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Abstract: Elastic fibers embedded in a soft matrix are frequently encountered in 

nature and engineering across different length scales, ranging from microtubules in 

cytosol and filament networks to dissociative slender fish bones in muscles and 

fiber-reinforced soft composites. The fibers may buckle when the composite is 

subjected to compression; this study investigates this issue through a combination of 

experiments, finite-element simulations and theoretical analysis. The analysis reveals 

the important role of the interfacial shear forces and leads to an explicit solution to 

predict the occurrence of buckling for a slender fiber with finite length. The results 

reported in this paper will help understand the formation of shapes in some natural 

systems and provide guidelines for the design of soft biocomposites. 
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1. Introduction 

Elastic fibers embedded in a soft substrate are ubiquitous in nature and 

engineering, such as microtubules in living cells (Fig. 1a),
1-6

 amyloid fibrils (Fig. 

1b),
7-9

 electrodes implanted in biological tissues (Fig. 1c),
10

 growing plant roots in 

soil,
11, 12

 dissociative fish bones in fish muscle, and fiber-reinforced polymer 

composites (Fig. 1d).
13

 When subjected to compressive loads, isolated fibers may 

exhibit classical Euler buckling. However, fibers embedded in a soft matrix may 

buckle in a mode with a considerably shorter wavelength and can sustain considerably 

higher compressive loads than that of Euler buckling.
6, 14-16

 Microtubule buckling has 

drawn considerable attention in recent years
6, 14, 17-20

 due to its importance in cell 

biology. Buckling of stiff fibers in a soft matrix is also of interest in many other 

biological and engineering systems. For example, the amyloid fibrils (Fig. 1b) 

associated with several major diseases, including Alzheimer’s, Parkinson’s and 

Creutzfeldt-Jakob disease,
21

 are stiff fibers surrounded by a soft matrix
9
 that may 

buckle due to differential growth. Electrodes (Fig. 1c) are widely used for deep brain 

stimulations
10

 and can be regarded as stiff fibers with finite length embedded in soft 

tissues. Buckling should be avoided when this process is successful. Plant roots, 

which play a key role in plant growth and crop productivity,
11

 may buckle in soil 

during growth. Most previous works on the buckling of an elastic fiber in a soft 

matrix focused on the case in which the fiber length was infinite and/or the 

compressive load was directly imposed on its two ends.
14, 18, 19, 22, 23

 However, in many 

practical composite systems, the fibers have finite length and the compression is 
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applied to the matrix rather than directly imposed on the two ends of a fiber. The 

fibers sense the compressive strain mainly through the interfacial tractions, and in this 

case, the critical conditions for the onset of buckling remain elusive due to the 

challenges in determining the interfacial tractions. This issue is addressed in this study 

through a combination of experiments, finite element simulations and theoretical 

analysis. 

The remainder of this paper is organized as follows. Experiments are discussed 

in Section 2 to investigate the buckling of an elastic fiber with finite length in a soft 

matrix. In particular, the buckling of hairs with different lengths embedded in a soft 

PDMS substrate was investigated and revealed that the critical compressive strain 

imposed on the substrate for buckling onset depended strongly on the fiber length. A 

theoretical analysis is presented in Section 3 to quantitatively understand the 

experiments. The analysis revealed the important role played by the interfacial shear 

traction and leads to an analytical solution for the critical compressive strain in the 

substrate for buckling onset. Section 4 discusses the potential applications of the 

method and results. Section 5 offers the concluding remarks. 
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(a)

(d)

(b)

buckling microtubules

(c) electrode

 

Fig. 1. Several examples of fibers in a soft substrate encountered in nature and 

engineering: (a) buckling of microtubules in living cells, scale bar: 5 µm. 

Experimental details on the observation of buckled microtubules are given in 

Supplementary Information (S1); (b) amyloid fibrils,
9
 scale bar: 100 nm; (c) electrode 

implanted in brain; (d) fiber-reinforced composites. 

