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Influence of material stretchability on the equilibrium
shape of a Möbius band†

David M. Kleiman,a Denis F. Hinz,b Yoichi Takatoc and Eliot Fried∗c

We use a two-dimensional discrete, lattice-based model to show that Möbius bands made with
stretchable materials are less likely to crease or tear. This stems from a delocalization of twisting
strain that occurs if stretching is allowed. The associated low-energy configurations provide
strategic target shapes for the guided assembly of nanometer and micron scale Möbius bands.
To predict macroscopic band shapes for a given material, we establish a connection between
stretchability and relevant continuum moduli, leading to insight regarding the practical feasibility
of synthesizing Möbius bands from materials with continuum parameters that can be measured
experimentally or estimated by upscale averaging.

1 Introduction
Recent technical advances have made it increasingly clear that
the properties of a material are determined not only by its com-
position but also by geometrical and topological factors.1 With
this realization and breakthroughs in the ability to fabricate ob-
jects with molecular-scale precision, research into using the one-
sided topology of the Möbius band in scientific applications is
burgeoning. In chemical topology, for example, mechanically inter-
linked molecules, or catanenes, have been created using Möbius
molecules as intermediaries, setting the stage for the synthesis of
programmable topological nanostructures.2,3 Micron scale Möbius
crystals, which were first created over a decade ago by spooling nio-
bium triselenide ribbons onto selenium droplets, 4 can be viewed
as global disclinations.5 The ability of a recently synthesized ex-
panded porphyrinoid to switch between Hückel and Möbius topolo-
gies presents the possibility of novel memory devices.6,7 Möbius
topology is also exhibited by cyclotides, macrocylic plant proteins
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aspectRatio_4pi.mp4 shows three-dimensional views of bands with a = 4π and dif-
ferent γ as shown in Figure 2; The supporting movie aspectRatio_pi.mp4 shows
three-dimensional views of bands with a = π and different γ as shown in Fig-
ure 2; The supporting movie gamma_7.mp4 shows three-dimensional views of bands
with γ = 3.0π · 107/12 and different a as shown in Figure 2; The supporting movie
gamma_42.mp4 shows three-dimensional views of bands with γ = 3.0π ·1021/6 and
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involved in plant defense.8 Due to their topologically derived
structural stability, these proteins have the potential to serve as
drug scaffolds and pharmaceutical templates.9–11

This article focuses on the problem of computing energetically
preferred equilibrium shapes of Möbius bands. This direction
was initiated by Sadowsky,12–17 who considered materials like
paper which are easy to bend but essentially unstretchable and,
thus, must adopt shapes that are very closely approximated by
developable surfaces. Aside from proving that it is possible to
construct a developable band from a rectangular strip of width
sufficiently small relative to its length, Sadowsky established an
upper bound for the bending energy of a developable band and
derived a dimensionally reduced expression for the bending en-
ergy of a band made from an infinitesimally thin rectangular strip.
Wunderlich18,19 later sharpened Sadowsky’s bound and gener-
alized Sadowsky’s bending energy to incorporate the effect of
finite width. The problem of constructing developable equilibrium
configurations was first considered by Mahadevan and Keller,20

whose numerically determined solutions led to a tighter upper
bound on the bending energy but are inconsistent with results of
Randrup and Røgen,21 who showed that the midline of a Möbius
band must have an odd number of switching points at which its
curvature and torsion both vanish. Using Wunderlich’s energy,
Starostin and van der Heijden22,23 computed equilibria that meet
these requirements and also found evidence to suggest that Sad-
owsky’s energy is a singular limit that produces midlines with
discontinuous curvatures.

We depart from established tradition and explore the influence
of material stretchability on the shape of an equilibrated Möbius
band. For bands with sufficiently large width-to-length ratios,
Starostin and van der Heijden22,23 observed localized zones of
concentrated bending-energy density. Their results point to the
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emergence of singularities indicative of the onset of failure. Even a
slight degree of stretchability should alleviate such concentrations.
We seek to quantify both this effect and accompanying shape
variations of bands of different aspect ratios exhibit with increasing
stretchability. In this connection, a model that allows for small
but discernible stretchability applies even to conventional paper,
which stretches by a percent or two in the direction of loading
without creasing or tearing.24

Our approach utilizes a discrete, lattice-based model that incor-
porates stretching but can also accurately approximate developable
shapes for sufficiently small values of the stretchability. Regardless
of the aspect ratio of the band, we find that the total energy de-
creases monotonically with stretchability. This strongly suggests
that bands made of stretchable materials might be easier to form
than bands made of unstretchable materials.

