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A flow visualization and superposition rheology study of shear-
banding wormlike micelle solutions

Hadi Mohammadigoushki,a and Susan J. Muller∗a

In this paper, we use rheometry and flow visualization to study the dynamics of the interface between shear bands in a wormlike
micellar solution sheared between concentric cylinders, i.e., in a Taylor-Couette (TC) cell, and to evaluate the stress diffusion
coefficient and the stress correlation length in the Johnson-Segalman model. Two wormlike micellar solutions are studied: an
aqueous solution of CTAB-NaNO3 and a solution of CPCl-NaSal in brine. These systems are highly elastic, exhibit Maxwellian
behavior in linear viscoelasticity experiments, and shear banding in nonlinear experiments [Lerouge, S. et al., Soft Matter, 2008,
4, 1808-1819, Fardin, M. A. et al., Soft Matter, 2012, 8, 39,10072-10089, Ballesta, P. et al., J. Rheol., 2007, 51, 1047]. A
large, custom-built, computer controlled TC cell allows us to rotate both cylinders independently and to visualize the flow in
the r-z plane using a CCD camera. At low shear rates, the flow is stable and the fluid appears homogeneous throughout the gap
between the cylinders. Above a critical shear rate, a shear banding transition occurs. This manifests itself in the formation of
two distinct bands in the r-z plane, with an interface between the two bands. For sufficiently high ramp speeds, multiple steps
of interface evolution are identified, as noted by Radulescu, Lerouge, and others [Redulescu, O. et al., Europhys. Lett., 2003,
62, 230, Lerouge, S. et al., Soft Matter, 2008, 4, 1808-1819]. We quantify the interface travel using direct visualization and use
this measure, as well as superposition rheometry [Ballesta, P. et al., J. Rheol., 2007, 51, 1047], to determine the stress diffusion
coefficient D and the stress correlation length ζ in the Johnson-Segalman model. These parameters are evaluated at different
temperatures, shear rates, and gap sizes. We find that the stress diffusion coefficient and the stress correlation length exhibit
a strong dependence on the gap of the Taylor-Couette cell for both shear-banding systems. For the CTAB-NaNO3 system, we
report a linear dependence of the stress diffusion coefficient on temperature for the parameter range considered. In addition, we
find that for this system, the stress diffusion coefficient is independent of shear rate. For the CPCl-NaSal system, we observe the
same color changes in the sample reported by others on extended light exposure; however, we find that different histories of light
exposure do not affect the measured stress diffusion coefficient.

1 Introduction & Background

Complex fluids are found abundantly in nature, yet our understanding of them is far from complete. Most complex fluids exhibit
unusual mechanical responses to the applied stress that are mainly due to the coupling of their microstructure and the flow field1.
Therefore, any change in their internal structure can drastically alter the response of the fluid in different flow fields. Shear
localization or shear banding is one example of a non-linear response of some complex fluids to flow. Under certain conditions,
some complex fluids such as soft glassy materials, suspensions, granular materials or wormlike micelles exhibit shear banding2–5.
When these fluids experience a shear rate that exceeds a critical value, the flow becomes inhomogeneous such that shear bands
with different viscosities co-exist. These shear bands are separated along the gradient direction and have the same shear stress6–8.

Among fluids that exhibit shear-banding, wormlike micellar solutions have received considerable attention in the last few
decades and therefore, their dynamics in flow are well documented6,8–11. Wormlike micellar solutions are typically composed
of a cationic surfactant and a counterion that are dissolved in water. These fluids are used in oil recovery applications, as drag
reducing agents, and in personal care products. Given the right conditions of concentration and temperature, the surfactants
aggregate into long, flexible cylindrical micelles that are entangled in the aqueous medium12. This complex fluid shares some
similarities with polymer solutions. But, unlike polymer solutions, the wormlike chains can break and reform under flow. Hence,
they have been described as living polymers6,7,13. Under shear-banding conditions, wormlike micelles tend to be elongated in
the direction of flow in the high shear rate band. On the other hand, wormlike chains are randomly oriented and entangled in the
low shear rate band14–16.
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The rheology of different wormlike micellar systems has been studied both experimentally and theoretically. On the experi-
mental side, the mechanical signature for shear banding in wormlike micelles was first provided by Rehage et al.10. They showed
that in steady shear experiments at low shear rates, the shear stress increases monotonically with the shear rate (γ̇ < γ̇l), shows a
stress plateau for a range of shear rates (γ̇l < γ̇ < γ̇h), and for high shear rates (γ̇ > γ̇h), the shear stress again increases monoton-
ically with the shear rate. Moreover, local velocity measurements showed the presence of bands with different shear rates that
coincided with the intermediate range of shear rates (γ̇l < γ̇ < γ̇h) from steady shear rheometry17–19. Under certain conditions
of concentration and temperature wormlike micelles have been shown to primarily follow the single mode Maxwell viscoelastic
model in linear viscoelasticity measurements20. Other experiments have examined the effect of concentration of constituents and
temperature on the flow behavior of wormlike micelles8,21–23.