 

2. Experiments 

Human hairs with radius of approximately 50 µm were chosen as elastic fibers, 

and the soft substrate was made of poly(dimethylsiloxane) (PDMS). The PDMS bulk 

was prepared by mixing the base and crosslinker (Sylgard 184, Dow Corning) at a 

ratio of 40:1 w/w. First, half of the pre-mixture was filled in a rectangular box and 

cured at 60°C for 12 h after it was degassed in a vacuum pump. Then, straight hairs 

with different lengths, i.e., 0.5, 1, 2, and 3 cm, were attached on the surface of the 

cured PDMS. Finally, the remainder of the mixture was filled into the rectangular box 

and cured at 60°C for another 12 h. Then, the sample with the size of 30 38 45× ×  
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mm was prepared (Fig. 2a). The slenderness ratios c  of the hairs (i.e., the 

length-radius ratios) were 100, 200, 400, and 600 for the 0.5-, 1-, 2-, and 3-cm-long 

hairs, respectively. 1c >>  in these experiments, ensuring that the hairs were slender 

fibers. Indentation tests were performed to measure the shear modulus of the soft 

PDMS (40:1 w/w), which was approximately 0.043 MPa. The elastic modulus of the 

hair given by the tensile tests was approximately 5.6 GPa. Both indentation tests and 

tensile tests were conducted using the Bose ElectroForce3100 test instrument. 

An isolated hair would undergo Euler buckling when it was compressed. Unlike 

the buckling behavior of an isolated hair, a long hair embedded in the soft PDMS 

would exhibit a short-wavelength buckling mode (Fig. 2). Interestingly, buckling was 

always first observed in the central region of the hair. Furthermore, these experiments 

showed that the hair slenderness ratio significantly affected the buckling behavior of 

the system. When the PDMS was compressed, the longest hair (3 cm) buckled at a 

small compression amount of approximately 2%, and the buckling amplitude 

increased with increases in the externally compressive strain. Afterward, the 

2-cm-long hair buckled when the overall compressive (nominal) strain was 

approximately 7% (Fig. 2c). Buckling clearly occurred in the 1-cm-long hair only 

when the compressive strain reached approximately 17%. The shortest hair (0.5 cm) 

maintained a straight configuration and did not buckle during the entire compression 

process. The critical compressive strain of the hair with infinite length (i.e., the length 

of the fiber is considerably greater than the wrinkling wavelength) embedded in soft 

PDMS (1:40) was approximately 0.3% according to the theoretical solution in Section 
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3, which was extremely small. These experimental results clearly show that the 

critical compressive strain for the buckling of fibers strongly depends on their lengths 

and can be increased by several orders of magnitude by tuning the slenderness ratio of 

the fiber. 

 

(a) (b) (c)

(d) (e) (f )

ri
g

id
 s

u
p

p
o

rt

PDMS

hairs

 

Fig. 2. Sequence of buckling patterns of hairs with finite lengths embedded in a soft 

substrate. The overall compressive strain imposed on the substrate was (a) 0; (b) 2%; 

(c) 7%; (d) 12%; (e) 13%; (f) 17%. Scale bar: 1 cm. 

 

3. Theoretical analysis 

Next, a theoretical analysis is performed to understand the buckling mechanisms 

behind the experiments in Section 2 and, in particular, the dependence of the critical 

compressive strain on the mechanical and geometrical parameters of the system. An 

elastic and stiff fiber embedded in an elastic medium was considered, as shown in Fig. 
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3. E  and ν  refer to the elastic modulus and Poisson's ratio, respectively, and the 

subscripts "f" and "s" refer to the fiber and substrate, respectively. The substrate is 

subjected to axial compression along the z direction, with the overall compressive 

strain 0ε . The coordinate system is shown in Fig. 3. The fiber is assumed to be a long 

cylinder of length 2a  and radius r . The interface between the fiber and substrate is 

perfectly bonded. The fiber buckled when 0ε  reached a critical value. 

 

 

Fig. 3 Theoretical model of an elastic fiber embedded in soft substrate subjected to 

compression. 

