
the particle, the particle weight, and the force F

pp
α due to non-

hydrodynamic particle-particle interactions. Neglecting particle
inertia and weight, Newton’s equation of motion for each par-
ticle reads −6πµa

(

Up,α −U f ,α

)

−F
ip
α +F

pp
α = 0. Given a current

configuration of the particles, and the velocity and phase fields,
Newton’s equation of motion is solved to calculate the new posi-
tion of each particle.

Through the particle forcing term, the particles produce a mod-
ification of the mechanical properties of the interface. The term
ξ ∇φ produces the Laplace pressure due to the bare interface. The
term ∑

Np

α=1 Fα δ (xα −xs) gives an extra Laplace pressure on the in-
terface due to the particles, thus providing a means to change the
surface stress. The solution of the Eulerian equations (1) for the
fluid and the interface coupled with the particles’ equation of mo-
tion, gives at each time step the shape of the interface modified
by the presence of the particles.

The conservative force on particle α due to particle β is as-
sumed to be repulsive, with a screening length κ−1:

F
pp

αβ
=







(

F0

r2

)

r̂, if a < r ≤ κ−1

0, if r > κ−1
, (3)

Here r is the distance between particles β and α, and r̂ is the unit
vector pointing from particle β to particle α. The total force on
particle α is obtained by summing over all the particles within
the interaction range. The parameter F0 defines the characteristic
magnitude of the inter-particle force.

The force law in eqn (3) represents a model for a screened
Coulomb interaction between charged colloids (κ−1 models a
finite Debye length). Coulomb and dipole-dipole electrostratic
interaction forces between colloids at fluid-fluid interface can
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be approximated by power laws with r−2 and a r−4 decay, re-
spectively.22,60–62 In addition to be relevant to experiments with
strongly charged particles,22 the r−2 law makes particle-particle
interaction effects more marked, and therefore was chosen for the
current work. It is expected that the qualitative features of the re-
sults presented in the current paper will not depend significantly
on the value of the power-law exponent.

The governing equations are solved in a triply-periodic domain
by a pseudo-spectral method. Spectral methods enables accurate
evaluation of spatial derivatives owing to the Fourier series repre-
sentation, and a fast numerical solution. To pin the drop at its top
portion, we use a ring of stationary particles exerting a force in
the upward direction, opposite to gravity. For these particles, the
particle-interface capillary adhesion was tuned so that the particle
ring could sustain the total weight of the drop.

3 Simulation parameters and procedure

The physical parameters related to the fluid and the bare inter-
face are the gravity constant g, the density difference ∆ρ between
the drop and the surrounding fluid, the surface tension of the
bare interface σ0, and the initial radius of the drop R. The pa-
rameters associated to the particles are the particle radius a, the
number of particles Np, the inter-particle force parameter F0, and
the cut-off length κ−1. These parameters enable to build the fol-
lowing non-dimensional groups: the area fraction φs, the Bond
number B = ∆ρgR2/γ0 of the drop without the particles, the non-
dimensional interaction strength parameter F = F0/(σ0a3), the
interaction range parameter κa, and the ratio of the particle size
to the drop size a/R. For all our simulations, the ratio of the par-
ticle radius to the initial drop radius is fixed to a/R = 0.02.

The area fraction values reported in the current paper are cal-
culated as φs = Npπa2/A0, where A0 = 4πR2. Since they are based
on the initial drop radius, the values of φs should be interpreted
as nominal area fractions. By calculating the local area fraction at
the drop apex by area averaging we have verified that the values
of φs based on the initial drop area are very close numerically to
those measured with the deformed drop.

At the start of each simulation, the particles are randomly ar-
ranged on the surface of the drop and the inter-particle force is
switched off. After enabling the interparticle interactions, the
monolayer quickly relaxes to adopt a particle distribution consis-
tent with the instantaneous drop shape. The observed time scale
over which the particles relaxed in the interface was found to be
much smaller than the time scale of droplet deformation. The mi-
crostructure can therefore be assumed to change quasi-statically
as the drop deforms.

Unless otherwise specified, the Bond number is B = 0.223,
which gives droplet deformations comparable to those seen in
pendant drop experiments. For the results shown in Fig.6 and
Fig.8 we simulate a larger Bond number, B = 0.334.

