
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/softmatter

Soft Matter

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


The Twisted Tauopathies: Surface Interactions of Helically

Patterned Filaments Seen in Alzheimer’s Disease and Elsewhere

Nash D. Rochman

Department of Chemical and Biomolecular Engineering, Johns Hopkins University

Sean X. Sun∗

Departments of Mechanical and Biomedical Engineering,

Johns Hopkins University, Baltimore MD 21218

Abstract
This paper broadly examines the dynamics of helically patterned filaments interacting with a

surface and focuses on the surface interaction of amyloid fibrils formed by tau protein. Two struc-

tures are addressed in detail: cylindrical filaments with periodic thinning (CF-PT) and paired

helical filaments (PHF). PHF is observed in neural tissue affected by Alzheimer’s disease and may

aggregate to form the pathological neurofibrillary tangles associated with the illness. Work in elec-

tron microscopy has demonstrated the conversion of CF-PT into PHF in vitro, suggesting CF-PT

to be a PHF precursor in vivo. Here we model CF-PT as a patterned elastic rod placed on a

flat surface (characteristic of the environment during microscopy) and examine the conformational

changes resulting in stable surface bonding. Analysis of this conformational space reveals structures

resembling PHF and thus provides a mechanistic explanation of the CF-PT to PHF transition. We

develop a general phase diagram of the filament conformation as a function of filament twist and

bend rigidity. Results of this work also suggest that we can obtain desired filament conformations

by patterning interactions between elastic filaments with a substrate, and therefore can be used as

a method in microfabrication.

∗Electronic address: ssun@jhu.edu
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I. INTRODUCTION

Tauopathies are a group of diseases linked by the pathological aggregation of the tau

protein. Tau is known to be a microtubule stabilizing protein prevalent in neurons of the

central nervous system. Owing to this fact, many tauopathies are neurodegenerative dis-

orders perhaps the most commonly discussed being Alzheimer’s disease[1]. Beginning with

the original characterization by Alois Alzheimer in 1907, great interest has been taken in

the striking structural changes of affected neurons showing the accumulation of dense, tan-

gled fiber bundles completely reshaping neural tissue[2]. Over time much improved imaging

techniques have become available, and as great efforts have been taken to determine the

composition of these tangles; increasingly finer structures have been elucidated encouraging

the suggestion of detailed mechanisms of formation. In particular, recent developments in

scanning transmission electron microscopy (STEM) have presented many striking images of

the fine structure of individual, unbundled fibers. One such structure which may aggregate to

form these tangles, and the primary concern of this discussion, is the paired helical filament

(PHF) which has recently been realized to be an amyloid fibril formed by tau protein[3].

As the name suggests, PHF’s were initially posited to be pairs of individual filaments

twisted about one another[4], an explanation favored until electron microscopic data became

available[5] which suggests PHF’s to be single filament structures. In these images, another

class of filament is often seen in regions occupied by PHF, namely cylindrical filaments with

periodic thin regions (CF-PT) also labelled “straight filaments”[6]. CF-PT bears a close

resemblance to PHF, sharing the same turn period; however, CF-PT has a smaller radial

variance than PHF with larger thin regions and smaller wide regions. In addition, upon

sonication, it has been observed that a mixed population of CF-PT and PHF is converted

into one wholly composed of PHF[5]. Motivated by this information, Ruben et al. have

suggested CF-PT to be a PHF precursor filament. It is a primary goal of this paper to

provide a surface mediated mechanism for the conversion of CF-PT to PHF. Towards this

aim, let us take a closer look at the fine structure of amyloid fibrils.

Utilizing the electron microscopic data discussed above in addition to solid state NMR,

Paravastu et al. have suggested a structural model for amyloid fibrils where each fiber is

composed of a series of triangular sheets subject to an intrinsic twist along the fibril axis

(see Figure 1 a.)[7]. In the next section, we will consider the Paravastu model to be the
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primary structure of each fibril and examine what secondary structures develop when fibrils

are allowed to rest on a flat, attractive surface.

We will begin our investigation by working with a simplified, cylindrical model for the

fibril and examine the system in terms of elastic bending and twisting energies, and bond-

ing energies with the underlying surface. We use analytic theory to find preferred filament

conformations resulting in stable bonding with the surface and thus restrict our analysis to

a simple system where we assume isotropic bend stiffness. The general case, for filaments

with anisotropic bend stiffness, has been studied recently [8] presenting a rich description

of the possible conformational states. Here, with our simpler model, we cannot recreate all

the conformations presented in that work, but instead focus on generating those with out-

of-plane (writhing) configurations. With the exception of a single conformation (introduced

as the “Unwound” filament below) we will be exclusively examining conformations which

are kinetically-quenched with a fixed linking number. These problems fall under the general

category of elastic filaments interacting with other objects. A prime example of this is the

coiled coil structure encountered in proteins[9], which through helical bonding interaction

between alpha-helical filaments, can form a variety of geometries[10–12] Others have exam-

ined conformations of filament bundles and ropes. These complex structures are formed by

balancing mechanical deformation energy with bonding energy between filaments.