 

3.1 Interfacial tractions 

In the considered problem, the fiber buckled due to the interfacial tractions. In 

the 1950s, a shear-lag model was proposed to estimate the stress transfer between the 

a
a

x 

z 
y 

d = 2r 

O 
x 

z 
y 

O 

0ε

f ffiber, ,E ν  

s ssubstrate, ,E ν  
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fiber and soft matrix in fiber-reinforced composites.
24

 However, analytical 

determination of the interfacial tractions is a challenging issue.
25, 26

 Furthermore, 

Nairn showed that the shear-lag model is not applicable to the case of a fiber 

embedded in an infinite matrix (or low volume fractions of fibers).
27

 Inspired by 

recent studies on the buckling of a stiff film resting on a soft substrate,
28, 29

 finite 

element (FE) simulations using the general purpose software ABAQUS were 

conducted to investigate the interfacial tractions. The model contained more than 

50,000 axisymmetric quadratic elements (CAX8R). Uniaxial compression was 

imposed on the substrate. Both the fiber and substrate were assumed to be weakly 

compressible, with Poisson’s ratios of s f 0.48ν ν= = . Based on the FE results shown 

in Fig. 4, the interfacial shear traction zT  between the fiber and substrate was 

assumed to be 

ln , 0

ln ,

z

a z z
A B a z

a a
T

a z z
A B z a

a a

+      +           − < ≤
= 

−  −  +              0 ≤ <


 ,                  (1) 

where the parameters A and B were determined from the two compatibility conditions 

given below. Eq. (1) was chosen to fit the FE results, and other functions may be 

applicable, provided they can match the FE results well. 
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Fig. 4 Distribution of the interfacial traction. The points are FE results, and the lines 

are the predicted results by eqn (1). 

 

3.2 Relation between the fiber strain and overall strain in the substrate 

The compatibility conditions require that the normal strains in the fiber along the 

z direction are the same as those in the substrate at points ( 0, 0, 0)x y z= = =  and 

( 0, 0, /2)x y z a= = = , i.e., 

f s

0 0, 0, 0

f s

/2 0, 0, /2

z z z x y z

z z a z x y z a

ε ε

ε ε

= = = =

= = = =

=

=
  .                       (2) 

The normal strain 
f

zε  in the fiber under the load zT−  can be determined by 

integrating the equilibrium equation: 

f 2 2

f f f

2 2
d ( ) ln ( ) ( ). 0

a

z z
z

A a z B
T z a z a z a z z a

E r E r a E ar
ε

− = − = − − − − −   ≤ <  ∫ .  (3) 

Eq. (3) clearly shows that the compressive strain in the fiber is not uniform and that 

the maximum compressive strain occurs when 0z → , which is given by 

f

0

f

2
z z

A B a

E r
ε ε =

+
= − =  .                        (4) 
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This may explain the buckling phenomenon of the hair (Fig. 2), i.e., buckling first 

occurs in the central region. From eqn (3), the normal strain at the point 

( 0, 0, /2)x y z a= = =  of the fiber is determined as 

f

/2

f

1 3
(1 ln 2)

4
z z a

a
A B

E r
ε =

 = − + +  
.                    (5) 

The strain state in the substrate under the interfacial tractions given by eqn (1) can be 

obtained using Kelvin's solution. For an infinite elastic medium under a unit force at 

point ( )2 2 ,x y r z+ =  , the strain component 
s0

zε  at point O is given by 

2 23
s0

2 2 2 3/2 2 2 5/2 2 2 5/2

s

1 4 31 3

16 (1 ) ( ) ( ) ( )

s s
z

s

zrz
z

G r z r z r z

ν ν
ε

π ν
 −

= + − − + + + 
,        (6) 

where s
s

s2(1 )

E
G

ν
=

+
 is the shear modulus of the substrate. The strain at point O 

induced by the interfacial force zT  can be obtained as 

s s0

0, 0, 0

2 23

s s

2 2 2 3/2 2 2 5/2 2 2 5/20
s s

d

1 4 33
ln(1 ) d

4 (1 ) ( ) ( ) ( )

a
T

z x y z z z
a

a

r T z

zrr z z z
A B z z

G a a r z r z r z

ε π ε

ν ν
ν

= = = −
= −2 ×  

 − = − − − × + −    − + + +   

∫

∫
(7) 

The following analytical solution can be obtained from eqn (7): 

( )

( )