The physics of capillary particle adsorption requires the capil-
lary adhesion parameter A to be a constant of O(1), whose exact
value depends on the contact angle and on the ratio of the par-
ticle size to the drop size.44,63–65 For static simulations we have
used A= 1. When using A= 1 in transient simulations, under con-
ditions of large surface coverage the particles are expelled from

the interface in correspondence to the top edge of the drop. This
phenomenon seems to be quite sensitive to the way the drop is
pinned. To limit the complexity of our simulations, in transient
simulations we constrained the particles to the surface of the drop
by choosing A = 10.

4 Results

The surface stress tensor evaluated at a generic surface point xs

due to conservative inter-particle forces can be calculated (see
Appendix) as

σ =
1

2

Np

∑
α=1

Np

∑
β 6=α

Fαβ (y
β
s −yα

s )G(xs −yα
s ). (4)

In this expression, Fαβ is the force on particle α due to particle
β (in eqn 3, the same quantity is denoted by the symbol F

pp

αβ
).

The surface position vectors yα
s and y

β
s locate the centers of par-

ticles α and β , respectively. The summation is over all the parti-
cles in the monolayer. The function G is a smooth surface filter
function with compact support that isolates a surface control re-
gion around xs. Typical choices for the filter function suggested
by three-dimensional calculations are the box function and the
Gaussian filter; the specific choice of filtering should not affect
the definition of spatially-average quantities.54

In the calculations presented in the current paper, G is a box
function, constant and equal to 1/Ac in a curved surface element
(the averaging region) of area Ac centered at xs and zero other-
wise. Using index notation, the use of the box function yields the
following formula:

σi j =
1

2Ac
∑
α

∑
β 6=α

Fαβ ,i(y
β
s, j − yα

s, j). (5)

The derivation presented in the Appendix shows that in this ex-
pression the index α runs over all the particles within the averag-
ing region, while β indexes particles that can be either inside or
outside the averaging region.

Our derivation of formula (4) follows from recent work on bulk
suspensions by Nott, Guazzelli and Pouliquen,56 who in turn ex-
tended work by Anderson and Jackson on suspension stresses due
to particle-particle contacts.54,55 The derivation assumes pair-
wise interactions; however, the formula is expected to hold more
generally.56 Eqn (4) can be recognised as a version of the Irving-
Kirgwood formula, here applied to a system of particles con-
strained to a curved surface.

The surface stress due to the particles can be decomposed
into an isotropic and a deviatoric (anisotropic) component as
σi j = −Πsδi j +σD

i j . The deviatoric component σD
i j is associated

to the shear elasticity of the particle monolayer. The surface pres-
sure Πs is the stress response due to the particles to an isotropic
dilatation or compression of the particle monolayer. In our sim-
ulation the surface tension of the bare interface σ0 affects only
the isotropic component of the surface stress of the composite in-
terface (in our simulation the particles are assumed to be much
larger than the molecules composing the bare interface).

Taking the trace of eqn (5) and multiplying by −1/2 yields the
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following formula for the surface pressure due to the particles:

Πs =− 1

4Ac
∑
α

∑
β 6=α

Fαβ · (yβ
s −yα

s ). (6)

We here adopt an orthogonal coordinate system (s,θ), where
θ denotes the azimuthal coordinate and s the meridian coordi-
nate.16 Lines at constant s are circles lying in planes perpendicu-
lar to the axis of the drop. The local tensions due to the particles
in the azimuthal and meridian directions corresponding to eqn
(5) are given by

σθθ =
1

2Ac
∑
α

∑
β 6=α

Fαβ ,θ

(

y
β
s,θ − yα

s,θ

)

(7)

and
σss =

1

2Ac
∑
α

∑
β 6=α

Fαβ ,s

(

y
β
s,s − yα

s,s

)

, (8)

respectively.

In our simulation, the surface stress tensor is diagonal in the
local coordinate system (θ ,s). In other words, lines at constant
θ and constant s, which are parallel to the principal directions
of curvature, define also the principal directions of surface stress.
The surface pressure satisfies Πs =−(σθθ +σss)/2. The deviatoric
components of the surface stress in the azimuthal and meridian
directions are given by σD

θθ = (σθθ −σss)/2 and σD
ss = −σD

θθ , re-
spectively.