The theory developed for the fibril will then be reconsidered in the context of the Par-

avastu structure and we will provide a surface mediated mechanism for the conversion of

CF-PT to PHF identifying CF-PT as a non-bending Paravastu fibril and PHF as its heli-

cal secondary structure. Before we begin construction of the model we first wish to state

that, for simplicity, we assume the cylindrical filaments with helical bonding patterns (rep-

resenting CF-PT) form free from the surface and make contact with the surface all at once.

We recognize the limitations inherent to this assumption towards direct comparison with

dynamic experimental data.

II. MODELING METHOD

Note that over the course of this discussion we will introduce parameters relevant to the

description of the fibril. A summary of key parameters can be found in Table I (following

Figure 5). The first thing we must do is motivate the substitution of cylinders for the
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more detailed fibril structure. To do so, consider one period of the Paravastu structure and

identify the edges of each triangular face that are closest to and thus most likely to bond

with the surface. Each face has exactly one such edge apart from the face directly in the

middle of the period (and completely inverted) which has two. If each face is replaced by a

disc, and the identified edges become designated bonding points rotated about the axis of

the filament by an angle equal to that of the original edge, we find that these points map

the outer third of a helix with the “center” missing - that is the region where the pattern

would lie primarily in the upper hemisphere of the cylinder with respect to the surface. If

this region is primarily non-bonding, a fact which will be demonstrated below, a cylinder

with a simple helical bonding region will well approximate the fibril structure. The greatest

discrepancy is the fact that a full helix is represented by a twist of 2π over the turn length

whereas the actual fibril structure twists by a total of 2π
3
; thus the preferred bonding state

for the fibril will have less accumulated twist than the cylinder. This will be addressed later;

for now, let us focus on the simplified case.

Here we will explore the dynamic conformation changes of helically patterned rods or

filaments - that is cylinders with a helical bonding pattern on their surfaces. We will label

the period of the helical pattern L and a filament segment of length L a “monomer” (see

Figure 2). This bonding pattern will be able to stick to objects on which a filament is placed

(for instance a flat plate) with a “close-contact” approximation depending on the nature of

that object’s surface. The filament will then twist along its longitudinal (or tangential)

axis and bend along its radial axes to increase contact of the bonding pattern with the

object while balancing the mechanical strain induced by this process. In particular, we will

be discussing the case where the filament twists to increase bonding contact and bends to

facilitate that twist. We will only consider filaments of total lengthmL wherem is an integer

number of monomers.

Our goal is to find the most stable geometries for these filaments when they are placed

on a flat plate to which the bonding pattern can stick. Perhaps the most natural place to

start will be with a general expression defining filament geometry and to show how one can

derive the energy from that geometry. Beginning with a point in three dimensional space

pn, and a coordinate frame (three orthonormal vectors e1,e2, and e3), one may trace out

any space curve containing that point in the following way (noting that without a loss of

generality, one may select e3 to be the tangent vector of the filament at the selected point)
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Figure 1: a. Overlay of the molecular structure constructed using the atomic coordinates published

online[7] (PDB ID: 2LMP) in the Protein Data Bank[13] with our graphical representation. The

lighter blue cylinders are regions where the triangular faces are omitted to better represent the

twist over the length of the fibril. b. Motivation for the simplified fibril representation in two steps:

first, identification of each face as a disc with a single bonding point replacing the edge of each

face closest to the surface; second, the continuation of the resultant helical bonding pattern. c.

Visualization of the section of the bonding pattern missing from the actual filament.

with index n: pick three angles, θ1(n−1),θ2(n−1), and θ3(n−1); rotate e1(n−1),e2(n−1),

and e3(n− 1) by angles θ1(n− 1),θ2(n− 1), and θ3(n− 1) about axes e1(n− 1),e2(n− 1),

and e3(n− 1) respectively; pick the next point to be pn = pn−1 + Se3(n− 1) where S is a

real number; and repeat. It should be noted that θ1,θ2, and θ3 must be sufficiently small so

that the three dimensional rotations are commutative and the construction is well defined.

This can be ensured by converting this discrete construction to a continuous one replacing

the angles θi with angular velocities dθi
ds

and defining the space curve in the following way

with a general infinitesimal rotation matrix. Here ei(s) is the solution to the equation:

dei(s)

dt
=


0 dθ3

ds
−dθ2
ds

−dθ3
ds

0 dθ1
ds

dθ2
ds

−dθi
ds

0

 ei(s) (1)
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Figure 2: a. Two monomers overlaid with the coordinate axes defined at each point p(s) of the

center of the fibril: e3, the unit vector tangent to the fibril; e1, the unit vector in the direction of

the bonding point b(s); and e2 defined to be e1 cross e3. b. An illustration of fibril bend along

the e2 axis, dθ2ds . c. An illustration of fibril twist along the e3 axis, dθ3ds – in this image the pattern

appears in the same spot on both discs because the fibril was twisted: with no twist the bonding

pattern on the right disc would have been where the grey dot is.

subject to the initial conditions ei(0) = e0
i , and p(s) is given by:

p(s) = p0 +

ˆ s

0

e3(s′)ds′ (2)

For convenience, we’ll choose p0 = [0, 0, a] and e0
i = −ez, ex, ey. p(s) specifies the point

corresponding to the center of the slice (a disk) of the filament a length s down from p0.