On the theoretical side, there are a few theories suggested for this system that are based on different constitutive models. For
instance, Cates developed a theory that couples the reptation theory of de Gennes and Doi and Edwards with reaction terms that
account for scission and reformation of chains under flow20. Cates’ theory predicts that if the time scale associated with the
scission and reformation of chains is shorter than the reptation time, then the fluid is primarily a single mode Maxwellian fluid
for low to moderate frequencies. The constitutive equation derived by Cates and co-workers predicts a non-monotonic flow curve
that is consistent with the formation of shear bands. In addition, the Johnson-Segalman (JS)24 model, which is a semi-empirical
model, also has a non-monotonic flow curve and has been widely used by researchers to predict instabilities in the flow of
wormlike micelles25–27. The original Johnson-Segalman (JS) model is a special case of the Oldroyd eight-constant equation; the
Oldroyd eight-constant equation relates the stress in a fluid to the flow history using a purely continuum mechanical derivation
and imposing the constraints of frame invariance and including terms that are at most linear in the stress and quadratic in the rate
of strain tensor and the stress combined. An important simplified case of the Oldroyd eight-constant model is the upper-convected
Maxwell model, which can also be derived from either a temporary network model for Gaussian chains or from modeling the
polymer chains as two Brownian beads connected by a Hookean spring. The Johnson-Segalman model is obtained by replacing
the upper-convected derivative in the upper-convected Maxwell model by the Gordon-Schowalter convected derivative. The
Gordon-Schowalter derivative is a linear generalization of the upper and lower convected derivatives, which allows for non-affine
motion of polymer strands with respect to the continuum. A slip parameter a represents the reduction in stress relative to affine
motion; that is, the fractional stretch of the polymeric material with respect to the macroscopic deformation of the continuum.
For a <1, the JS model predicts a non-monotonic relationship between shear stress σxy and shear rate γ̇ : multiple shear rates
are possible for a given stress. In a specific range of shear rates, the slope of the flow curve is negative ( dσxy/dγ̇ < 0 ) which
represents an unstable state. In this unstable state, fluid splits into two differently sheared bands with each shear band lying on a
stable part of the flow curve (having a positive slope).

These two models have been successful in predicting several aspects of the flow of wormlike micelles, but fail to predict other
aspects that are reported in experiments13,28. For instance, Cates’ theory does not predict an overshoot in the stress in startup
of shear flow, which is contrary to the experimental observations28. For the Johnson-Segalman model, the flow curve is history
dependent. That is, the selection of the plateau stress corresponding to a shear-banded state is indeterminate: simulations of flow
using the JS model in a range of geometries indicate that the stress may lie within a range of stresses but its selection is dependent
on the flow history29–31. This history-dependence, however, is inconsistent with experiments on wormlike micellar solutions that
indicate shear-banding occurs at a well-defined plateau stress that is history-independent32–35.

As demonstrated by Olmsted et al.28, adding a stress diffusion gradient term to the Johnson-Segalman model resolves the
history dependency of the JS model and provides a mechanism for the selection of the plateau stress. As a result, the diffusive
Johnson-Segalman (dJS) model, containing a stress diffusion coefficient D, is widely used to model wormlike micellar solutions.
A primary concern of the present work is measuring this stress diffusion coefficient; the form of the stress diffusion term is given
in equation (3) below. For a stress tensor T , the momentum balance reads:

ρ(∂t + v ·∇)v = ∇ ·T (1)

Where, ρ , v, and T are fluid density, velocity and total stress tensor respectively. The stress tensor is a combination of the
(Newtonian) solvent stress and the polymer stress which can be written:

T =−pI +2ηA+Σ (2)

Where, p, η , A, and Σ are pressure, solvent viscosity, the symmetric part of the velocity gradient tensor, and polymer stress
respectively. In the diffusive Johnson-Segalman model, the polymer stress is given by:
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(∂t + v ·∇) Σ+(Ω ·Σ−Σ ·Ω)−a(A ·Σ+Σ ·A) = 2
µA
τR

− Σ
τR

+D ∇2Σ (3)

Where, µ is the shear viscosity of wormlike micelles, D is the stress diffusion coefficient, τR is the Maxwellian relaxation time,
a is the slip parameter, and Ω is the anti-symmetric part of the velocity gradient tensor. One can also define a stress correlation
length, ζ =

√
DτR, which controls the interface thickness between shear bands.

The dJS model has been used recently to study the formation of shear bands and the hydrodynamic stability of a range of
shear banding flows15,25,26,28,36. Experiments on wormlike micelles in the Taylor-Couette geometry revealed the formation of
two bands above a critical shear rate and, more importantly, that the interface between bands undergoes a series of transitions
and eventually becomes undulated21,22,36–38. This result was also produced by a linear stability analysis of a diffusive Johnson-
Segalman fluid in Couette flow between parallel plates as well as in the cylindrical Taylor-Couette geometry25,27. In experiments,
researchers have studied the effects of several parameters such as shear rate, temperature, concentration of components, and cur-
vature of the Couette geometry on this instability21. Moreover, startup of steady shear experiments have shown very interesting
dynamics for the transient shear stress within the shear banding regime. For instance, Radulescu et al.15 demonstrated that upon
a step in shear rate within the shear banding regime, the transient shear stress shows first a rapid overshoot on a time scale of
about 0.1τR, followed by an undershoot with a time scale of 10τR, which is in turn followed by a very gradual stress relaxation
towards a steady value that takes place over a time scale of 100τR. Numerical simulations indicated that these dynamics were as-
sociated with three stages: band destabilization (as the initial shear bands attempt to adjust to the change in shear rate), interface
reconstruction, and interface travel towards its final equilibrium position. The interface travel stage is controlled by the stress
diffusion coefficient15.