2 2
s s

0, 0, 0 2 2 1/2
2

s s

2 2

2 2 3/2 2 2 3/2 2 3/2
2

s s

2

s

2 2 3/2 2

s s

3 4 1 4/
ln

2 (1 ) (1 4/ ) 2/ 1 4/ /

4/ 2/ 1 1 1 4/
ln

2 (1 ) (1 4/ ) 1 4/ (1 4/ ) (1 4/ ) 2/ 1 4/ /

4/ 2/

2 (1 ) (1 4/ ) 1 4/

T

z x y z

A c

G c c c c c

A c c c

G c c c c c c c c

A c c

G c c c

ν
ε

ν

ν

ν
ν

= = =

− +
=

− + + +

 
+ + − − + − + + + + + +  

− − +
− + + ( )

2 2

2 3/2 2 3/2
2

2
s s s

1 4/ 1 4/
ln

(1 4/ ) (1 4/ ) 2/ 1 4/ /

2 1
arcsinh

2 2 (1 )1 4/

c c

c c c c c

B c B

G c G cc ν

 
+ + + + + + +  

  + − −   −  + 

, (8) 

where 2 /c a r=  is the slenderness ratio of the fiber, which is a large number for a 

long fiber, i.e., 1c >>  or 1/ 1c << . By neglecting the higher-order terms of 1/c , eqn 

(8) can be simplified as 
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s

0, 0, 0

s s s s

2 2
ln

2 (1 )

T

z x y z

A B A B B
c

G c G c G c
ε

ν= = =

+ +
= − −

−
.             (9) 

Then, the overall strain in the z direction at point O is 

 s s

0, 0, 0 0 0, 0, 0

T

z x y z z x y z
ε ε ε= = = = = == − + .                        (10) 

The normal strain at the upper end of the fiber ( 0, 0, /2)x y z a=  =  =  induced by 

zT−  can be calculated by 

2 23
1/2

s s s
0, 0, /2 2 2 2 3/2 2 2 5/2 2 2 5/21/2

s s

2 3

s

2 2 2 3/2 2 2

s s

1 4 31 1 3
ln d

4 (1 ) 2 2 ( ) ( ) ( )

1 43 1 3
ln

4 (1 ) 2 2 ( ) (

T

z x y z a

c tc t
A t B t t t

G c t c t c t

c t
A t B t t

G c t c t

ν ν
ε

ν

ν
ν

 

= = = −

 −    =  − − + + × + −        − + + +      

−    + + + + × +    − + +    

∫
2

1/2
s

5/2 2 2 5/23/2

3
d

) ( )

c t
t

c t

ν−

−

 
−   + 

∫

(11) 

Its solution is 

s 2 s
0, 0, /2

s s s s

3 42 1 2 3 4 1
ln(16/ ) ln 3 2 ln

3 2(1 ) 2 3 4(1 )

T

z x y z a

A B
c c

G c G c

ν
ε

ν ν= = =

  −
= − + − + + − −  − −   

. (12) 

The higher-order terms of 1/c  in eqn (12) was neglected. The overall strain along the 

z axis at the point of ( 0, 0, /2)x y z a= = =  is given by 

s s

0, 0, /2 0 0, 0, /2

T

z x y z a z x y z a
ε ε ε= = = = = == − +  .                  (13) 

From the two compatibility conditions given by eqn (2), the coefficients A  and B  

are determined as 

1 1
f f

1 1

12 2
,

1 1

h h
A E B E

h c h c
ε ε

−
=    =

+ +
,                     (14) 

where 

2

s

f
1 2

s s

s f

3 1 1
ln

2 3 16

7 81 5 3
ln(8 3/ ) ln 3 ln 2

3 3 4(1 ) 4 4

G c

E
h

G c
c

E

ν
ν

− + +
=

−  − + − + + − −  

.          (15) 

Figure 4 shows that the interfacial force given by eqns. (1) and (14) matches the FE 

results well. 
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Furthermore, the relation between 0ε  and ε  can be obtained as 

1 f
0 2

1 s

1 4

1

h h E

h G c
ε ε ε

− +
= +

+
,                    (16) 

where 

s

1
ln

4(1 )
h c

ν
= −

−
.                          (17) 