Now to define the bonding pattern b(s), we can label the radius of the filament a, and

(again without a loss of generality) choose the bonding point such that e1is the radial vector

satisfying b0 = p0 + ae1(0). We can now prescribe a helical pattern in terms of, e1(s), and

e2(s):

b(s) = p(s) + a

[
cos

(
−2π

L
s

)
e1(s) + sin

(
−2π

L
s

)
e2(s)

]
(3)

Finally we can note b0 = [0, 0, 0].

Equipped with the tools to define filament geometry, we can construct the formalism for

the energy. Considering the elastic limit, the filament may be approximated to behave in a
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springlike fashion such that the strain energy is a function of angular shift squared i.e.:

EBend = κB

ˆ mL

0

(
dθ1

ds

)2

+

(
dθ2

ds

)2

ds (4)

ETwist = κT

ˆ mL

0

(
dθ3

ds

)2

ds (5)

where κB and κT are the elastic moduli for the bend and twist of the filament respectively

- a measure of filament stiffness. There is one more term to consider - the bonding energy

of the filament. Given a “contact” distance, ε, and the bonding energy with the flat plate

per unit length, γ (< 0), we can fix the plate in the x− y plane and write down a bonding

function as follows:

GBond(s) =

 1

0

B(s)·ez ≤ ε

else
(6)

and the bonding energy:

EBond = γ

ˆ mL

0

GBond(s)ds (7)

Putting these three terms together, we get a general expression for filament energy:

E

(
κB, κT , γ,

dθi
ds

(s)

)
=

ˆ mL

0

κB

[(
dθ1

ds

)2

+

(
dθ2

ds

)2
]

+ κT

(
dθ3

ds

)2

+ γGBond(s)ds (8)

As clean as this construction may be, it is unfortunately quite difficult to ascertain GBond(s)

given an arbitrary form for dθi
ds

(s). For this reason, we will start by trying to restrict the form

of dθ3
ds

(s) in a way that will make the problem more tractable without losing any strongly

bonded configurations. In addition we will take the limit ε→ 0 for close contact.

A. Selecting Relevant Conformations

Before we contiune, we would like to note again that we are focused primarily on

kinetically-quenched structures where the linking-number is fixed. Let us consider three

simple filament confirmations in contact with the surface. The first case is an unbent fil-

ament segment of length l which, before twisting, has one point of contact between its

bonding pattern and the bonding surface. Further let dθ3
ds

(s) = c over this local region. If

c = 0, the twist energy attains its minimum value of 0 and a finite number of points (one

point) on the filament are bonded to the surface. The second case is when −∞ < c < 2π
L

7
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or 2π
L
< c <∞. The twist energy is nonzero and still only a finite number of points on the

filament can bind to the surface. The third case is when c = ±2π
L
, it is possible for every

point of the bonding pattern to bond to the surface. Recalling, EBond = γ
´ l

0
GBond(s)ds,

and noting that GBond(s) takes the form of a sum of finitely valued delta functions, in cases

one and two we find the filament energies to be: EFirst
Bond = ESecond

Bond = 0 and EThird
Bond < 0;

EFirst
Twist = 0, ESecond

Twist , E
Third
Twist > 0. Thus we see that to find the minimum energy solution for

the segment, c takes one of two possible magnitudes; for the limiting case of high κT , c = 0,

otherwise c = 2π
L

. We can also see that if the same condition, dθ3
ds

(s) = c, is imposed on an

unbent segment, which has no points of contact between its bonding pattern and the surface

before twisting, the bonding energy is zero. Thus we will restrict ourselves to considering
dθ3
ds

(s) to be a piecewise constant function attaining the values ±2π
L

or 0 over each segment

depending on whether it is bonding or nonbonding (Note this requirement will be slightly

relaxed later). Now we would like to find similar restrictions for dθ1
ds

(s) and dθ2
ds

(s). To do so,

we will first need to discuss the coupling between filament bend and twist.

When a filament begins to strain to bond with the surface, as discussed above, every

region around a point of contact between the bonding pattern and the surface may twist

to increase the magnitude of the bonding energy; but regions without these contact points

may not. For a filament of length mL there are m+ 1 such points. Different shapes develop

depending on how many of these points initially twist. The two extreme cases corresponding

to one point and all m+ 1 points initiating twist are depicted in the bottom and top of Fig.

3 respectively.

When twist initiates from a single point (Fig. 3b), maximal contact can be achieved

by twisting; however, reaching this conformation requires all but one of the points initially

bound to the surface to be temporarily lifted. This is a special case which will be referred

to as an “unwound” filament and will be investigated in more detail later when a fuller

energy landscape has been developed. On the other hand, when multiple points initiate

twist (Fig. 3a.), the filament faces a geometric constraint that forces the introduction of a

complementary bend or twist. This can be seen as follows: consider that two points p and q

are initiating twist. In the region [p, q], p initiates twist with an angular velocity of −2π
L
and

q initiates twist with an angular velocity of 2π
L
. If each twisted region is of length δ

2
, then

the point p + δ
2
is twisted by an angle of 2πδ

L
from the point q − δ

2
. Without allowing the

filament to break, this requires that the region [p+ δ
2
, q − δ

2
] bend or twist by at least 2πδ

L
.
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Δ 

Figure 3: Depictions of the two types of filament bonding twist. On the bottom - single initial

point. On the top - multiple. Here ∆ specifies the period of physical twisting and L that of the

bonding pattern.