For further insight regarding how stretchability influences equi-
librium shape, we compute the mean and Gaussian curvatures for
bands of various length-to-width aspect ratios, the latter of which
is nonzero only for stretchable materials.25 Consistent with the
observation that unstretchable materials must adopt developable
shapes, we find that the Gaussian curvature plays a key role in
bands comprised of such materials. Except for cases involving com-
binations of the smallest aspect ratio and the two largest values
of stretchability investigated, the mean and Gaussian curvatures
distribute more evenly with increased stretchability. Bending is
concomitantly transferred to stretching, thereby eliminating local-
ized zones of concentrated bending-energy density.

We also show that our model is energetically consistent with a
simple continuum theory and derive links between our material
parameters and those of the continuum theory. These links could
provide a basis for future material design and applications.

2 Discrete, lattice-based model

We first provide a brief description of our model. Additional details
are provided in the Supplementary Information (SI).

2.1 Kinematics

The shape of a Möbius band made from an unstretchable material
is uniquely determined (up to a rigid transformation) by the curva-
ture κ and torsion τ of its midline.12,13 This shape must be devel-
opable. That is, it must be a ruled surface that can be continuously
flattened onto a planar region without stretching/contracting. In
contrast, a band made of a stretchable material can adopt a non-
developable equilibrium shape uniquely determined (up to a rigid
transformation) by the corresponding first and second fundamen-
tal forms, as discussed in the SI.

2.2 Linear and angular springs

We approximate a rectangular strip of length L and width w by a
lattice of equilateral triangles with N points uniformly separated by
a distance r0. To incorporate resistance to stretching, we connect
each pair of lattice points by a linear spring with stiffness kl and
equilibrium length re = r0. Further, to incorporate resistance to
out-of-plane bending, we connect each triplet of lattice points with
a torsional spring of stiffness kθ > 0 and equilibrium angle θe = π.

The total energy E of the band is then given by the sum

E =
kl

2 ∑
i∈Sl

(r(i)− re)
2 +

kθ

2 ∑
i∈Sθ

(θ(i)−θe)
2, (1)

where Sl and Sθ denote the sets of all linear and torsional springs,
r(i) is the length of the i-th linear spring, and θ(i) is the angle
between triplets of points associated with the i-th torsional spring.

2.3 Nondimensionalization
The width w, length L, linear spring constant kl , and angular spring
constant kθ yield dimensionless parameters

a =
L
w

and γ =
klLw
kθ

. (2)

While a is simply the (length-to-width) aspect ratio of the strip,
the Föppl–von Kármán (FvK) number γ measures the resistance
of the strip to stretching relative to its resistance to bending.26

Small values of γ describe stretchable materials. Larger values of
γ describe materials like paper, graphene, and DNA which bend
easily but are difficult to stretch. The case k→ ∞ of infinite FvK
number corresponds to the idealized limit of a material which
cannot be stretched and thus can adopt only developable shapes.

To nondimensionalize the total energy of the band, we first note
that, for a large number of points N on the band, Lw≈ 4Nr2

e/
√

3,
where re is the equilibrium length of a linear spring, as N asymp-
totically approaches the number of lattice unit cells. We also note
that, upon increasing N for a fixed shape, the energy decreases
inversely proportionately to N, since the angular deflection of each
torsional spring and deformation of each linear spring relative to
the length of the band decreases inversely proportionately to N.
Next, using kθ/a as a reference energy (the effective angular spring
constant, since the number of springs in series is proportional to
a), normalizing by N, and defining

Ψ =
EaN
kθ

, and r̃(i) =
r(i)
re

, (3)

leads to a dimensionless version

Ψ = Ψs +Ψb (4)

of the total energy (1), with stretching and bending contributions

Ψs = 2aγ ∑
i∈Sl

(r̃(i)−1)2
√

3
and Ψb = Na ∑

i∈Sθ

(θ(i)−θe)
2

2
.

(5)
For brevity, the dimensionless quantities Ψ, Ψs, and Ψb are here-
after referred to as energies.