The maximum compressive strain in the fiber and the overall compressive strain in 

the substrate are shown in Fig. 5. The theoretical solution given by eqn (16) matches 

the FE results well. When the fiber length is infinite, i.e., → ∞c , the maximum 

strain in the fiber is equal to 0ε  according to eqn (16). However, for a fiber with 

finite length, the compressive strain in the fiber is always smaller than the overall 

compressive strain in the substrate. Furthermore, for a large modular ratio f s/E E  and 

small slenderness ratio 2 /a r , the fiber strain can be several orders of magnitude 

smaller than 0ε  (Fig. 5). This suggests that the strain state in the substrate can be 

tuned by controlling the fiber slenderness ratio. In the theoretical model, the substrate 

is assumed to be infinite, i.e., its axial length is considerably greater than the fiber 

length. However, in practical systems, the matrix has finite dimension. Therefore, the 

extent to which this assumption is valid was examined using FE simulations. The 

results are shown in Fig. 6, demonstrating that eqn (16) can provide a reasonable 

prediction of the maximum strain in the fiber even for the case when the axial length 

of the substrate is comparable to the fiber length ( s / 2L a ). For instance, the error is 

below 3% when s / 2L a =1.5 and is approximately 10% when s / 2L a =1.1. 
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Fig. 5. Ratio of the maximum compressive strain in the fiber (ε ) to the overall 

compressive strain in the substrate ( 0ε ). The lines are the theoretical solutions given 

by eqn (16), and the data points represent the FE results. 
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Fig. 6. Effect of substrate dimension on the maximum compressive strain in the fiber. 

sL  refers to the axial length of the matrix. The data points represent the FE results, 

and the corresponding lines are theoretical predictions. 

 

Page 13 of 25 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



14 

 

3.3 Critical compressive strain in the substrate for the onset of buckling 

Next, a fiber with infinite length, i.e., 1/ 0=c , is considered to analytically 

predict the buckling of an elastic fiber with finite length in a soft matrix. In this case, 

eqns (3), (14) and (16) indicate that the strain in the fiber is uniform and equals the 

overall compressive strain in the substrate, i.e., 

f

0zε ε ε= = .                               (18) 

Considering the fiber as a slender beam, the equilibrium equation is 

4 2

f f 04 2
0

w w
E I E S Kw

z z
ε

∂ ∂
+ + =

∂ ∂
                     (19) 

where fE I  is the bending stiffness of the fiber and S  is the cross-sectional area. 

cosw A kz=  is the buckling mode with A  and 2 /k π λ=  as the amplitude and 

wavenumber, respectively. λ  is the buckling wavelength. K  is the effective 

stiffness of the soft foundation, and its explicit expression is obtained through the 

integration of Kelvin’s solution (Supporting Information, S2) 

*4

ln(2 /5)

sGK
kr

π
=

−
,                        (20) 

where * s

s

2(1 )

3 4
s sG G

ν
ν

−
=

−
. For an incompressible material, i.e., *

s sG G= , eqn (20) is 

consistent with the foundation stiffness obtained from the strain energy of the 

substrate given by Jiang and Zhang.
18

 Eqn (20) is also consistent with the foundation 

stiffness adopted in Brangwynne et al.
14

 and Su et al. 
23

 when 0kr → . 

Eq. (19) yields 

2

f f 2

K
E S E Ik

k
ε = + .                          (21) 
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Minimizing eqn (21) with respect to the wavenumber k  gives the critical buckling 

strain as 

*
2

f f 2

4

ln(2 /5)

c s
c

c c

G
E S E Ik

k k r

π
ε = +

−
,                    (22) 

where ck  is the critical buckling wavenumber and is determined by the following 

equation: 

1/41/4
*

2

f

2 1 2ln(2 /5)

ln (2 /5)

s c
c

c

G k r
k

E I k r

π    +
=    −   

.                   (23) 

f

c

cF E Sε=  represents the critical buckling force that the fiber can bear. Eq. (23), 

which determines the buckling wavelength of a fiber embedded in a soft substrate, is 

similar to the theoretical solution given by Brangwynne et al..
14

 For microtubules in 

living cells, the radius and bending stiffness are taken as 12 nm 1
 and 23 22 10 N m−× ⋅ , 

respectively.
30

 The elastic modulus of the surrounding cytoskeletal network is 

approximately 1kPa .
31, 32

 Eq. (23) yields a microtubule wavelength of approximately 

2.8 µm , which is similar to the measured value ( 3 µm≈  ) by Brangwynne et al.
14

 and 

relatively close the value ( 4 µm≈  ) in these experiments. 