We must also determine what types of bend are equivalent to twisting the filament. The

basic problem statement is that we want to know what collections of rotations about e1 and

e2 are equivalent to a single rotation about e3. One may quickly show (see Appendix A)

that any rotation about e3 can be achieved by moving the plane formed by e1 and e2 into

the plane normal to e3 and rotating about e1 by an equivalent angle. Additionally we can

verify (see Appendix A) that any arbitrary rotation may be written as a rotation about only

two axes (i.e. that combinations of bend deformations alone is equivalent to an arbitrary

rotation of the coordinate frame). Before we go on, we may note that excepting the special

case where the desired rotation about e3 is 2π which will be discussed below (as the “looped”

case in the next section), the minimum number of rotations about e1 and e2 that can achieve

the desired result is three. In short, to accomplish a net rotation about e3 by only rotating

about e1 and e2 in this fashion, one must rotate an extra π radians about e1 or e2.

Finally we note that the lowest energy solution for a non-bonding region is also one of

constant twist and bend. Note that we only consider regions that bend around either e1 or

e2, but not both to ensure the boundary conditions are satisfied. Consider a non-bonding

region of length l that must bend/twist by an angle ψ. We may write the angular velocity

over this region as dθi,j
ds

= ψ
l

+ f(s) such that integrating the angular velocity over the total

9
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length yields ψ: ˆ l

0

ψ

l
+ f(s)ds = ψ ⇒

ˆ l

0

f(s)ds = 0. (9)

Integrating the square of the velocity over l yields the deformation energy (up to some

multiplicative constant):
ˆ l

0

(
ψ

l
+ f(s)

)2

ds =
ψ2

l
+ 2

ψ

l

ˆ l

0

f(s)ds+

ˆ l

0

f 2(s)ds =
ψ2

l
+

ˆ l

0

f 2(s)ds (10)

We see that the strain is minimized when f(s) ≡ 0 and the angular velocity is constant.

Now we have suitable restrictions on dθi,j
ds

(s): between points bonded to the surface:

they integrate to null (or 2πn); they are piecewise constant; and over bonding regions∣∣dθ3
ds

(s)
∣∣ = 2π

L
. These rules all lead to strongly bonded conformations. In particular let us

look at the following class of filaments: considering a total length of mL, divide the filament

into regions of length ∆ such that:

∆ =
mL

M
(11)

where M is an integer (see Fig. 3). Now we may define dθi
ds

(s) as follows. We want the

strain to be constant over both regions that bend along e2, and those that bend along e1.

According to Eq. (35), the total bend in e2 is of angle d = 2πδ
L

where δ is the length of

the bonding region with the surface and the total bend in e1 is of angle a + c = π. Stated

another way, this means that if li is the length of the non-bonding region over which ei

bends, then:
π

l1
=

(
2πδ
L

)
l2
⇒ l1 =

L

2δ
l2 (12)

because the total angular velocity is constant as stated in Eq. (10). The total length of the

non-bonding region is ∆− δ = l1 + l2, which yields:

l1 + l2 =

(
1 +

L

2δ

)
l2 = ∆− δ ⇒ l2 =

∆− δ
L
2δ

+ 1
(13)

This specifies the following functions for our angular velocities:

dθ3

ds
(s) =


2π
L

0

s ∈ [n∆, n∆ + δ
2
] ∪ [(n+ 1)∆− δ

2
, (n+ 1)∆]

else
(14)

dθ1

ds
(s) =


2πδ/L+π

∆−δ

0

s ∈ [n∆ + δ
2
, n∆ + 1

2
(∆− l2)] ∪ [(n+ 1)∆− 1

2
(∆− l2) , (n+ 1)∆− δ

2
]

else

(15)
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dθ2

ds
(s) =


2πδ/L+π

∆−δ

0

s ∈ [n∆ + 1
2

(∆− l2) , (n+ 1)∆− 1
2

(∆− l2)]

else
(16)

where n is an integer between 0 and M − 1, and δ < ∆. We can calculate the energies of

filament configurations as follows:

E(∆, δ) = M


ˆ ∆−δ

0

κB

(
2πδ/L+ π

∆− δ

)2

ds︸ ︷︷ ︸
nonbondingregion

+

ˆ δ

0

κT

(
2π

L

)2

ds︸ ︷︷ ︸
bondingregion

+

ˆ mL

0

γGBond(s)ds (17)

We have restricted dθi
ds

(s) so that we can write down the bonding term as

ˆ mL

0

γGBond(s)ds =
γδ

2

M∑
n=0

m∑
α=0

Γ(n, α) (18)

where:

Γ(n, α) =


2

1

0

n∆ = αL, n 6= 0,M

n∆ = αL, n = 0,M

else

(19)

This function is merely restating that only regions around points of initial contact between

the bonding pattern and the surface can initiate twist to increase bonding energy. Plugging

this into Eq. (17) yields (the general form of the energy for the “helix” conformation in the

next section):