Simulated equilibrium drop shapes for two values of the area
fraction are shown in Fig.1. As the number of particles increases
(for a fixed particle size), the drop assumes a more elongated
shape, suggesting a reduction in the effective surface tension of
the composite interface. For the values of area fraction shown, the
particles are seen to be arranged in a dominant hexagonal order,
forming a 2D colloidal crystal. In Fig.1 (b) a disclination in the
crystal structure in which one particle is surrounded by 7 particles
is indicated by a circle. Topological defects are important features
of hexagonal crystals on curved surfaces.22,23,66,67

4.1 Effective surface tension by shape fitting

Denoting by κθ and κs the local curvatures of the interface along
the azimuthal and meridian directions, respectively, the normal
stress balance for the composite interface (treated as a two-
dimensional continuum) reads16

σsκs +σφ κθ = ps. (9)

Here σφ and σs are the interfacial tensions in the azimuthal and
meridian directions, respectively, and ps is the pressure difference
between the inside and the outside of the drop. For an isotropic
stress tensor, σ = σφ = σs and eqn (9) reduces to the classical
form of the Young-Laplace equation:

σ(κs +κθ ) = ps. (10)

Since the change in ps along the composite interface is due to
gravity, ps = p0 −∆ρgz, where p0 is the value of ps at the drop
apex. The curvatures in the azimuthal and meridional directions
can be expressed in terms of the slope angle θ = dz

dr (r is the dis-

(a)

(b)

Fig. 1 Steady-state drop shapes for (a) φs = 0.15 and (b) φs = 0.45;

F = 0.707 and κa = 0.064.

tance of from the symmetry axis) as κs =
dθ
ds and κφ = sinθ

r giving
dθ
ds = − sinθ

r + p0

σ − ∆ρgz
σ . This equation, together with the defini-

tions dr = cosθds and dz = sinθds, constitute a closed non-linear
system of equations that can be solved numerically.68 The numer-
ical solution for the drop shape is at the basis of standard pendant
drop measurements.69,70

Fordham71 showed that when σ is constant, only two geomet-
ric parameters are needed to calculate the surface tension: the
maximum diameter of the drop, De, and the diameter of the drop
at a distance De from the apex, Ds. From these two values, the
surface tension can be calculated as

σ =
g∆ρD2

e

H
, (11)

where H is a unique function of the ratio Ds/De. In Ref.71, accu-
rate values for H calculated by solving eqn (10) numerically are
tabulated.

We have applied Fordham’s method to our simulation data to
calculate the effective surface tension of the interface with the
particles. To validate the approach, we have calculated the sur-
face tension of the drop without the particles and compared this
value to the surface tension prescribed as input parameter to the
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phase-field method. In all the cases, the computed results were
found to be within 2% from the theoretical surface tension val-
ues. Unlike experiments, simulations are subject to very limited
noise in the data, so such good accuracy is not unexpected. In the
following we often refer to Fordham’s method as “shape-fitting
method”, although what we are fitting is the drop curvature at
two selected points, not the actual drop shape.

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6

∆
σ
/σ

0

φs

κa = 0.333
κa = 0.256
κa = 0.128
κa = 0.064
κa = 0.043

Fig. 2 Surface tension reduction, ∆σ = σ0 −σ , vs. the area fraction for

different values of κa; κ−1 is the range of the repulsive force and a is the

particle radius.

Fig.2 shows the surface tension reduction ∆σ = σ0 −σ , calcu-
lated by using Fordham’s method, for the particle-laden case. The
surface tension was calculated at equilibium, i.e. when the drop
had reached a steady-state shape. The surface tension reduction
is plotted as a function of the area fraction for F = 0.707 and dif-
ferent values of κa. The maximum area fraction we were able to
explore with stable drops is φs = 0.5 for κa > 0.043 and φs = 0.4

for κa = 0.043. For each value of κa, increasing the area frac-
tion beyond these upper limits led to unstable drops, as discussed
below.