Lerouge et al.36 conducted similar experiments on wormlike micellar solutions and measured the transient shear stress for
a step from γ̇ = 0 to a shear rate within the shear banding regime. They reported four different stages of stress evolution in
their experiments. The first two were similar to the first two regimes reported by Radulescu et al.15, however Lerouge et al.36

reported a subsequent linear increase in shear stress followed by a mono-exponential increase in shear stress to its final value.
Lerouge et al.36 also directly visualized the gap between the co-axial cylinders in Taylor-Couette flow during the transient stress
measurements. The changes in stress were attributed to the dynamics of the interface formation and evolution as follows. The
first stage corresponds to formation of a high shear band that occupies the entire gap, and (as in the initial stage of the step
experiments within the shear banding regime where an interface exists initially but undergoes destruction following the step),
is accompanied by a rapid stress overshoot. As time progresses, the interface between the high shear band and low shear band
forms, which corresponds to Radulescu et al.’s interface reconstruction stage. Interface reconstruction is associated with the
quick reduction of the shear stress. Once the interface between these phases sharpens and is clearly visible, the interface travels
towards the inner cylinder to reach its equilibrium radial position. This stage is associated with the linear increase in shear stress.
Finally, Lerouge et al.36 showed that after the interface travel stage, the interface becomes destabilized and changes its shape
from a flat to an undulated interface. The mono-exponential stress increase at long times was attributed to the undulation of the
interface during this fourth stage.

Among these stages and time scales, the third one is of interest in this paper (i.e., interface travel). As noted by Olmsted et
al.28, the interface travel stage is characterized by the stress diffusion coefficient in the diffusive Johnson-Segalman model. To
the best of our knowledge the stress diffusion coefficient has been evaluated by three methods. First, the interface position can
be tracked during interface travel, and the diffusion coefficient can be extracted from the trajectory of the interface36. Second,
superposition rheology is an alternative method to determine the velocity of the interface during interface travel and hence, the
diffusion coefficient39. Superposition rheology is a method by which a small amplitude oscillatory shear is added to a steady
shear flow40. This method was introduced by Booij to study the dynamical behavior of polymer solutions far from equilibrium
and was adapted by Ballesta et al.39 to the study of wormlike micelles. Ballesta et al. developed a phenomenological model
that allowed them to extract the velocity of the interface during the interface travel stage for a CPCl-NaSal wormlike micellar
system39. Finally, microfluidics experiments have also been performed to determine the stress diffusion coefficient for sheared
wormlike micellar fluids41,42. Masselon et al.41 used particle image velocimetry to measure velocity profiles in microchannels,
and fit the velocity profiles using a constitutive equation involving a stress diffusion term.

A closer look at the values reported for stress diffusion coefficients and the corresponding stress correlation lengths reveals
that there are significant discrepancies between the values obtained by the above methods. For instance, Radulescu et al.15,
reported the diffusion coefficient and the stress correlation length for the system of CTAB-NaNO3 (0.3 M, 0.4 M) at T = 30 C, as
6.1×10−14m2/s, and 100 nm, whereas, Lerouge et al.36 have estimated these parameters as about 7.1×10−11m2/s and 4 µm for
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the same system and the same temperature. Masselon et al.41,42 showed that the stress correlation length for CTAB-NaNO3 in
confined microchannels is on the order of 3−8 µm at T = 25 C. Masselon et al.41,42 and Lerouge et al.36,43 reported that for the
CTAB-NaNO3 system the stress correlation length is much larger than the mesh size of wormlike micelles (i.e. ζ ≫ ξ ), where,
the mesh size ξ can be estimated as ξ ≈ (kBT/G0)

1/3. However, Radulescu et al.15 concluded that for this system of wormlike
micelles, ζ ≈ ξ . The inconsistencies in these results have been attributed to the fact that in Radulescu et al.15 the longest stress
relaxation time scale was mistakenly attributed to the interface travel stage while it is now known to be related to the nucleation
of instability36. While superposition rheology has proven to be a useful method in determining the stress diffusion coefficient
of the CPCl-NaSal system, unfortunately, there is no report for the CTAB-NaNO3 system by this method. Meanwhile, there is
no accepted microscopic theory for stress diffusion in systems of wormlike micelles that enables us to evaluate the experimental
data. In addition, the effects of other parameters such as temperature and the effect of gap size on the stress diffusion coefficient
and the stress correlation length have not been systematically studied before.