E(∆, δ) = M

[
κB

∆− δ

(
2πδ

L
+ π

)2

+ κT δ

(
2π

L

)2
]

+
γδ

2

M∑
n=0

m∑
α=0

Γ(n, α) (20)

We can now explore the possibilities for ∆ and find the optimal δ minimizing the energy

(see Fig. 4). We see that the minimum energy configurations occur for ∆ that meet the

following condition:

N∆ = mLwhereN is an integer (21)

So we see a natural length scale ∆ developing for the filament - but we can do even better

than Eq. (21). We can argue that the preferred ∆ is in fact:

∆ = LormL (22)

This is because to form a conformation with a ∆ greater than L, it requires lifting a point

already bonded to the surface. Since all bonded points are equally likely to be lifted, there

11

Page 11 of 26 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



0 100 200 300 400 500
−350

−300

−250

−200

−150

−100

−50

0

m

∆

E −
γ

m = 100

0 100 200 300 400 500
−300

−250

−200

−150

−100

−50

0

m

∆

E −
γ

m = 100

k
B
/k

T
 = 1/1000 k

B
/k

T
 = 10

Student Version of MATLAB

Figure 4: The conformation energy of the filament, Eq. (20), as a function of the periodicity,

∆. For each ∆, the plotted energy is also minimized with respect to the length of the bonding

region δ. When N∆ = mL where N is an integer and mL is the total filament length, we find a

local minimum energy configuration. On the left, for κB/κT = 10−3, we find a degenerate set of

minimum energies. On the right, for κB/κT = 10, we do not see similar degenerate configurations

and the minimum energy solution is found only when ∆ = mL.

are multiple kinetic traps indicative of a frustrated system. Thus ∆ = L is the most readily

accessible configuration while ∆ = mL maximizes bonding (again referencing the “unwound”

conformation).

Figure 4 shows that when the bending modulus is much less than the twist modulus,

there are no structures where L < ∆ < mL that correspond to a significantly lower energy

state than for ∆ = L. As the bending modulus increases, larger ∆ configurations become

preferred since the filament must bend by π radians no matter how small δ becomes. The

energy barriers present in this landscape originate from choices of ∆ for which most of the

twisted regions of the filament do not coincide with where the binding pattern is in contact

with the surface. For these cases, the filament strains and “straightens out” the binding

pattern, but does not increase the binding energy. For many of these choices of ∆ the

no-strain solution with zero energy is the preferred conformation.

For the amyloid case, L represents the turn period for CF-PT and ∆ represents the turn
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period for PHF. As mentioned in the introduction, we know this value to be shared between

the two filaments and so will focus on a discussion of structures corresponding to the length

scale ∆ = L. For an arbitrary filament where the bend modulus is much larger than the twist

modulus, the treatment below will remain relevant with the selection of a larger preferred ∆.

We should also note at this time that the special “unwound” case (∆ = mL) does correspond

to a lower energy state than any structure of period ∆ = L for certain values of κB and κT .

We will keep this case in mind as we construct the energy landscape.

B. Filament Energy Landscape

Allowing the twist to be piecewise constant still produces an infinite number of possible

filament configurations. Here we will investigate four simple filament configurations and

calculate their equilibria. Two unbending configurations are considered - the original, “Flat”

filament, and one that merely twists, “Twisted,” on the surface to increase bonding character

then reverses that twist to meet the boundary conditions. Two bending configurations

are considered - “Looped” of accumulated twist 2π (
∣∣dθ3
ds

∣∣ ≡ 2π
L
) and “Helix” introduced

in the previous section (
∣∣dθi
ds

∣∣ piecewise constant). The “Looped”, “Helix”, and “Twisted”

conformations are all kinetically quenched with fixed linking number.

To find the minimum energy configuration, a single parameter is varied: for the Looped

case, this is the radius of the loop; for the Twisted and Helix cases this is the bonding length,

δ (note for convenience the parameter β ≡ Lδ
2π

is introduced in the description of the Helix).

Also note that the parameter β remains in the equation for the Helix due to the fact that

the energy for this conformation is minimized numerically. The Flat, unstrained filament,

has zero energy. (See Appendix B for the calculations.)

ELooped = γL+ 2π
[
2
√
−γκB + κT (2π

L
)
]

EHelix(β) = κB
(β+π)2

L(1− β
2π )

+ κTβ
2π
L

+ γβ L
2π

ETwisted = 4π
√
−γκT − (2π)2 κT

L
+ γL

EFlat = 0
(23)

A table containing a list of all parameters used to define the energies above and construct

the phase diagram in Figure 6. is displayed below:

Before we move on, we would like to take a moment to discuss the physical nature of these

parameters. κB and κT are mechanical properties of the filament representing their rigidity

with respect to bending and twisting. γ depends on the nature of the binding between the
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Figure 5: Pictures of the four calculated filament configurations with piecewise constant twist

interacting with a flat surface.

surface and helical pattern of the filament: the more strongly binding, the more negative γ

becomes. is the length of repeat for the helical pattern of the filament. ∆ is the period for

the filament conformation (e.g. the Looped period). δ is the length over which the filament

twists and binds to the surface within each period ∆.

