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We investigate the polymer packing around nanoparticles and polymer/nanoparticle topological constraints
(entanglements) in nanocomposites containing spherical nanoparticles in comparison to pure polymer melts
using molecular dynamics (MD) simulations. The polymer - nanoparticle attraction leads to good dispersion
of nanoparticles. We observe an increase in the number of topological constraints (decrease of total entan-
glement length Ne with nanoparticle loading in the polymer matrix) in nanocomposites due to nanoparticles,
as evidenced by larger contour lengths of the primitive paths. An increase of the nanoparticle radius reduces
the polymer - particle entanglements. These studies demonstrate that the interaction between polymers and
nanoparticles does not affect the total entanglement length because in nanocomposites with small nanoparticles,
the polymer-nanoparticles topological constraints dominate.

I. INTRODUCTION

The dynamics of long polymers is controlled by entangle-
ments, which are topological constraints imposed by the other
chains. These can dramatically change the polymer viscosity,
dynamics, mechanical and tribological properties. In this pa-
per we explore how spherical nanoparticles affect rheology by
studying the entanglements in polymer - nanoparticle compos-
ites in the cases when the polymer radius of gyration (Rg) is
larger than [1–4] or of the order of the nanoparticle diameter
(D) [5–9].

The quality of nanoparticle dispersion [10, 11] can play an
important role on the polymer structure thus on polymer en-
tanglements. In a well dispersed polystyrene (PS) chains/ (PS)
nanoparticles nanocomposite [12], neutron scattering showed
polymer chain expansion for polymer chains with radius of
gyration larger than the nanoparticle radius (R), similar to the
study of poly(dimethylsiloxane)/polysilicate nanocomposites
[13]. This has also been observed recently by simulations
[14, 15] and a thermodynamic model [16] but it is contrary
to other recent studies of PS/silica [10, 11, 17] nanocompos-
ites where polymers are unperturbed, and in poly(ethylene-
propylene)(PEP)/silica nanocomposites [5] where the polymer
chains are contracted at very high nanoparticle loading; how-
ever, in some of the previous studies [10, 17] good nanoparti-
cle dispersion has not been achieved and some others [5, 13]
transmission electron microscopy (TEM) data were not re-
ported, so the extent of dispersion is unknown.

Spherical nanoparticles can affect the primitive path and en-
tanglement network of long polymers [18]. An increase of
the entanglement polymer density is the origin of mechani-
cal reinforcement in nanocomposites [19–23]. In particular it
was shown using a slip-link model [24], that in nanocompos-
ites with ”bare” fillers, a relatively small level of reinforce-
ment was evidenced [23], which is not verified in PS/silica
and poly(methyl-methacrylate)/silica nanocomposites [25]. In
addition, in Ref.[23] was shown that the viscosity of the
nanocomposite, η, seems to be independent of the state of
dispersion and can be predicted by the classical Einstein law:

∗Electronic address: argyrioskaratrantos@gmail.com
†Electronic address: n.clarke@sheffield.ac.uk

η = η0(1 + 2.5)ϕ (where η0 is the viscosity of the pure poly-
mer melt, and ϕ is the nanoparticle volume fraction). How-
ever, the reinforcement is considerably higher when nanocom-
posites contain nanoparticles with grafted chains [23]. Such an
observation was also reported recently by molecular dynamics
simulations [26]. In addition, other parameters may also play
a role on mechanical reinforcement such as size and shape of
fillers, polymer matrix, interaction between fillers and matrix,
and computer simulations [20, 21, 27–31] have been used ex-
tensively to answer that fundamental problem.

The geometry of the nanoparticle (such as buckyball,
graphene, nanodiamond [32, 33] or nanorod [34–36]) can also
affect the polymer/nanoparticle entanglement network. How-
ever in most of the entanglement network studies, a dilute
nanoparticle regime [32–34, 36–38] has been investigated,
in which the polymer entanglement network, excluding the
nanoparticles, remains unaffected. Only the MD study of
nanoparticles R = 5 (where Rg≈D) [39] and Monte Carlo
(MC) study by Termonia [40, 41], have been performed at
nanoparticle loadings above percolation. It is worthy to note
that the MC study [40, 41] is based on a body-centered-
cubic (bcc) lattice in which the nanoparticles are fixed, and
the polymer free volume remains constant irrespective of the
nanoparticle size, which is not the real case in an experiment
[5, 42, 43].