The primary goal of the present work is to measure the stress diffusion coefficient and the corresponding stress correlation
length of the wormlike micellar solution CTAB-NaNO3 more systematically at different temperatures, shear rates, and gap sizes.
To the best of our knowledge, the effects of temperature and gap size on the stress diffusion coefficient of the CTAB-NaNO3
system have never been reported in the literature. Regarding the effect of shear rate, Fardin et al.43 indicate that for CTAB-
NaNO3, the stress diffusion coefficient varies non-monotonically with shear rate, with the data displaying significant scatter,
whereas, for other systems like CPCl-NaSal the stress diffusion coefficient monotonically increases with shear rate. Our objective
here is to revisit measurements of the stress diffusion coefficient for CTAB-NaNO3 and to systematically vary the parameters
noted above. Finally, we validate our methodology, and the effects of gap, by considering a second, well studied shear banding
system of CPCl-NaSal in brine. The interface dynamics of this latter shear banding system have been shown to be sensitive
to light exposure22, although the bulk rheological properties are not. The hydrophilic head in the CPCl molecule is a pyridine
ring, which, in aqueous solution, is susceptible to opening by UV radiation. According to Fardin et al.22, when exposed to light,
cleavage of the pyridine ring produces aldehyde enamine, which further degrades by thermally activated processes. Fardin et al.22

showed that this process is irreversible. Thus, the properties of the CPCl surfactant solution as well as its shear banding behavior
may be affected by this process. Here, we consider the effect of light exposure on the stress diffusion coefficient for CPCl-NaSal.
We perform measurements in two different ways. First, we perform startup of steady shear experiments in a large custom made
Taylor-Couette cell to allow highly resolved visualization of the interface dynamics. Second, we conduct superposition rheology
measurements in a commercial rheometer.

2 Experiments

2.1 Materials

The wormlike micellar solutions studied in this work are an aqueous solution of cetyltrimethylammonium bromide (CTAB)
and sodium nitrate (NaNO3) (both supplied by Fischer Scientific), and cetylpyridinium chloride (CPCl), and sodium salicylate
(NaSal) in brine (Supplied by Spectrum Chemical and Fischer Scientific). We prepared solutions of 0.3 M CTAB and 0.4 M
NaNO3 in water and 8% wt of CPCl in brine (0.5 M NaCl) with the molar ratio of [NaSal]/[CPCl] = 0.5 with a magnetic stirrer
and left them at room temperature for a few days before doing experiments. For experiments in the Taylor-Couette cell we added
a small amount of mica flakes (0.001wt%) to visualize the flow field. This small amount does not affect the rheology of the
solution. Mica flakes are anisotropic particles that orient in the direction of flow, which in turn enables us to visualize the flow
field. Although the density of mica flakes is about 3.0 g/cm3 and the fluid density is about 1.1 g/cm3, they settle very slowly (on
the order of weeks) due to their small size and the high viscosity of the fluid.

2.2 Methods

Experiments are carried out in two different setups: a commercial rheometer and a large, custom-built Taylor-Couette (TC) cell.
We use a Malvern-Gemini stress controlled rheometer to characterize the rheology of wormlike micelles at different temperatures
by doing both linear and non-linear viscoelastic tests. The linear and non-linear tests are carried out in both a cone-and-plate
geometry and in a Couette co-axial cylinders geometry with Ri = 12.5 mm and Ro = 13.75 mm, where Ri and Ro are the inner
and outer cylinder radii. We also use the rheometer to carry out superposition rheology experiments in which a small amplitude
oscillatory shear is superimposed on steady shear. The superposition rheology experiments are carried out in three different
Mooney-Couette (co-axial cylinders with conical bottoms) geometries with different gap sizes, d = 1.25 mm, d = 0.75 mm, and d
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Fig. 1 (a), Elastic and loss moduli (G′,G′′) measured at T = 25 C for CTAB-NaNO3 (0.3M,0.4M), and (c) For CPCl-NaSal (8wt%,) at T = 21
C with the predictions of the Maxwell model (lines). (b) Normalized steady shear stress as a function of Wi measured for CTAB-NaNO3, and
(d) CPCl-NaSal.

= 0.5 mm, with corresponding radius ratios Ri/Ro of 0.91, 0.94, and 0.96, where d is the difference between the outer and inner
radii. Flow visualization experiments were performed in a custom-built Taylor-Couette cell to visualize the interface dynamics
of the wormlike micellar solution. This Taylor-Couette cell enables us to rotate both the inner and outer cylinders independently.
The radii of the inner and the outer cylinders are 6.946 cm and 7.615 cm respectively, which provides a radius ratio of 0.91. The
large gap allows high resolution of the interface dynamics in the r-z plane, which is imaged with a CCD camera. The height of
the Taylor-Couette cell is 40.6 cm corresponding to the aspect ratio of 60.7 that renders the end effects negligible. For further
information on the TC cell please see reference44.

3 Results

3.1 Rheological Characterization

The system of wormlike micelles used in this work has been well studied by other researchers15,21,36. Small amplitude oscillatory
shear experiments were performed in a cone-and-plate geometry to extract the relaxation time τR and plateau modulus G0 of the
fluid. Figures (1a) and (1c) show typical experimental results along with the predictions of the Maxwell model (equations (4)
and (5)) at T = 25 C for the CTAB-NaNO3 system and at T = 21 C for the CPCl-NaSal system.
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G′(ω) =
ω2τR

2

1+ω2τR2 Go (4)

G′′(ω) =
ωτR

1+ω2τR2 Go (5)

Where G′, G′′, ω , τR and G0 are elastic modulus, loss modulus, frequency, relaxation time and plateau modulus respectively. The
list of relaxation times and plateau moduli at different temperatures is given in table (1).