We may see that even after energy minimization with respect to β is completed, the above

equations still contain four parameters; however, we may scale the energy by length and γ

to return only two degrees of independence (the compound parameters κB
−γL2 and κT

−γL2 ).

ELooped

−γL = 2π
[
2
√

κB
−γL2 + 2π κT

−γL2

]
− 1

EHelix(β)
−γL = κB

−γL2

(β+π)2

(1− β
2π )

+ κT
−γL2 2πβ +− β

2π

ETwisted

−γL = 2π
[
2
√

κT
−γL2 − 2π κT

−γL2

]
− 1

EFlat

−γL = 0
(24)

The first thing we may notice from the equilibria with the untwisted states, is all three

mechanically strained phases have the same maximum twisting modulus such that if it is

above the critical value, the filament remains “flat” and does not strain to interact with the
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Parameter Meaning

κB Bend Modulus

κT Twist Modulus

γ Surface Binding Character (Energy Density)

L Filament Pattern Period

∆ Filament Conformation Period

δ Length of Binding Region Within Period

β Lδ
2π

Table I: A summary of the key parameters used in this study. While it may be difficult to do so

for some, all are measurable quantities.

surface for any bending modulus. Scaling in the same fashion as above:

κcriticalT

−γL2
=

(
1

2π

)2

(25)

Similarly, we can generate a upper bound for the critical bending modulus beyond which

the Twisted configuration is preferred. Taking the limiting case κT = 0:

EHelix(β)

−γL
=

κB
−γL2

(β + π)2(
1− β

2π

) − β

2π
(26)

we have the following condition for the boundary between Helix and Flat:

EHelix(β) = 0⇔ κB
−γL2

=
β
(
1− β

2π

)
2π (β + π)2 (27)

This function attains its maximum with respect to β when β = π
2
and in that substitution

we get an upper bound for κB:
κcriticalB

−γL2
≤ 1

3

(
1

2π

)2

(28)

The phase diagram for the four configurations discussed above is shown in Figure 6. For

any point where κT < κcriticalT , we know the filament strains to interact with the surface.

Further, for any point in this region where κB > κcriticalB , the Twisted phase is preferred.

Let us finally return to consider the “unwound” case:

Eunwound

m
=

1

m

ˆ mL

0

κT

(
2π

L

)2

+ γ(1)ds (29)
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κT

−γ

κ
B

−
γ

Four−Phase Diagram

Looped
Helix

Twisted

Flat

Student Version of MATLAB

Figure 6: The phase diagram for the four filament configurations where the rightmost Flat con-

figuration change occurs at κcriticalT
−γL2 =

(
1

2π

)2 and the upper limit for the y-axis is taken to be our

upper bound for κcriticalB
−γL2 ≡ 1

3

(
1

2π

)2. The “Looped”, “Helix”, and “Twisted” conformations are all

kinetically-quenched with fixed linking number.

= L

(
κT

(
2π

L

)2

+ γ

)
(30)

We see that:

Eunwound = 0⇒ κT
−γL2

=

(
1

2π

)2

(31)

which is the critical point shared by all other mechanically strained phases. As mentioned

earlier, this phase is lower energy than any other phase considered within this critical value

of κT . It is the only conformation described in this work for which the linking number

changes with strain. If the linking number changes, the other conformations examined here

are predicted to destabilize and degenerate to this conformation; however relaxation of the

linking number requires the propagation of twist directed from a single initial point of contact

throughout the length of the entire filament and a suppression of twist originating from any
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other point. In a statistically relevant ensemble there must be some distribution of this case,

but it will be easy to distinguish from the other phases present as it will not appear curved.

C. Modeling the CF-PT to PHF transition

We have shown the existence of a helical secondary structure for a cylindrical filament

with a helical bonding pattern. Now we want to show that this work is relevant for the

CF-PT fibril as well. As displayed in Figure 1, CF-PT is a twisted triangular prism; thus

each slice of the fibril has three potential bonding edges and these edges form three helices

over the length of the fibril. In order to map this shape to our toy model, we first have

to identify L, the period of the fibril. This is one third the period of the triple helix: the

distance between slices where an edge is facing downward (in contact with the surface). See

Figure 7.

 

 

 

 

 

 

 

L 

2𝜋
3L  

L 

2𝜋
L  

a. 
 

b. 
 

Figure 7: a. A single monomer of the original model: here the period of the pattern (rotation of

2π) is equal to the period of the single helix, L. b. Three monomers in the model corresponding to

CF-PT: here the period of the pattern (L) is one third the period of the three helices. Note in b.

the three helices are drawn in brown, white, and blue and the bonding pattern (comprising sections

of each helix) is drawn in red.

Over this length, we can identify the edge in each slice closest to the surface and label

it as the bonding edge. This leaves us with a bonding pattern which is the first sixth of
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a helix of period 3L stitched together with the last sixth of such a helix. This shape is

indistinguishable from our toy model when constructing the Helix secondary structure since

that conformation does not twist or touch the surface in the center of each period. We may

now return to our expression for the energy of the Helix conformation, identified as PHF.