As expected for purely repulsive inter-particle forces,72 the
presence of the particles produce a reduction in surface tension
(∆σ > 0). The surface tension reduction is seen to increase faster
than linearly with φs. The tension on an element of composite in-
terface along a given direction is given by the force per unit length
along that direction. This force is due partly to the bare interface
and partly to the interaction between the particles. Accounting
for nearest neighbours only, the particle contribution to the ten-
sion can be roughly estimated to be proportional to the ratio of
interparticle force and interparticle separation. As φs increases
the inter-particle force increases approximately proportionally to
φs (for a 1/r2 decay). Since the tension is due to this force acting
over a distance roughly comparable to the interparticle separa-
tion, then the surface tension should increase more than linearly
with φs. This behaviour is consistent with Fig.2.

The curves referring to relatively large values of κ suggest that
the surface tension reduction is very small for a non-zero value of
φs. Because of the finite range of the interparticle force, athermal
particles separated by a distance larger than κ−1 will not interact
with each other, giving no effect of the particles at finite surface

coverages. In our case, when the inter particle separation is larger
than κ−1 the surface tension reduction is not strictly zero, but is
nevertheless negligibly small in comparison to typical values of
∆σ .

We can develop an estimate of the relation between cut-off
length κ−1 and the critical area fraction necessary to obtain zero
effect of the particles on the surface tension. For particles in
hexagonal packing on a planar interface, the average interparti-

cle distance is ℓ=
(

2πa2√
3φs

)1/2
. Setting ℓ= κ−1 the estimated value

of the area fraction for which ∆σ = 0 is φs,min = 2π√
3
(κa)2. This

estimate gives φs,min ≃ 0.4 for κa = 0.33, in reasonable agreement
with the values of Fig.2.

As the cut-off distance κ−1 approaches the particle diameter,
the system approaches the hard disk limit in which the surface
tension changes only when the particles are in physical contact.
In this limit we expect ∆σ = 0 for φs smaller than the value ≈
0.92 that corresponds to maximum packing. A signature of this
behaviour is the fact that the curves in Fig.2 become flatter as κa

increases.

t=0 t=17.9

t=35.9 t=52.7

Fig. 3 Time evolution of the drop breakup process for φ = 0.5 and

κa = 0.043. Time is in units of
√

R/g.

For a fixed value of the non-dimensional force strength param-
eter F , and a fixed area fraction φs, the results should not change
with the size ratio a/R ( provided that this ratio is sufficiently for
a reasonable scale separation to hold). This does not mean that
there are no particle size effects. Both F and φs depend on the
size of the particle for a fixed average inter-particle separation.

If the surface tension reduction is larger than a threshold value,
the drop becomes unstable and pinches off, as illustrated in
Fig.3. Padday and Pitt73 investigated the stability of axisymmetric
menisci. Their results suggest that for our case the critical Bond
number separating stable and unstable regions should be about
B = 0.28. Noticing that ∆σ increases monotonically with φs, the
results of Fig.2 for κa = 0.043 indicate that for φs = 0.5 the surface
tension reduction should be larger than 0.4σ0. A reduction in sur-
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face tension by more than 40% results in a Bond number larger
than 0.37. This value is in the unstable region.

Our simulations refer to phenomena that occur well before
pinch off. The effect of interfacial particles on fluid dynamic
events occurring at pinch-off is an intriguing phenomenon that
has received some attention recently.74

4.2 Surface stress by local area averaging

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

∆
σ
/σ

0

φs

Shape fitting
κLc = 5.0
κLc = 4.0
κLc = 3.0
κLc = 2.0
κLc = 1.0

Fig. 4 Surface pressure at the drop apex for different values of κLc,

where Lc is the radius of the averaging control region. The interaction

strength parameter is F = 1.414, and κa = 0.128. The continuous line

corresponds to the values of ∆σ calculated by shape fitting (see Fig.2).