Sample Temperature (C) τR (s) G0 (Pa)
25 0.32 185

CTAB-NaNO3 30 0.18 200
35 0.06 210

CPCl-NaSal(E) 21 0.87 155
CPCl-NaSal(NE) 21 0.89 152

Table 1 Relaxation times and plateau moduli for CTAB-NaNO3 and CPCl-NaSal systems. E and NE denote the CPCl-NaSal samples with
and without history of ambient light exposure.

We have also carried out steady shear experiments to measure the shear stress σ as a function of shear rate γ̇ at different
temperatures. Figures (1b) and (1d) show the dimensionless stress versus Weissenberg number for the two wormlike micellar
systems. The Weissenberg number, Wi, is defined as the magnitude of the shear rate, γ̇ , multiplied by the Maxwellian relaxation
time, τR. The results at different temperatures collapse onto each other and form a superimposed curve outside the shear banding
regime. The shear banding plateau is clearly visible in figure (1b) and (1d), beginning at Wi ≈ 1. The results of small amplitude
oscillatory shear and steady shear for these systems are in good agreement with literature results15,21,36,39.

3.2 Dynamics of the interface between shear bands

As noted above, experiments on some wormlike micellar systems in a Taylor-Couette cell have shown that above a critical
shear rate, the fluid splits into a high shear band and a low shear band, with the interface between them undergoing a series
of stages15,36. Here, we examine the interface travel stage via: 1) direct visualization in a large Taylor-Couette cell, and 2)
superposition rheology using Mooney-Couette geometries.

3.2.1 Direct visualization

Figure (2a) shows a schematic of our TC cell with a camera positioned to visualize the flow of the wormlike micelle solution
in the r-z plane. For all experiments reported below we use a high speed ramp of the inner cylinder from rest to achieve the final
shear rate quickly (dΩ/dt = 5 Hz/s), and observe the interface dynamics in the gap between the inner and outer cylinder walls.
Figure (2b) shows images of the CTAB-NaNO3 wormlike micelle solution sheared at Wi = 5.5 at T = 30 C as a function of time.
Consistent with the earlier observations of Lerouge and co-workers15,36, we identified four stages in the evolution of the interface.
These are: 1) formation of a high shear phase that occupies the entire gap (t = 0.5 s), 2) interface construction as the interface
between the high shear and low shear phases forms and sharpens (t = 2−7 s), 3) interface travel as the sharp interface moves to
an equilibrium radial position (t = 7.5−25 s), and 4) interface undulation as the originally flat interface becomes destabilized and
wavy (t = 25−60 s). These undulations are characterized by an asymptotic wavelength that can be identified in the last image in
figure (2b). In this study, we are mainly concerned with the dynamics of the interface during the third stage. As noted above,
the stress diffusion coefficient can be evaluated by measuring the speed at which the interface travels to its equilibrium position.
Radulescu et al.15 showed that the position of the interface in the small gap approximation is given by:

ri − r∗ = (r0 − r∗)e−t/τ (6)

where ri is the radial position of the interface, r∗ is the equilibrium radial position, r0 is the initial position of the interface,

and t is time. The characteristic time τ is given by τ =
τ2

RdKG0 γ̇√
DτRηl γ̇l(γ̇h−γ̇l)

, where, ηl is the viscosity of the wormlike micelle solution
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(b)

r

z

Fig. 2 (a) A schematic of the custom made Taylor-Couette cell used in experiments. (b) Images of the sheared wormlike micellar system
within the shear banding regime at different times.

before shear banding and K is a dimensionless parameter that depends on the constitutive model. For the diffusive Johnson-
Segalman model, Radulescu et al.15 showed by scaling analysis and numerical simulations that KG0τR

ηl γ̇l
≈ 0.3− 0.4. Thus, once

τ is determined from the interface travel, the stress diffusion coefficient and the stress correlation length can be estimated. We
have tracked the interface position as a function of time by tracking the light intensity as a function of radial position within
the gap. The wormlike micellar solutions are seeded with mica flakes, so that the high shear band has a much higher intensity
than the low shear band. The intensity gradient between the two bands allows us to track the interface position. Sample plots
showing the intensity versus radial position for various times during the interface evolution are provided in the supplementary
material (see Figure S.1). We have fitted a sigmoid function (y = a

b + e−
r−ri

w
) to the experimentally determined intensity profiles
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Fig. 3 (a) Interface position ri and thickness of the interface w versus time t measured in TC cell as the external shear rate undergoes a step
from 0 to 30 (1/s) at T = 30 C. (b) Interface location during the interface travel stage. The solid line is the best exponential fit to equation (6).