The only thing we must change is the bonding twist which was 2π
L

for the toy model and is
2π
3L

for the real fibril since the triple helix in the real fibril has period 3L.

Returning to (23) and introducing the factor of 1
3
yields:

EHelix(β) = κB
(β + π)2

L
(
1− 3β

2π

) + κTβ
2π

3L
+ γβ

3L

2π
(32)

with the critical points:

κcriticalT = −γ
(

3L

2π

)2

and κcriticalB = −γ 3

5

(
L

2π

)2
(

1− κT
−γ

(
2π

3L

)2
)

(33)

beyond which the Flat conformation is preferred. Allowing only this proposed PHF sec-

ondary structure for the fibril and identifying the Flat conformation as CF-PT we can

construct a phase diagram as was done above for toy model (See Figure 8).

κT

−γ

κ
B

−
γ

CF−PT and PHF Phase Diagram

PHF

CF−PT

Student Version of MATLAB

Figure 8: CF-PT and PHF phase diagram with the critical twist and bend moduli κcriticalT
−γ =(

3L
2π

)2
and

κcriticalB
−γ ≡ 3

5

(
L
2π

)2 specifying the axis delimiters.

We can further illustrate the detail of the fibril periods by constructing them directly

(through rigid body rotation and translation) from the atomic coordinates published online

by Paravastu et al.[7] (PDB ID: 2LMP) in the Protein Data Bank[13] (www.rcsb.org). Shown

below (in Figure 9) is the original PDB structure of the amyloid segment alongside three
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fibrils of one period in length: CF-PT, PHF (described above), and modified PHF. The

modified PHF structure is a higher energy conformation included for visual comparison

with experimental images (see Figure 10); however, it should be noted that the associated

bend energy is higher. The fibril may assume such a higher energy conformation with more

tightly bent segments to reduce the movement of period endpoints during bending.

Figure 9: Molecular models of the fibril where: a. is the axial view of the fibril section published

online (PDB ID: 2MLP), b. is a CF-PT monomer, c. is a PHF monomer, and d. is a modified PHF

monomer with a higher associated bend energy but requiring less motion of the endpoints (when

converting from CF-PT).

III. DISCUSSION

We have explored a variety of filament shapes possible for helically patterned elastic

filaments binding to a surface, and provided a surface mediated mechanism for the conversion

of CF-PT to PHF. Motivated by experimental images, we focused on writhing conformations

for which the linking number remains fixed. When the linking number changes, all of the

strained conformations explored here are predicted to degenerate into the “Unwound” case.
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Below in Figure 10, we show a visual comparison between STEM images reprinted from

Ruben et al.[5] and simplified versions of the molecular structures shown in Figure 9. The

color in these images is due to the dye used in STEM: dye is placed on the surface and thus

higher regions appear lighter in color. The simulated structures follow this convention.

Figure 10: Visual comparison between experimental STEM images (reprinted from Ruben et al.[5])

and simplified versions of the molecular structures shown in Figure 9 colored to resemble the staining

pattern of the STEM images: a. shows the PHF and modified PHF structures where the white

arrows labelling the experimental image refer to the raised section of each period and b. shows the

CF-PT where the arrows refer to the thin sections of each period.

Recent work coupling experiment and simulation-based image analysis [14] has provided

evidence to suggest the untwisting of amyloid fibrils when they are membrane-bound. While

it is yet unclear whether this untwisting observed is directly a CF-PT to PHF conversion,

the work nonetheless motivates further consideration of amyloid fibril-membrane interactions

that may forestall pathological aggregation. More generally, results of this paper suggest

that helical filaments and their interaction with substrates can generate a variety of config-

urations. This is relevant for the microfabrication of devices constructed from a variety of

materials (e.g. collagen[15] and other proteins[16], hydrogel[17], etc.) which allow for the
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design of increasingly sophisticated systems (e.g. synthetic flagella[18]) from the directed

or self assembly of nanoscale filaments. Recent theoretical work has complemented these

experimental advances by predicting a variety of shapes that filament bundles may adopt

depending on the relative values of the bend and twist moduli, and the nature of the filament-

filament bonding interactions[19, 20]. Additionally, many cell cytoskeletal systems are com-

posed of filament bundles (e.g. actin networks[21, 22], membrane traffic complexes[23], etc.)

motivating work on the elucidation of intermediate filament structures[12] (e.g. CF-PT and

PHF) and their, often nontrivial (e.g. fractal patterning[24]) organization. We hope that

the work presented here will be useful both for microfabrication and the investigation of tau

fibrils and other intermediate filament structures.