A conjugate-gradient method within the molecular dynamics
code LAMMPS27 (Large-scale Atomic/Molecular Massively Parallel
Simulator) is used to minimize Ψ. For all values of the aspect ratio
a considered, trial shapes are provided by Sadowsky’s piecewise
isometric construction (Figure 1).12,13 Since each such shape is
developable, minimizing the energy of a band made of a material
with sufficiently large FvK number γ constrains stretching and thus
maintains approximate developability. With the linear springs at
their equilibrium distance, this minimization amounts to reducing
the curvature of the band without altering the distances between
points on the lattice. Conversely, the spacing between lattice points
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Fig. 1 Schematic of a trial configuration provided by Sadowsky’s 12,13 de-
velopable Möbius band and used for computing the energetically preferred
shape of a band of aspect ratio a = 6π discretized by N = 1170 points
separated by uniform dimensionless distance r0/L =

√
3/72π.

is unconstrained for sufficiently small values of γ. The model and
energy minimization strategy have been subjected to extensive
validation procedures, as described in the SI.

3 Simulation results
Our simulations indicate that stretchable Möbius bands adopt two
characteristic equilibrium shapes, depending on the combination
of FvK number γ and aspect ratio a. For sufficiently large values of
γ, the bands take shapes essentially indistinguishable from those
of paper models and previous simulation results. Deviations from
developability increase as γ decreases.

3.1 Equilibrium shapes

Equilibrium band shapes obtained by minimizing the total energy
Ψ for representative combinations of γ and a appear in Figure 2.

For sufficiently large values of γ and each value of a considered,
equilibrium shapes qualitatively resemble those of model bands
made from rectangular strips of paper and thus appear to be nearly
developable. Regardless of the value of a, increasing γ appears
to have a negligible influence above γ = 3.0π · 1014/3. However,
the influence of γ becomes progressively more evident below γ =

3.0π · 1014/3 and is increasingly obvious for smaller values of a.
The midlines of bands appear to be more circular and less out of
plane for smaller values of γ, an impression that is confirmed by
plots for bands of aspect ratio a = 2π that appear in Figure 3.

If γ is sufficiently large, the tangent vector to the midline of each
equilibrated band exhibits an odd number of switching points at
which its curvature κ and torsion τ vanish simultaneously. While
κ has two peaks and one zero, τ has two peaks and three zeroes
(Figure 4). These observations are consistent with previous analyt-
ical and numerical results.21–23 Moreover, for smaller values of a,
the peak values of κ and τ are larger. In keeping with findings of
Mahadevan and Keller20 and Starostin and van der Heijden,22,23

the midlines of these bands are more out-of-plane than those of
bands with larger aspect ratios (Figure 5). Comprehensive conver-
gence and validation studies in the unstretchable limit γ → ∞ are
provided in the SI.

3.2 Degenerate equilibrium shapes and model limitations

For a = π, bands made of materials with FvK number γ = 3.0π

(Figure 2) and γ = 3.0π ·107/12 (Figure 8) exhibit degenerate equi-
librium shapes that represent a breakdown of the Möbius topology.

The band with FvK number γ = 3π · 107/12 exhibits a self-
intersecting achiral shape resembling the collapse observed in
Möbius soap films with small throat distances.28 However, the
constraint of lattice connectivity inherent to our model delivers
shapes different from those of collapsed Möbius soap films.

Further decreasing the FvK number to γ = 3.0π results in a flat,
annular shape with curvature and stretching energy concentrated
along its edges (Figure 8). This configuration is achieved through
collapsing (or folding) the self-intersecting achiral shape to lie in
a plane. The result is a double-layered two-dimensional annulus
with a width approximately half of the band width of the trial
configuration.

These degenerate shapes, which are possible only if interpene-
tration of the lattice is allowed, suggest that for sufficiently small
values of the aspect ratio a the Möbius topology is unattainable
unless the FvK is sufficiently large.

3.3 Energy measures

Plots of the stretching energy Ψs, the bending energy Ψb, and
the total energy Ψ are provided in Figure 6 for representative
combinations of γ and a.