For a fiber with finite length, which is the main concern in this analysis, buckling 

is expected to occur when the maximum compressive strain in the fiber reaches the 

critical strain given by eqn (22). Then, from eqns (16) and (22),  

2 *

1 f
0 2 2

1 s f

41 4
1

1 ln(2 /5)

c c s

c c

Ik Gh h E

h G c S k E S k r

π
ε

   − +
= + × +   + −   

          (24) 

When the fiber length is infinite (1/ 0=c ), the critical buckling strain mainly depends 

on the physical parameters and is independent of the fiber length (eqn (22)). However, 

if the fiber has finite length, eqn (24) suggests that the critical overall strain 0

cε  in the 
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substrate depends on the physical parameters of the system as well as the fiber 

slenderness ratio. The strain in the fiber given by eqn (3) is non-uniform, and eqn (24) 

is obtained when the maximum compressive strain reaches the critical value given by 

eqn (22). In this sense, eqn (24) represents an approximate solution. 

Three-dimensional FE simulations containing more than 40,000 quadratic elements 

(C3D20R) were conducted to validate the analytical solution given by eqn (24). A 

perturbation analysis was performed to solve 
0

cε  in the simulations with commercial 

software (ABAQUS). Figure 7 shows that the analytical solution matches the FE 

results well, indicating that eqn (24) should be useful in practice. The overall critical 

compressive strain in the substrate, 
0

cε , for the onset of buckling is always greater 

than that for an infinitely long fiber. The ratio of 
0

cε  to 
cε  depends on the modular 

ratio and slenderness ratio of the fiber. 
0 /c cε ε  increases when the modular ratio 

increases or slenderness ratio decreases. Thus, the critical strain 
0

cε  in the substrate 

can be tuned by varying either the slenderness ratio or modular ratio. Eq. (24) is 

further validated by comparing the critical compressive strains estimated in the 

experiments with the theoretical predictions shown in Fig. 8. Eq. (24) can indeed 

provide a reasonable evaluation of the critical buckling strain. 
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Fig. 7 Ratio of the critical buckling strain 
0

cε  in the substrate to 
cε . The data points 

refer to the results of FE simulations, and the corresponding lines represent the results 

predicted with eqns (24) and (22). In the simulation, Poisson’s ratios are taken as 0.48 

for both the fiber and substrate. 
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Fig. 8. Effect of the fiber length on the critical strain 
0

cε  for the onset of buckling. 

Data points refer to the results estimated from the experiments in Section 2. The solid 

line represents the theoretical prediction. The dashed line refers to the theoretical 

solution for a fiber with finite length. In the theoretical solution, Poisson’s ratios are 

both taken as 0.48 for the hair and PDMS substrate. 
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4. Discussion 

Stiff fibers with finite length embedded in a compliant substrate are ubiquitous in 

both nature and engineering. In these types of systems, compressive forces may not be 

imposed on the fibers directly. Instead, compression is typically applied on the 

compliant substrate, and the fibers sense the compression through interfacial shear. 

For a fiber with infinite length, the strain in the fiber is equal to the overall 

compressive strain imposed on the substrate. However, for a fiber with finite length, 

the strain in the fiber can be considerably lower than the overall strain imposed on the 

substrate and relies largely on the fiber length. The analytical solution obtained in this 

study suggests that the strain state in the fiber can be quantitatively tuned by 

controlling either the physical parameters or slenderness ratio of the fiber. 

As noted in the theoretical analysis, the interfacial traction is a key factor in the 

present problem. Recently, Shan et al. revealed that the mechanical properties of the 

fiber-substrate interface played an important role in the attenuated buckling of a 

biopolymer-reinforce rod.
33

 In the current problem, the stress/strain state in the fiber is 

determined by integrating the interfacial traction directly. Therefore, the interfacial 

traction directly controls the stress/strain state of the fiber. For an elastic substrate, the 

interfacial force shown in eqn (1) can accurately describe the interaction between the 

fiber and substrate, which can be used to evaluate the stress transfer between the fiber 

and soft matrix in fiber-reinforced composites with low-fiber volume fractions. In 

biological systems, e.g., microtubules in living cells, the physical properties of the 

soft matrix typically exhibit spatial variation.
34

 Thus, the distribution of the interfacial 
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traction may be dynamically tuned, and then, the stress/strain state and buckling 