A significant challenge in performing area averaging is choos-
ing the size of the averaging control region. This size must be
sufficiently large in comparison to the inter-particle distance and
sufficiently small in comparison to the characteristic radius of cur-
vature of the drop. In order not to introduce an artificial cut-off,
the size of the control region must also be significantly larger than
the interaction range κ−1. This scale separation is ensured in
pendant drop experiments, where κ−1 is at most a few microns
and R is typically of the order of 1mm. In simulation, however,
these constraints are more stringent, due to the limited ability of
simulations to treat a very large number of particles. When per-
forming average, each choice for the size of the control region
represents a compromise, and will introduce some error. This er-
ror is expected to decrease as the inter particle separation and the
interaction range are reduced with respect to the drop size.

To illustrate how area-averaged results change as a function of
the size of the averaging control region, we show in Fig.4 the
surface pressure at the drop apex for different values of Lc, where
Lc is a parameter characterising the size of the control region.
Area averaging is carried out by considering a sphere of radius
Lc surrounding the apex; the intersection of such sphere with the
drop shape defines a curved surface, having approximately the
shape of a spherical cap. The area of this surface is used in the
denominator of eqn (5). In Fig.4, the values of ∆σ given by the
shape-fitting method are also shown for comparison (solid line).

For an interface having uniform and isotropic surface stress,
we expect the values of Πs to converge to the values of ∆σ . Fig.4
shows that as Lc increases the value of Πs computed by area av-

eraging approaches from above the value of ∆σ calculated with
the shape-fitting method. For the parameters explored, a value of
Lc larger than about 3κ−1 gives reasonably converged values (this
result is in keeping with preliminary tests on a planar monolayer).
The absolute deviation between Πs and ∆σ appears to slightly
increase with increasing area fraction. The relative deviation is
however roughly constant. Given the incomplete scale separation
in our simulation, the agreement between the results of formula
6 and the shape-fitting method is overall reasonably good. For
κLc = 5, the relative error is less than 10%. Within a tolerable
error, the shape fitting method and the direct calculation of the
stress by the Irving-Kirkwood formula thus give approximately
the same surface pressure value.

(a)

(b)

(c)

Fig. 5 Azimuthal and meridian tensions for (a) different area fractions

and fixed F = 1.414 and κa = 0.128; (b) different values of the

interaction range and fixed φs = 0.4 and F = 1.5; (c) different values of

the interaction strength parameter F and fixed φs = 0.4 and κa = 0.2.

The tensions are normalised by the bare surface tension σ0.

Fig.5 (a), (b) and (c) show the total azimuthal and meridian
tensions, σθ = σ0 +σθθ and σs = σ0 +σss, as a function of the
axial coordinate z for a selected range of simulation parameters,
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corresponding to different combinations of the parameters F , κa

and φs. The magnitude of the deviatoric stress is given by the
spread between the continuous and dashed curves, while the av-
erage of these two curves gives the isotropic tension of the com-
posite interface, σ0 −Πs . For these result we use an isotropic
filter including in the average particles within a sphere of radius
Lc = 4κ−1.

The azimuthal and meridian tensions are seen to be practically
constant over the surface of the drop, and very close numerically
to each other, suggesting negligible anisotropic effects and prac-
tically uniform surface stress. The small fluctuations visible for
z/R > 1.7 are likely due to edge effects. The distance between
the particles located in this region and the ring of particles pin-
ning the drop is comparable to the filter radius, so the filter “picks
up" unphysical force values. The general trend suggested by Fig.5
is that increasing F , φs, or the interaction range gives a larger
surface pressure and therefore a smaller tension.

In our simulations the surface stress anisotropy is negligible in
the range of parameters in which the drop achieves static equi-
librium. We have explored several simulation parameters looking
for the range in which anisotropic effects are more marked. We
have found that for variations of the simulation parameters in the
direction that should give more pronounced anisotropic effects
(larger inter particle forces, larger area fraction, and larger defor-
mations), the drop quickly becomes unstable and pinches off. For
stable drops, the surface stress is homogeneous and isotropic as
in Fig.5.