For each choice of a, the stretching energy Ψs exhibits small
but finite values for large FvK numbers and vanishes in the un-
stretchable limit γ → ∞. In contrast, for a range of intermediate
FvK numbers, Ψs varies significantly for different values of a. For
sufficiently small values of a, Ψs exhibits one maximum at inter-
mediate FvK numbers. However, for sufficiently large values of a,
Ψs exhibits two local maxima.

The total energy Ψ is dominated by the order-of-magnitude
larger Ψb, which decreases monotonically for decreasing γ . Hence,
the sum Ψ = Ψs +Ψb decreases monotonically as γ decreases and
the minimum value of Ψ for any band is attained at the smallest
value of γ considered.

From an energetic perspective, it therefore seems reasonable
to infer that bands made of stretchable materials are significantly
less costly to make than bands made of unstretchable materials.

The influence of a on Ψ becomes most evident for large values of
γ. For large values of γ, Ψ decreases monotonically as a increases.
Most notably, below a critical value γc ∼ 103 of γ , the total energies
of bands with different a coincide, indicating that Ψ becomes
essentially independent of the aspect ratio.

This effect is in agreement with everyday experience: the effort
needed to twist a rectangular sheet of an essentially unstretchable
material like paper into a Möbius band increases notably as its
length-to-width aspect ratio deceases. Moreover, performing the
same task with a stretchable material, such as a thin sheet of
rubber, is much easier. More quantitatively, our results reveal that
the energy of bands with small a increases approximately linearly
with logγ over a wide region from γ ≈ 10.0 to γ ≈ 105. Bands with
larger a also exhibit a smaller region of approximate linearity with
logγ from γ ≈ 10.0 to γ ≈ 103, but the energy saturates for larger
γ.
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γ = 3.0π γ = 3.0π ·107/6 γ = 3.0π ·1014/6 γ = 3.0π ·1021/6 γ = 3.0π ·1014/3 γ = 3.0π ·1035/6 γ = 3.0π ·1042/6

a = π

a = 2π

a = 4π

a = 6π

a = 8π

Fig. 2 Möbius bands adopt characteristic equilibrium shapes depending on FvK number γ and aspect ratio a: Equilibrium shapes for various values of γ

and a. Bands are rotated into their main axes. For other perspective views, see SI Figure SI.7.

x
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γ = 3π × 10

0

γ = 3π × 10
14/6

γ = 3π × 10
14/3

γ = 3π × 10
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Fig. 3 Centerlines of equilibrated bands with aspect ratio a = 2π made
from materials of various values of the FvK number γ.

The collapsed shapes of the present model with unpenalized
self-intersections are observed for combinations of small γ and
small a where the stretching energy attains values of magnitude
comparable to that of the bending energy.

With reference to the previously noted observation that the
midlines of bands become more circular and less out-of-plane with
decreasing γ, the observed dependence of Ψ on γ indicates that
more planar, less bent configurations are energetically favored
below a certain critical FvK number. For the particular choice

1 Nl/2 Nl 1 Nl/2 Nl

a = π

a = 2π

a = 4π

a = 6π

κ τ
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15

−10

−5
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Fig. 4 In the unstretchable limit γ → ∞, the model recovers analytical pre-
dictions of Randrup and Røgen 21 and the characteristic shape obtained
by Starostin and van der Heijden. 22,23 Curvature κ and torsion τ of the
midline of Möbius bands for FvK numberγ = 3π×107 and various values
of the aspect ratio a versus the arclength along the midline in terms of the
number Nl of points along the midline.

γ = 3.0π · 107, Ψs is negligibly small compared to Ψb and, thus,
Ψ ∼ Ψb. The choice γ = 3.0π · 107 therefore suffices to capture
the strictly unstretchable limit γ → ∞. The synthesis of Möbius
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Fig. 5 The shape of the midline of an effectively unstretchable Möbius
band depends on its aspect ratio a: Centerlines of equilibrium shapes of
Möbius bands for FvK number γ = 3π×107 and representative values of
a. Bands are rotated into their main axes as in Figure 2.
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Fig. 6 Stretching energy Ψs, bending energy Ψb, and total energy Ψ for
representative combinations of FvK number, γ, and aspect ratio, a.

bands is challenging mainly due to their significantly higher energy
states relative to untwisted rings. However, allowing for stretching
reduces this difference and could therefore diminish the difficulty
of fabrication strategies that rely on bending rectangular strips.