(black curves in figure S.1). The location of the interface is assumed to be at the inflection point of the fitted curve and is denoted
as ri. Moreover, the visible thickness of the interface between dark and bright phases is also estimated as w. Other sigmoid
functions such as the complementary error function were also considered and resulted in similar ri and w. We further monitor
the temporal evolution of these two parameters during step shear experiments. Figure 3(a) shows the temporal change in radial
position ri and thickness of the interface w. The interface travel stage is identified as the time interval when the interface width
reaches and maintains its minimum value, shown between two dashed lines indicated in figure 3(a). It is evident that the visible
thickness of the interface between dark and bright phases is approximately constant (w ≈ 1 mm) during the interface travel stage,
while the interface position gradually moves towards the inner cylinder. The onset of interface travel corresponds to t5 = 7.5 s in
figure (S.1). A similar plot to figure (3) for other conditions is provided in supplementary materials (cf. Figure S.2). Figure (3b)
shows a typical example of interface motion during the interface travel stage up to the time when the interface starts to undulate
with the best exponential fit from equation (6).

Figure (4a) shows the stress diffusion coefficient, extracted from measurements such as those shown in figure (3b), as a
function of Weissenberg number at different temperatures. Our results show that the stress diffusion coefficient is approximately
independent of the Weissenberg number. This trend is roughly consistent with the results presented in the literature for the
CTAB-NaNO3 system43 (cf. Fig. (22d) therein) with less variation in the stress diffusion coefficient over the range of shear
rates. We also note that the dependency of the stress diffusion coefficient with respect to shear rate is fully consistent with results
of Masselon et al.41,42 in flow of wormlike micelles in microchannels. Figure (4b) also shows the stress diffusion coefficient
averaged over the range of Weissenberg numbers examined as a function of temperature. The inset of figure (4b) also indicates
that ζ = (DτR)

1/2 is approximately independent of temperature in the range studied here. Although we know of no scaling
laws for the stress diffusion coefficient, we note that for polymer solutions, the species diffusion coefficient follows the Stokes-
Einstein equation and is proportional to temperature while the relaxation time varies inversely with temperature for a Rouse or
Zimm chain, so that the product DτR is expected to be independent of temperature45. This appears, from figure (4b) (and its
inset), to also be the case for the stress diffusion coefficient.

The mesh size ξ of wormlike micelles can be estimated by ξ =(kBT/G0)
1/3 ≈ 32.7 nm at T = 30 C, where, kB is the Boltzmann

constant. Our results in figure (4) gives a stress correlation length of ζ ≈ 20 µm indicating that ζ ≫ ξ , consistent with36,41–43.
The most surprising observation is the magnitude of the stress diffusion coefficient. The average diffusion coefficient measured
in our experiments at T = 30 C is about D ≈ 2.9×10−9m2/s, while those that have been reported for the same system are about
D ≈ 7×10−11m2/s and D ≈ 8.5×10−11m2/s36,43. This factor of 40 is striking, because the only difference between these two
systems is the gap of the Couette geometry. However, the radius ratio for all these experiments is > 0.91, so that all experiments
are carried out in the narrow gap limit with curvature playing a very limited role. To examine the discrepancies between our
results and those in the literature, and to probe the potential role of the gap size more thoroughly, we use superposition rheology
experiments in a commercial rheometer, in which a range of gap sizes could be easily accessed.

3.2.2 Superposition Rheology
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Fig. 4 (a) Stress diffusion coefficient as a function of Weissenberg number at three temperatures. These values are determined from
measurements of the interface travel. (b) Stress diffusion coefficients averaged over Weissenberg number versus temperature. Inset shows the
stress correlation length as a function of temperature.

Superposition rheology is an alternative method that can be utilized to determine the stress diffusion coefficient of wormlike
micelles. Ballesta et al.39 used this method to determine the velocity of the interface and related that to the stress diffusion
coefficient during the interface travel stage for a wormlike micelle solution of cetylpyridinium chloride (CPCl) and sodium
salicylate (NaSal). Here, we apply their method to the CTAB-NaNO3 system described above. As shown by Ballesta et al.39, for
the Mooney-Couette geometry the complex viscosity from superposition rheology is given by:

1
η∗
∥
=

1−α
η∗
∥l

+
α

η∗
∥h

+
γ̇h − γ̇l

σc

c0

iωd
(

εco

1− 2ic0
ωRi

+2εcp) (7)

Where η∗
∥ , η∗

∥l , η∗
∥h, α , c0, σc, and ω are the complex viscosity of the fluid from superposition rheology, the complex viscosity

of the fluid at the onset of shear banding (i.e., in the limit that the fluid is completely isotropic), the complex viscosity of the fluid
at the end of shear banding, the proportion of shear induced structure due to the steady shear, the velocity of the interface, the
critical stress for the onset of shear banding, and the frequency of the imposed oscillation respectively. α can be calculated from
the lever rule:

γ̇ = αγ̇h +(1−α)γ̇l (8)

Where γ̇ is the imposed steady shear rate. Meanwhile, εco and εcp are the proportions of the surface covered by Couette and
cone-and-plate geometries, respectively. These can be calculated using the following equations:

εco = (1+
Ri

2h
)−1, εcp = 1− εco (9)

Where, Ri and h are the radius of the inner cylinder and the height of the Mooney-Couette geometry. Figure (5) shows the
magnitudes of the complex viscosities measured for the wormlike micellar system studied in this work at different Weissenberg
numbers. Below the onset of shear banding (Wi = 0.8), the complex viscosity is approximately constant at low frequencies
(ω ≤ 10 rad/s) and decreases with increasing frequencies above 10 rad/s.