From a qualitative point of view, this behaviour can be under-
stood from the following argument. In the absence of attractive
interactions between the particles, the azimuthal and meridian
tensions decrease with increased deformations. To achieve a de-
gree of stress anisotropy sufficiently large to be measured, the
inter-particle forces need to be relatively large and the interface
sufficiently stretched in the direction of gravity. However, an in-
crease in interparticle forces leads to a surface tension reduction,
bringing the system in the range of parameters in which the drop
is unstable. Increasing the deformation makes the drop neck nar-
rower, resulting in surface tension forces being unable to support
the weight of the drop. Starting from a smaller Bond number,
and thus from a smaller initial drop deformation, allows to be
farther from the unstable region, but also reduces the anisotropic
deformation of the microstructure.

Our results could suggest that in the absence of attractive inter-
actions and for repulsive interactions having a range significantly
large in comparison to the particle size, anisotropic stresses in sta-
ble pendant drops may be observed only in a very narrow range
of parameters.

4.2.1 Transient simulations

In this section we illustrate the emergence of anisotropic effects
in transient simulations. In these simulations the drop pinches off
on long times , but the drop deformations are sufficiently slow to
allow the surface stress to relax. Transient surface stress effects
are important as they could control the generation of droplets
with complex fluid interfaces in microfluidic or millifluidic de-
vices.13 For experiments with millimeter-sized drops, the exper-

imental time-scale of gravity-induced pinching illustrated in this
section is roughly 0.1 seconds.

(a)

(b)

Fig. 6 Time evolution of the surface pressure, (a), and deviatoric

meridian surface stress, (b), for φs = 0.7 , κa = 0.4 and F = 6.0. The

origin of the axial coordinate z is the drop apex. Time is in units of
√

R/g.

Figs.6 (a) and (b) show the time evolution of the surface pres-
sure Πs and the meridian component of the deviatoric surface
stress σD

ss , respectively, for a relatively short-ranged interaction,
κ−1 = 2.5a. The area fraction and interaction strength parame-
ters are φs = 0.7 and F = 6.0, respectively. Contours of the cor-
responding drop shapes, shown in Fig.7, illustrate how the drop
shape changes as time progresses.

Owing to the drop deformation and corresponding dilatation of
the interface, the surface pressure decreases in time. In the region
z/R < 2.0, and sufficiently above the drop apex, σD

ss increases for
t < 4.0 and then remains approximately constant. This observa-
tion is consistent with the change in shape of the drop suggested
by the contour plots of Fig.6(c): after an initial transient the bot-
tom part of the pendant drop reaches an almost stationary shape
that translates downward as a neck gradually forms in the region
adjacent to the top edge of the drop. The deviatoric stress is zero
at the apex and increases with z. This suggests that the monolayer
in the bottom part of the drop expands approximately isotrop-
ically with time, while the drop side deforms in an anisotropic
manner.

Figure 8 (a) shows the surface pressure corresponding to a
fixed time, t = 9.95

√

R/g, for three selected cases, labelled “A”,“
B” and “C”. The corresponding total tensions in the azimuthal and
meridian directions are shown in Fig.8 (b). The three cases “A”,“
B” and “C” correspond to φs = 0.5,0.55 and 0.7, respectively. The
interaction range and interaction strength parameters are as in
Fig.6.
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Fig. 7 Contours of the drop shapes corresponding to the seven time

instants of Fig. 6. Here z′ is an axial coordinate with origin at the top

edge of the drop.

Case “A” illustrates a situation in which the surface stress is
approximately isotropic, while effects of anisotropy are signifi-
cant in cases “B” and “C”. For a fixed time, therefore, the degree
of stress anisotropy increases with increasing surface coverage.
The azimuthal component of the surface stress is smaller than the
meridian component for any value of z. The degree of anisotropy,
negligible in the near-apex region (because of the axial symmetry,
the surface stress must be strictly isotropic at the drop apex), be-
comes more marked as z increases. For z slightly larger than 2R,
the absolute difference between σθ and σs appears to decrease
slightly. However, it is likely that the values in this region are
contaminated by edge effects due to the averaging region over-
lapping partially with the top edge of the drop.

Snapshots of the local microstructure of the monolayer corre-
sponding to cases “A”, and“C” are shown in Fig.9. For each case,
two snapshots are shown: one referring to the apex region and
one referring to the neck region (i.e. to the side region where
the drop diameter decrease in time). In the apex region, the
microstructure is seen to be approximately isotropic, while the
neck of the drop is on average characterised by a smaller inter-
particle distance in the horizontal direction (the azimuthal direc-
tion) than in the vertical direction. Deviations from an hexagonal
arrangement are evident. The smaller inter-particle distance in
the azimuthal direction gives rise to a larger repulsive force in
this direction. This can explain why σθ is smaller than σs.