Since Ψ decreases as γ decreases for each value of a considered,
the loss of chirality exhibited by bands of aspect ratioa = π made
from materials with FvK number γ = 3.0π and γ = 3.0π ·107/12 in-

dicates that chiral shapes have larger stored energies. To fabricate
chiral objects, a system must therefore be sufficiently and properly
constrained. For example, anisotropic particles can be used to
guide the assembly of chiral objects.29 Our results indicate that
small aspect ratio Möbius bands made from a material that is too
stretchable are likely to be unstable. On this basis, they suggest the
existence of a threshold for FvK number above which the synthesis
or guided assembly of small aspect ratio Möbius bands should
become feasible.

3.4 Curvature and dilatation

In the SI, we show that the coarse-grained limit of our model
corresponds to a continuum model for a surface S that resists
stretching and bending. Whereas stretching is characterized by an
area modulus µa related to the linear spring stiffness kl by

µa =

√
3kl

2
, (6)

bending is characterized by splay and saddle-splay moduli µ and
µ̄ related to the torsional spring stiffness kθ by

µ =
3
√

3kθ

2
and µ̄ =−2µ

3
=−
√

3kθ . (7)

With (6) and (7), the total energy E of S takes the form

E =
√

3
∫

S
[klε

2 + kθ (3H2−K)]da, (8)

where da denotes the area element on S and where ε2, H, and
K denote the (two-dimensional) dilatation, mean curvature, and
Gaussian curvature of S. The expression (6) for the area modulus
µa is consistent with a result obtained by Seung and Nelson.30

The bending contribution to (8) arising from (7), which is iden-
tical to that of a Kichhoff plate with bending modulus 3

√
3kθ/2

and Poisson’s ratio 1/3, coincides with an expression derived by
Merchant and Keller.31

The connection (6)–(8) suggests that the pointwise distribu-
tions of discrete approximations to H2, K, and ε2 may provide
further insight regarding how the FvK number γ and aspect ratio a
influence the shape of a Möbius band. Plots of these distributions
are provided in Figure 7 for representative values of γ and a. To
compute discrete versions of H2 and K, we proceed by analogy to
the continuous case,32 where tangent vectors are approximated
by vectors between neighboring points on the surface. In the effec-
tively unstretchable limit γ = 3.0π ·107, each band exhibits a nearly
flat triangular region bounded at its vertices by zones in which H2

takes large values and is surrounded by a nearly flat trapezoidal
region. This is compatible with previous results,14–17 as is the
increase in size of the zones in which H2 exhibits large values with
increasing a. However, as γ decreases, H2 becomes increasingly
more evenly distributed over the band. Consistent with the ob-
servation that localized regions of concentrated bending-energy
density indicate where creasing or tearing may occur,22,23 our
findings show that for bands of small aspect ratio increasing the
stretchability alleviates such concentrations.

All equilibrated bands exhibit non-vanishing Gaussian curvature
K. However, for γ = 3.0π · 107, K is very close to zero almost
everywhere. This confirms that the choice γ = 3.0π · 107 yields
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a = π

(a) H2

γ = 3π×107/4 γ = 3π×1049/12 γ = 3π×107

a = 2π

a = 4π

a = 6π

a = 8π

a = π

(b) |K|

a = 2π

a = 4π

a = 6π

a = 8π

a = π

(c) ε2

a = 2π

a = 4π

a = 6π

a = 8π

Fig. 7 The mean and Gaussian curvatures are both more evenly distributed for increasing stretchability (decreasing FvK number γ): (a) Square of the
mean curvature H, (b) magnitude |K| of the Gaussian curvature K, and (c) square ε2 of the strain ε of Möbius bands made of stretchable materials for
various values of the aspect ratio a and γ . The aspect ratio of each contour plot equals that of the band it represents. Images of the bands corresponding
to the contour plots appear in Figure 2. Different scales are adapted individually to capture the entire range of relevant values. Additional cases appear in
SI Figure SI.8.