Increasing the Weissenberg number towards the onset of shear banding results in a deviation from the low frequency plateau.
This deviation increases with increasing shear rate, which is consistent with the results of Ballesta et al.39. This indicates that the
system is in the shear banding regime where the two-fluid model is needed. As noted above, we are going to use equation (7) to
obtain the stress diffusion coefficient. To do so, we need c0, the velocity of the interface during interface travel. In equation (7),
all parameters can be measured in experiments, except η∗

∥h. Following Ballesta et al.39, and considering the onset of shear
banding (α −→ 0), one finds:
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and a gap of 1.25 mm.

η̃(ω) =
σc

γ̇h − γ̇l

iωd
c0

(
εco

1− 2ic0
ωRi

+2εcp)
−1 (10)

Where, 1/η̃(ω) = 1/η∗
∥ (α → 0)−1/η∗

∥l . Calculating the imaginary and real parts of η̃(ω), we find a range of frequencies for
which the imaginary part of the viscosity is higher than the real part (ℑ(η̃)≫ ℜ(η̃)) (cf. Fig. 6).
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Fig. 6 (a) ℑ(η̃)(◦), ℜ(η̃)(•) versus frequency on log-log coordinates and (b) semi-log coordinates. Line shows the best linear fit for
0.3 < ω < 2 rad/s.

Therefore, similar to Ballesta et al.39 we can assume that for this range of frequencies:

ℑ(η̃)≈ σc

γ̇h − γ̇l

ω d
c0

1
1+ εcp

(11)
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Similar plots to figure (6) for other conditions are provided in supplementary materials (cf. Figure S.3). We now can extract
the velocity of the interface by fitting a linear function to the imaginary part of the viscosity. This velocity can be substituted into
equation (12) to obtain the stress diffusion coefficient,

D = τR(KG0c0/σc)
2 (12)

Where KG0/η∗
∥ (0, γ̇l)γ̇l = 0.3. Figure (7) shows the diffusion coefficient resulting from the superposition rheology method as

a function of temperature. The stress diffusion coefficient increases with increasing temperature in agreement with the interface
travel method. The inset of figure (7) also indicates that the stress correlation length is independent of temperature in agreement
with the results of interface travel.
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Fig. 7 Stress diffusion coefficient versus temperature for the CTAB-NaNO3 system. Inset shows the stress correlation length corresponding to
the diffusion coefficients.

The estimated diffusion coefficient, and the corresponding stress correlation length for a gap of 1.25 mm and T = 30 C,
calculated by this method, are D ≈ 1.9×10−11 m2/s, and ζ ≈ 1.84 µm. These parameters are close to measurements by Lerouge
and co-workers36,43. This suggests that this method is a promising alternative to measuring the stress diffusion coefficient and
correlation length. Once again, however, if we compare the magnitude of the stress diffusion coefficient with the one reported
from the interface travel method, there is a big difference and the only significant difference between these measurements is the
gap of the Couette geometry. Therefore, we conducted superposition rheology measurements for a range of gap sizes.

Figure (8) summarizes the stress diffusion coefficients obtained by different methods for the CTAB-NaNO3 system as a func-
tion of gap size at different temperatures. The stress diffusion coefficient increases monotonically with the gap size, with D
going roughly as d3. The inset of figure (8) also shows that the stress correlation length approximately scales as d1.5. We also
include the two available measurements for the same system reported in the literature, which are roughly consistent with this
dependence and help illuminate the discrepancies. The diffusion coefficients from the interface travel method, which appear to
be independent of shear rate, are averaged over all shear rates at a given temperature (cf. Figure 4(a)).

To further examine the effect of gap size on the stress diffusion coefficient, we conducted superposition rheology experiments
on the well studied sample of wormlike micelles of CPCl-NaSal in brine10,39. We used the superposition rheology method to
measure the diffusion coefficient in this system by varying the gap of the Couette geometry. Figure (9) shows the stress diffusion
coefficient versus the gap of the Couette cell for the CPCl-NaSal wormlike micellar system at 21 C. Figure (9) shows that the
stress diffusion coefficient for this CPCl-NaSal system also varies with gap size d as d3, and that the measurements of Ballesta et
al.39 and Fardin & Lerouge43 are consistent with this scaling. Also included in figure (9) are data on samples with no light
exposure and with light exposure. We exposed one of the CPCl-NaSal samples to ambient light for one week, which resulted in a
visual change in the sample from fully transparent to yellow, consistent with previous reports22. We note that the stress diffusion
coefficient, like the bulk rheological properties, appears insensitive to light exposure.