IV. APPENDIX

A. bend and twist equivalency

There is also one further consideration we must take into account: we must determine

what types of bend are equivalent to twisting the filament. The basic problem statement

is that we want to know what collections of rotations about e1 and e2 are equivalent to a

single rotation about e3. Note that in the description below without a loss of generality

e1 = ex etc.). Stated another way, we want to know the requirements on angles a, b, and c

such that a rotation about e2 by c, followed by a rotation about e1 by b, and then about e2

by a is equivalent to a rotation about e3 by d:
cos(a) 0 − sin(a)

0 1 0

sin(a) 0 cos(a)




1 0 0

0 cos(b) − sin(b)

0 sin(b) cos(b)




cos(c) 0 − sin(c)

0 1 0

sin(c) 0 cos(c)

 =


cos(d) − sin(d) 0

sin(d) cos(d) 0

0 0 1


(34)

We discover the following relationships hold:

c =
π

2
, a =

3π

2
, b = −d or c =

3π

2
, a =

π

2
, b = d (35)

In other words, any rotation about e3 can be achieved by moving the plane formed by e1

and e2 into the plane normal to e3 and rotating about e1 by an equivalent angle. Now let

us verify that any arbitrary rotation may be written as a rotation about only two axes (i.e.
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that combinations of bend deformations alone is equivalent to an arbitrary rotation of the

local coordinate frame). Let X,Y, and Z represent rotation matrices about axes e1,e2, and

e3 respectively. We begin with an arbitrary rotation of the form ZXY. We can write this

rotation as ZXY = Z′Y′TX′Y′′ where Y′ is a rotation of π
2
or 3π

2
and Z′, X′ and Y′′ are arbi-

trary. Now we can rewrite Z′ as a rotation about only e1 and e2 as Z′ = Y′X′′Y′ where X′′ is

another rotation. We obtain Z′Y′TX′Y′′ = (Y′X′′Y′)Y′TX′Y′′ = Y′X′′X′Y′′ = Y′X′′′Y′′.

Thus we have verified that any arbitrary rotation can be decomposed into rotations about

e1 and e2.

B. conformation energy minimization

To find the minimum energy for the three filament conformations considered (“Twisted",

“Looped", and “Helix"), a single parameter is varied: for the Looped case, this is the radius

of the loop; for the Twisted and Helix cases, this is the bonding length, δ. Let us begin with

the purely twisted case. First, divide the filament into two sections. One with twist of 2π/L

over length δ and a second of negative twist over the nonbonding region L−δ to ensure that

a null rotation is achieved from end to end. Labelling these regions A and B, we have

∂θA3
∂s

=
2π

L
(36)

∂θB3
∂s

=
2π
L
δ

L− δ
=

2π

L

[
δ

L− δ

]
(37)

⇒ ETwisted = κT

(
2π

L

)2

δ

[
1 +

δ

L− δ

]
+ γL (38)

with the preferred δ value that corresponds to the lowest energy:

δ∗ = L

[
1− 2π

L

√
κT
−γ

]
(39)

This yields a minimum energy of the Twisted configuration:

⇒ ETwisted = 4π
√
−γκT − (2π)2κT

L
+ γL (40)

With this we can find the line of coexistence with the untwisted Flat configuration (null

energy):

EFlat = ETwisted ⇔ κT
−γ

=
L2

4π2
(41)

22

Page 22 of 26Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



Now let us investigate the Looped configuration. The filament length is given by:

L = 2δ + 2πR (42)

where δ again is the length of each bonding region, and R is the radius of the circular

portion. This yields for bonding energy: Ebond = γ(L − 2πR). To calculate the bending

energy we first note that the curvature is constant around the circular portion of the curve

and zero elsewhere, yielding:
dθ2

ds
=

2π

2πR
=

1

R
(43)

Therefore the bending energy is

Ebend = κB
2π

R
(44)

The twist energy is the same as for the Twisted case above:

Etwist = κT
(2π)2

L
(45)

which leads to a total energy of:

ELooped = Ebend + Etwist + Ebond = κB
2π

R
+ κT

(2π)2

L
+ γ(L− 2πR) (46)

and a preferred R corresponding to the minimum energy solution:

R∗ =

√
κB
−γ

(47)

which yields:

ELooped = γL+ 2π

[
2
√
−γκB + κT (

2π

L
)

]
(48)

As before, we can find the line of coexistence with the untwisted configuration (null energy):

ELooped = EFlat ⇔ κB
−γ

=

(
L

4π
− π

L

κT
−γ

)2

(49)

For the Helix case we can begin by rewriting Eq. (17) for a single period where ∆ = L:

EL,δ =
κB
L− δ

(
2πδ

L
+ π

)2

+ κT δ

(
2π

L

)2

+ γδ (50)

identifying β = Lδ
2π
:

EHelix(β) = κB
(β + π)2

L
(
1− β

2π

) + κTβ
2π

L
+ γβ

L

2π
(51)
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We will calculate the preferred β (and thus the minimum energy) numerically; however, we

can note right away that for all values of β:

min
(
EHelix(β)

)
≥ 0 for κT ≥ −γ

(
L

2π

)2

(52)

Restated, the energy of each configuration is as follows:

ELooped = γL+ 2π
[
2
√
−γκB + κT (2π

L
)
]

EHelix(β) = κB
(β+π)2

L(1− β
2π )

+ κTβ
2π
L

+ γβ L
2π

ETwisted = 4π
√
−γκT − (2π)2 κT

L
+ γL

EFlat = 0
(53)
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Here we provide a mechanistic explanation for the conversion of CF-PT amyloid fibrils (b.; a. cross-

section) to PHF amyloid fibrils (c. and d.) thought to be important in the aggregation of pathological 

neurofibrillary tangles characteristic of Alzheimer’s disease. 
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