Some of the qualitative features of the curves described in cases
“B” and “C” are similar to those discussed in a recent paper by
Danov et al.16, where anisotropic stresses where measured. This
paper reports on experiments with buoyant bubbles in contact
with a solution of HFBII, a small compact protein molecule; upon
adsorption to fluid interfaces, HFBII produces rigid layers display-
ing a measurable surface shear elasticity. In qualitative agreement
with the results of Fig.8, Danov et al. found that σs was larger
than σθ for any given value of z, and that the magnitude of the

(a)

(b)

Fig. 8 (a) Surface pressure and (b) total meridian and azimuthal

tensions as a function of the axial coordinate for t = 9.95
√

R/g and

φs = 0.5 (case A), φs = 0.55 (case B) and φs = 0.7 (case C).

Fig. 9 Snapshots of the monolayer microstructure in the drop apex

region and neck region for cases (A) and (C).
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deviatoric stress increased with z for locations not too close to the
lower boundary of the bubble. A possible difference between our
case and the case examined by Danov and collaborators is that
in our case the “bonds” between the particles become weaker as
they are stretched (purely repulsive interaction), while in that ex-
perimental case some form of short-ranged cohesion between the
protein molecules is expected. As a note of caution, proteins at
interfaces may behave differently from solid particles owing to
changes in configuration of the proteins upon contact with the in-
terface. Our comparison is therefore purely qualitative. Some of
the effects observed with proteins could be modelled with lumped
approaches by extending the numerical model presented in the
current paper.

5 Conclusions

We performed a simulation of a pendant drop presenting an in-
terface covered with repulsive spherical particles. We analysed
the distribution of the surface stress and examined how the com-
ponents of this tensor change as a function of selected govern-
ing parameters. The main parameters explored in this study are
the area fraction, the inter-particle interaction strength parame-
ter, and the interaction range. We presented results for both static
and dynamic drop shapes.

For the range of simulated parameters for which the drop had
a stable shape, the surface stress was found to be practically
isotropic. Anisotropic effects were measurable only in transient
simulations, and at relatively high values of the area fraction.
In transient simulations, anisotropic effects were more marked
along the sides of the drop, corresponding approximately to the
neck region where eventually the drop pinches off. In the case
of highly deformed drops, visualisations of the microstructure of
the monolayer highlighted marked deviations from an hexagonal
arrangement.

In this work the surface stress was calculated by local area av-
eraging, using a formula that is analogous to the Irving-Kirkwood
formula of molecular dynamics. Reasonably good agreement was
found between the predictions for the surface pressure given by
this formula and the surface tension reduction calculated by eval-
uating the interface curvature at two points and fitting to a solu-
tion of the Young-Laplace equation (method of Fordham,71).

By giving insights into the local microstructure/surface stress
relation, our simulation approach could be used to analyse ex-
perimental pendant drop data. For instance, the simulated shape
of the drop could be fitted to the experiental shape by tuning
the inter-particle pair potential to obtain information on colloidal
interactions at interfaces. While results for curved surfaces are
more difficult to interpret than those obtained on a planar sur-
face, they are also more realistic, as they account for the two-way
coupling between particle distribution and interface shape.

In our simulations we have constrained the particles to lie
on the surface of the drop. However, increasing the inter-
particle forces beyond a certain threshold can cause particle ex-
pulsion,8,19,37,47 a feature that we have not explored here.

Our simulation approach enables to track the trajectory of each
single particle. Simulations in which the particles are represented
as discrete elements are exceedingly useful when interfacial con-

stitutive equations are not available. This occurs, for instance,
when the interfacial suspensions is polydispersed or particle ad-
sorption changes the surface tension on a time scale compara-
ble to that of the drop deformation. For suspensions having a
narrow size distribution (say, for standard deviations of particle
size approximately 10% of the mean value) the predictions of this
paper for monodispersed suspensions are expected to hold ap-
proximately. However, experimental studies on flat monolayers
show that when there is a significant disparity between the size
of the particles, clustering and segregation phenomena produce
a complex dependency of surface pressure on size and concen-
tration ratios.27 The numerical method presented in this work
is ideally suited to studying polydispersity effects and other phe-
nomena (e.g., monolayer fracture and dislocation dynamics) on
curved monolayers.