nearly developable shapes and thus provides a good approximation
of the unstretchable limit, even though some degree of stretching
is allowed for any value of γ > 0. For all of the smaller values of
γ considered, H2 and |K| are maximized at the same points. The
maximum values of |K| become more prominent as a decreases.
At the vertices of the previously discussed flat, triangular regions,
where the contribution to the bending energy from H2 is largest,
the contribution to the bending energy from |K| also attains its
largest values. Thus, even in the approximately unstretchable
limit, it is favorable to locally transfer energy associated with
H2 to energy associated with K. Inspecting the local dilatation
ε2 shows that bending is locally transferred to stretching unless
K ≡ 0, in which case the band adopts a genuinely developable
shape. Since most materials manifest some in-plane elasticity, our
findings also indicate that an actual band should possess a region

of local stretching. This also suggests that loci of large H2 are
likely to lie within zones where the bending contribution to the
energy is concentrated. These zones are also most likely to be
sites for inelastic deformation or failure. Conversely, allowing for
local stretching can reduce the bending contribution to the energy
density.

Both H2 and |K| become more evenly distributed over the band
with decreasing γ, resulting in lower curvature gradients. Further,
both |K| and ε2 are transferred from the edge toward the midline
of the band, reducing the magnitude of the gradient of the con-
tinuum bending-energy density and decreasing the likelihood of
creasing or tearing accordingly. Nonzero values of |K| indicate
that stretching contributes significantly to the overall shape of the
band, as zones in which |K| is largest coincide with zones of large
ε2, to which the continuum stretching-energy density (see the SI)
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(a)

γ = 3.0π γ = 3.0π ·107/12

(b) H2

(c) |K|

(d) ε2

Fig. 8 Both mean and Gaussian curvature are concentrated along the intersection of degenerate self-intersecting achiral bands: (a) Collapsed bands
colored by stretchability as in Figure 2, (b) Square H2 of the mean curvature H, (c) magnitude |K| of the Gaussian curvature K, and (d) square ε2 of the
strain ε of collapsed Möbius bands for a = π and different values of the FvK number γ. Different scales are adapted individually to capture the entire
range of relevant values.

is directly related. This result confirms the previous observation
that decreasing γ yields bands with midlines that are more circular
and less out-of-plane, and, thus, to reducing bending. A zone of
low bending energy is maintained as γ decreases. The magnitude
|K| of K is largest in zones where H2 takes large values, resulting
in large values of the continuum bending-energy density. However,
this effect is mitigated by reduced gradients allowed by stretching.

The transition from bending to stretching occurs smoothly ex-
cept for combinations of γ and a that lead to degenerate collapsed,
achiral equilibrium shapes. Figure 8 provides plots of H2, |K|,
and ε2 for a = π and the two smallest values of γ considered. For
γ = 3.0π · 107/12, H2 and |K| appear to diverge at a single point
along the intersection and decay quickly with increasing distance
from that point. The value of ε2 is also greatest at the point in
question but does not decay as rapidly. For γ = 3.0π, which results
in a further collapse, by folding, into a two-dimensional flat annu-
lus, the values of H2, |K|, and ε2 are maximal along the midline of
the band, which is the line along which folding occurs.

3.5 Lines of curvature

Differences in the distributions of curvature and stretch are mir-
rored by the lines of curvature, which are curves with tangent

vectors that align with a principal direction at every point. Plots
of these curves for representative combinations of the FvK num-
ber γ and aspect ratio a are provided in Figure 9. To construct
these plots, we determine the vector field of principal directions
and approximate the lines of curvature by computing the relevant
streamlines.

The least regular grid occurs for γ = 3.0π ·107. The improvement
in regularity that occurs as γ decreases indicates that smaller
gradients of the curvature correspond to smaller strain gradients.
Consistent with the previous discussion, bands made of stretchable
materials therefore exhibit reduced concentrations of bending.

The lines of curvature of a collapsed band form a nearly regular
grid but curve sharply near the intersection of the band (which
coincides with the previously mentioned axis of symmetry). In the
absence of collapse, for bands made of stretchable materials we
otherwise observe similar behavior. However, lines of curvature
bordering the axis of symmetry of such a band are smoother.