behavior of the fiber can be modulated according to our theory. To further highlight 

the importance of the interfacial shear, the Appendix provides the derivations for a 

simple case in which the fiber-substrate interface is weak and the fiber can slide in the 

substrate. This system may be used to model the fiber-reinforced soil or sand where 

the interfacial tractions result from friction.
35-37

 Interestingly, the derivations in the 

Appendix revealed the critical fiber length as 

 
2 *

f

2

42

ln(2 /5)

c s

c c c

E Ik Ga

r Sf Sfk k r

π  = +  − 
,  (25) 

beyond which the fiber would buckle into a wavy shape; otherwise, the fiber would 

maintain a straight configuration and not buckle regardless of the magnitude of the 

loads imposed on the substrate. Here, f  is the friction force at the fiber-substrate 

interface when sliding occurs. 

The key results given by eqns (24) and (25) show that buckling failure may be 

avoided using the strategy of controlling the slenderness ratio of the fiber and/or 

modifying the distribution and magnitude of the interfacial shear tractions. These 

results may help understand some designs in nature, e.g., the dissociative fishbone 

should have an appropriate slenderness ratio to counteract the buckling caused by the 

compression due to muscle contractions and guide the development of soft 

biocomposites where buckling should be prevented or accurately controlled to 

generate desired patterns across different length scales. Buckling of an elastic fiber 

embedded in or resting on a soft substrate may also find applications in the 

mechanical characterization of fibers on small scales.
14, 19, 38-40

 Su et al.
23

 performed 
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an interesting study and revealed that a fiber embedded in soft matrix might undergo 

either planar or non-planar buckling depending on the conditions established in their 

study. In this sense, when the wrinkling wavelength corresponding to the planar wavy 

configuration is measured and used to estimate the elastic modulus of the fibers in an 

inverse analysis, suitable parameters should be selected to avoid non-planar 

buckling.
23

 Moreover, the entropy effect was not considered in this analysis, which 

might play a role in the cases where the nanofibers are subjected to thermal 

fluctuations. The entropy effect may be included in the present theoretical model by 

following the analysis of Hu et al.
41

 However, this issue is beyond the scope of this 

study, and further investigation is required. 

 

5. Concluding remarks 

The buckling behavior of an elastic fiber with finite length embedded in a soft 

matrix was investigated through experimental, computational and theoretical efforts. 

The critical strain imposed on the substrate for the onset of buckling largely depends 

on the fiber length. The theoretical analysis revealed the important role played by the 

interfacial traction during the buckling process. An analytical solution was derived to 

predict the critical condition at the onset of buckling, which was validated with FE 

simulations. The results may find applications in, for instance, probing the local 

mechanical environment within cells through the buckling of microtubules, 

mechanical characterization of micro- or nanowires/fibers, or the design of soft 

composites. 
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Appendix 

Here, the effects of interfacial shear tractions on the buckling of a fiber are 

illustrated by considering the case where the fiber-substrate interface is weak. When 

the substrate is subjected to compression, the fiber is supposed to slide in the substrate, 

and interfacial compatibility will not be satisfied. In this case, the interfacial tractions 

are assumed to be constant: 

, 0

, 0
z

f a z
T

f z a

−           − < <
= 

                < <
                     (A1) 

where f  is the friction force at the interface. For a slender fiber, the total friction 

force acting on the fiber can be considerably greater than the forces at the two ends. In 

this case, the strain in the fiber under the load zT−  can be obtained as 

f

f f

2 2
d ( ). 0

a

z z
z

f
T z a z z a

E r E r
ε = − = − −   < <∫              (A2) 

The maximum compressive strain is reached at the center of the fiber, which is given 

by 

f

0

f

2
z z

fa

E r
ε ε == − =                         (A3) 
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When the maximum compressive strain in the fiber reaches the critical strain given by 

eqn (22), buckling is supposed to occur. Interestingly, eqns (A3) and (22) give the 

following critical fiber length: 

2 *

f

2

42

ln(2 /5)

c s

c c c

E Ik Ga

r Sf Sfk k r

π  = +  − 
,               (A4) 

beyond which the fiber would buckle into a wavy shape; otherwise, the fiber would 

maintain a straight configuration and not buckle regardless of the magnitude of the 

loads imposed on the substrate. 
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