The development of accurate simulation of particles adhered to
geometrically complex and time-dependent interface morpholo-
gies opens new research opportunities in areas such as interfacial
rheology, microfluidic generation of drops and bubbles with struc-
tured interfaces, and production of anisotropic Pickering emul-
sions.
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7 Appendix

In analogy to the three-dimensional case,50 the area average of a
continuous quantity f at the surface point xs can be defined as

〈 f 〉(xs) =
∫

Ω
f (ys)G(xs −ys)dAys

. (12)

Here the surface points xs and ys belong to the set Ω representing
the total surface of the composite interface. The function G is a
scalar filter function with compact support in a control region sur-
rounding xs; G is assumed to be a regular function with suitable
properties of smoothness.54,55 The filter function is normalised
so that

∫

Ω G(xs −ys)dAys
= 1.

The definition of the surface stress tensor follows from the bal-
ance of the forces acting on the particles in the direction tangen-
tial to the composite interface. Let Fα denote the net tangential
force acting on a particle located at position yα

s . From eqn (12),
the area-averaged tangential force acting on the particles con-
tained in an area element of particle monolayer centered at xs

can be expressed as 〈F〉= ∫

Ω ∑
Np

α=1 Fα δ (ys −yα
s )G(xs −ys)dAys

, or

equivalently as 〈F〉= ∑
Np

α=1 Fα G(xs −yα
s ). The area-averaged tan-

gential force at a surface point is thus a weighted average of the
force acting on the particles surrounding that point. The averag-
ing weight is given by the filter function evaluated at the center
of each particle.

For pairwise interactions, Fα = Fe
α +∑β 6=α Fαβ . Here Fe

α is the
force due to an external field (e.g. the particle weight) or to par-
ticle inertia, and the summation term is the sum of the conserva-
tive forces on particle α due to the other particles. Substituting
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this decomposition in the expression for the average force derived
above yields

〈F〉= 〈Fe〉+
Np

∑
α=1

Np

∑
β 6=α

Fαβ G(xs −yα
s ). (13)

Newton’s action-reaction principle requires Fα,β = −Fβ ,α . How-
ever, because particles α and β are weighted differently by the
filter function according to their location, the forces in the sum-
mation term of eqn (13) do not cancel out identically. To exploit
the symmetry introduced by the action-reaction principle, we per-
form a Taylor expansion of the filter function about the location
of particle α:

G(xs − ŷ
αβ
s )≃ G(xs −yα

s )+∇ys
G(xs −yα

s ) · (ŷ
αβ
s −yα

s ), (14)

where ŷ
αβ
s denotes the midpoint between particles α and β . Us-

ing this expansion in eqn (13) the inter-particle interaction term
can be written as

Np

∑
α=1

Np

∑
β 6=α

Fαβ G(xs −yα
s ) =

Np

∑
α=1

Np

∑
β 6=α

Fαβ G(xs− ŷ
αβ
s )−∇ys

·
Np

∑
α=1

Np

∑
β 6=α

Fαβ (ŷ
αβ
s −yα

s )G(xs−yα
s ).

(15)

Since ŷ
αβ
s = ŷ

βα
s , the first double summation on the right-hand

side of eqn (15) is identically zero. Thus

Np

∑
α=1

Np

∑
β 6=α

Fαβ G(xs −yα
s ) =

∇xs
·
[

1

2

Np

∑
α=1

Np

∑
β 6=α

Fαβ (y
β
s −yα

s )G(xs −yα
s )

]

, (16)

where we have used the fact that ŷ
αβ
s = (yα

s + y
β
s )/2 and

∇xs
= −∇ys

. The expression in square parenthesis in eqn (16)
defines the surface stress due to the particles appearing in eqn
(4), correct up to the first order in the inter-particle separation.
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