4 Conclusions and discussion
Using a discrete, lattice-based model, we confirm analytical results
for the distributions of curvature and torsion on the midlines of
Möbius bands21 along with results qualitatively similar to those
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(a)

a = π, γ = 3π ·107

(b)

a = π, γ = 3π ·1014/2

(c)

a = π, γ = 3π ·107/12

Fig. 9 Lines of curvature are symmetric and trace out a nearly regular grid
for bands made of stretchable materials, indicating reduced concentrations
of bending-energy density: Lines of curvature for three representative
combinations of γ and a are shown on a rectangular strip with the corre-
sponding equilibrium shape provided on the left. (a) Developable shapes
have pronounced lines of curvature along the length of the band with
nearly straight lines of curvature along their widths. (b) For bands made
of stretchable materials, shapes with circular midlines also have nearly
straight lines of curvature; however any such band curves more gradually
near its axis of symmetry. (c) Collapsed shapes have nearly straight lines
of curvature with a sharp curve near the center of the intersection.

obtained for continuum models.20,22,23 By analogy to the effect
of writhe,33,34 we find that twisting strain becomes delocalized if
stretching is allowed. To predict macroscopic band shapes for a
given material, we establish a connection between stretchability
and relevant continuum moduli. This affords insight regarding the
practical feasibility of synthesizing Möbius bands from materials
with continuum parameters that can be measured experimentally
or estimated by upscale averaging.

We find that Möbius bands adopt different characteristic shapes
depending on stretchability, as described by the FvK number γ,
and aspect ratio a. For sufficiently large values of γ, equilibrated
Möbius bands have similar shapes and appear to be nearly devel-
opable, regardless of the values of a. In such bands, the bending-
energy density is highly localized in regions where the curvature
gradients are high. For smaller values of γ, the centerlines of
equilibrated bands appear to be more circular and planar. The
bending-energy density of such bands is therefore delocalized.
Shape differences becomes more pronounced when a is reduced.
These parameter combinations provide reasonable target shapes
and strategies for the guided assembly and synthesis of Möbius
bands. In particular, we find that highly stretchable bands have
lower energies, indicating that it should be easier to make Möbius
bands from more stretchable materials. It is therefore conceiv-
able that Möbius molecules might correspond to these stretchable
shapes. For γ > 3π · 107/6, we find that the energy becomes in-

creasing large as a decreases—so that wider bands should be more
difficult to make than narrower ones. For γ < 3π ·107/6, we find
conversely that narrower bands have lower energies; however,
for a = π and either γ = 3π · 100 or γ = 3π · 107/12 they collapse
into self-intersecting achiral shapes, which are degenerate Möbius
bands. This suggests that highly stretchable bands with small
aspect ratios might be unstable and thus impossible to make. For
101 . γ . 102, bands with smaller values of a should, however, be
easier to make than those with larger values of a.

Thus, γ and a influence not only the equilibrium shape of a
Möbius band but also its ease of guided assembly. Due to the
energetically advantageous nature of bands made of stretchable
materials, the ability to design and fabricate Möbius bands with
nondevelopable shapes might be valuable. These findings could be
helpful in a variety of applications and also serve as an archetype
for other twisted topologies.

In particular, our results indicate that bands made of stretchable
materials are distinguished from bands with developable shapes by
lower curvature gradients. Consequently, the extent to which the
curvature of a band is homogeneous increases as the FvK number
γ decreases. This connection between stretchability, curvature
gradients, and shape has implications for the electronic ground
state of quantum Möbius bands.35 In particular, the ground and
excited states of a Möbius band determined by minimizing Wun-
derlich’s functional over a restricted family of midlines were found
to exhibit wave functions that are significantly altered by curvature
effects.36 Similarly, curvature has been found to influence electron
localization, where deep potential wells arise in connection with
singularities of the bending-energy density.37 Since stretchabil-
ity and curvature are inextricably linked,25 our results suggest
that the electron localization of a quantum Möbius band is di-
rectly related to its stretchability and aspect ratio. For bands made
of stretchable materials, the combined influences of nontrivial
Gaussian curvature and mean curvature may yield unprecedented
effects.

Möbius bands comprised of graphene with architectures that
impart stretchability might allow for advances based on Möbius
topology. Importantly, the use of graphene Möbius bands for
topological insulators has already been investigated.38

Also in the quantum realm and taking advantage of Möbius
topology, a method to enhance spiral intramolecular charge trans-
fer in Möbius cyclacene for use in novel optical and photoelectric
devices has been proposed.39

Given the ever-increasing spectrum of applications, the treat-
ment of stretchability and aspect ratio and their implications for
the Möbius band presented here may help guide further develop-
ments as well as to increase the theoretical understanding of these
fascinating objects.
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