We note that all of these experiments were performed for very narrow gaps ( 0.91 < Ri/Ro < 0.96 ), therefore, the effect
of curvature varies negligibly between experiments. The diffusion coefficient in the dJS model can be thought of as a stress
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relaxation by diffusion of differently strained wormlike chains in different shear bands28. According to the dJS model the
thickness of the interface between different bands should scale as ζ = (DτR)

1/2. This value for the case of the large Taylor-
Couette cell (where D is largest) is calculated from our experimental value of D to be of order 20 µm, hence, the interface
thickness should be negligible compared to the gap size of the Taylor-Couette cell. However, our interface visualization results
suggest otherwise. The visible thickness of the interface between the bright and dark phases is measured in our experiments as
mentioned in section (3.2.1). Our results indicate that the thickness of the interface for all conditions is approximately w≈ 1±0.1
mm. Therefore, it is comparable to the gap of our Taylor-Couette cell ( w

d = 0.143). Similarly, Britton et al.46–48, for a CPCl-NaSal
solution in Couette flow, reported a thick interface between two shear bands at high shear rates. This implies that wall effects
might play a role in determining the stress diffusion coefficient during the interface travel stage.
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(CTAB-NaNO3) (0.3M,0.4M) system in the literature 36,43. The best fit line gives the relationships D ∼ d2.9, ζ ∼ d1.45.
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stress correlation length versus gap size. Data for the samples with and without light exposure overlay one another. Here, the best fit to the
data is D ∼ d3.05, ζ ∼ d1.5.
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We also note that slippage at the boundaries might, in principle, affect measurements of the stress diffusion coefficient. Re-
cently, the effect of slip on the flow of different wormlike micelle systems has been investigated by measuring the local velocity
profiles at different radial positions. Salmon et al.17 and Hu & Lips49, showed that slip is negligible in Mooney-Couette geome-
tries for semidilute wormlike micellar systems of CPCl-NaSal, while Lettinga & Manneville50 have shown, for the same system,
that slip results in about 40% difference between the wall velocity and the velocity of the adjacent layer of fluid and also shifts
the shear banding regime by 3.4 s−1. Fardin & Lerouge43 have reported slip for the CTAB-NaNO3 system. However, the slip
velocity was found to be only 40% of the velocity at the rotating wall, indicating that slip is comparable for the CTAB-NaNO3
and for the CPCl-NaSal systems. In superposition rheology, equation (11) and (12) show that the stress diffusion coefficient
scales as: D ∼ ( η∗

l γ̇l
γ̇h−γ̇l

)2. Therefore, we might expect slippage to affect the stress diffusion coefficient in wormlike micelles.
However, slip is unlikely to affect the dynamics of the interface for the shear rates tested in this work. In our measurements, we
observe little difference between the flow curves of CPCl-NaSal and CTAB-NaNO3 taken at different gap sizes (see figure S.4
in supplementary materials for the data for the CPCl-NaSal system). That is, we see only nominal shifting of the shear-banding
regimes for the different gap sizes, so values of γ̇l and γ̇h and the stress at the onset of shear banding that go into our calculation of
the stress diffusion coefficient show negligible changes with gap size. This suggests that even if slip is present in our experiments
with wormlike micellar systems, the magnitude of slip at the moving boundary is essentially the same for different gap sizes.
Therefore, we surmise that the measured diffusion coefficient and its trend with respect to the gap size is unlikely to be affected
by slip at the boundaries.

4 Conclusions

In this paper, we have studied the dynamics of the interface that forms between the shear bands of two wormlike micelle systems
of CTAB-NaNO3 (0.3 M, 0.4 M) and CPCl-NaSal (8%wt) in brine in narrow gap Couette devices. In particular, interface
dynamics were investigated during the interface migration process. The experiments were performed in geometries of different
length scales for which inertia remained negligible and curvature was nearly constant. The main findings of the work can be
summarized as follows.

The stress diffusion coefficient and the stress correlation length were calculated for the interface travel stage after a step shear
using two methods including direct visualization and superposition rheology. The diffusion coefficient for the CTAB-NaNO3
system is approximately proportional to the temperature and is independent of the shear rate. The latter observations with respect
to the shear rate dependence are consistent with observations reported in the literature; these appear to be the first data regarding
the temperature dependence of D for this system. Our measurement of the stress correlation length in a geometry with a gap
of 1.25 mm is consistent with that of Lerouge and co-workers for the CTAB system using a gap of 1.13 mm, and with those of
Ballesta et al. for the CPCl-NaSal system performed in a geometry with a gap of 1 mm36,39,43. However, the stress diffusion
coefficients of both these systems monotonically increase with the gap size d, and follow a scaling of D ∼ d3. This trend is
consistent with data reported here and by others that spans a factor of 30 in gap and almost five orders of magnitude in D. We
also note that the exposure of the CPCl-NaSal system to ambient light does not change the stress diffusion coefficient. We can
think of two possible causes for the effect of gap size on the stress diffusion coefficient: First, this dependency might be due
to the finite thickness of the interface compared to the gap size, as has been suggested for other semidilute wormlike micellar
fluids46–48. Our visualization of the interface between the bright and dark phases also indicates a relatively thick interface (∼ 14%
of the gap thickness), suggesting that the presence of the walls may be affecting the measurement of D. Second, it is possible
that the growth of the interface instability begins close to the onset of the step in shear rate, and affects the interface travel stage.
The time scales associated with these processes may then be affected by the gap, which controls the wavelength of the instability.
Experiments to assess either of these possibilities are beyond the scope of the present work. The explanation for the variation
of the stress diffusion coefficient for the CTAB-NaNO3 and CPCl-NaSal systems with the gap size still remains unclear. The
experimental results of this paper thus present a new challenge for theorists and those engaged in simulations using the diffusive
Johnson-Segalman model in the future.
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