In this article, we investigate the polymer packing (free vol-
ume) in nanocomposites which contain spherical nanoparti-
cles as fillers. We calculate the number of monomers between
entanglements, entanglements per chain [44] and primitive
path (the shortest path connecting the two ends of the poly-
mer chain subject to the topological constraints) [45] in both
polymer melts and nanocomposites of oligomers and weakly
entangled polymers by using topological algorithms [44, 46–
48] and applying different entanglements estimators [47]. The
rest of this paper is organized as follows. In Section II, the
theoretical background is given for the entanglement analysis
that is implemented in polymer melts and polymer nanocom-
posites. In Section III, we discuss first the primitive path and
entanglements of the polymer model used in this study. In
polymer nanocomposites, we investigate the free volume and
entanglements as a function of polymer molecular weight, vol-
ume fraction of fillers, interaction of polymers with fillers and
nanoparticle radius in comparison to theoretical relations. Fi-
nally, in Section IV, conclusions are presented.
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II. ESTIMATORS FOR ENTANGLEMENT LENGTH Ne

In polymer melts of sufficiently long flexible chain
molecules, neighboring chains strongly interpenetrate and en-
tangle with each other [49]. Thus, the motion of polymers
whose degree of polymerization is greater than the “entangle-
ment length” Ne is confined to a tube-like region.

The Ne is determined by the estimator of Everaers et al.
[45] (which we denote as classical S-coil), evaluated using the
geometrical Z1 algorithm [44, 46–48]. This Ne estimator is
determined by statistical properties of the primitive path as a
whole coil and evaluated for a given number of monomers N
in the polymer chain as follows:

Ne(N) = (N − 1)
⟨R2

ee⟩
⟨Lpp⟩2

(1)

where Ree is the end-to-end vector distance of a polymer chain
and Lpp is the contour length of its primitive path, the averages
are taken over the ensemble of chains.

Another estimator for the entanglement length can be used
by measuring the number of interior “kinks” [44, 46] which is
considered to be proportional to the number of entanglements.
The estimator on the number of ”kinks”, < Z >, is denoted
here as classical S-kink is given by [44]:

Ne(N) =
N(N − 1)

< Z > (N − 1) +N
(2)

In addition, there are modified estimators that provide an
upper bound for Ne, such as the modified S-coil [47], but they
tend to overestimate Ne for weakly entangled chains:

Ne(N) = (N − 1)

(
⟨L2

pp⟩
⟨R2

ee⟩
− 1

)−1

(3)

In order to eliminate the systematic errors that appear in
the previous estimators [47] and to obtain an accurate N–
independent value, we use an ideal Ne estimator (M-coil)
[47], which requires simulation of multiple systems of differ-
ent chain lengths, using coil properties:(

C(x)

x

)
x=Ne(N)

=
d

dN

(
⟨Lpp⟩2

R2
RW (N)

)
(4)

where C(x) ≡ ⟨R2
ee⟩/R2

RW(x) is the characteristic ratio [50]
for a chain with x monomers, and R2

RW(x) = (x − 1)r20 is
the reference mean squared end–to–end distance of a random
walk, where r0 = 0.967. Because of the dependence of C(x)
on the number of monomers x, this estimator can be applica-
ble to non-Gaussian chains. This non-Gaussian statistics of
chains and primitive paths produces systematic errors in the
old estimators for Ne such as Eq.(1) [51]. The M-coil es-
timator converges faster than Eqs.(1),(3) because it uses in-
formation from a series of polymer chains, while the S-coil
one uses only information from a single polymer chain length.
More discussion and details regarding the Ne estimators can
be found in [47]. The averages in our analysis are taken over
the ensemble of all chains at each time step. Then the time
average is taken for 400-2000 saved configurations depending
of the length size (at a time larger than the disentanglement
time: τd, τd = (N/Ne)3τRouse(Ne)≈185000τ for N = 200,
where τRouse(Ne) = 5000τ is obtained for semiflexible poly-
mers from Fig. 9 in [52]).

III. RESULTS AND DISCUSSION

A. Polymer melt

The chain and primitive path dimensions as calculated from
the Z1 algorithm [44, 46–48] for the polymer melts, of the
semiflexible model used in this study, are presented in Table
I. We depict the behavior of the M-coil estimator (Eq.(4)) for

TABLE I: Number of polymers in the simulation cell (Np),
monomers in a polymer chain (N ), length of the simulation cell (L)
measured in units of the monomer diameter σm, square end-to-end
vector distance < R2

ee >, contour length of the primitive path Lpp,
and number of ”kinks” < Z >. Radius of gyration of polymers with
N = 200: Rg≈8.

Np N L R2
ee Lpp < Z >

6000 10 41.328 15.2 3.75 0.02
3000 20 41.328 34.24 5.93 0.25
1250 40 38.891 69.29 9.82 0.94
1200 50 41.328 93.25 11.65 1.27
600 80 38.365 152.9 17.7 2.23
6000 100 41.328 190.98 20.58 2.78
300 160 38.365 313.4 32.05 3.51
118 200 30.454 389 37.59 5.4±0.3

the semiflexible Kremer-Grest (KG) polymer model studied,
in Fig.1, in comparison with results [47] of the fully flexible
KG model [53]. From Fig.1, it can be extracted that for the
polymer model used in this study, Ne ≈ 59.7, while the value
obtained from the S-coil estimator (Eq.(1)) is 54.9. Other
methodologies than the primitive path analysis, such as mean
square displacement measurements (MSD) [51, 54], can pre-
dict a much different Ne value [51, 54]. The MSD methodol-
ogy assumes validity of the reptation model and assumptions
made to come up with the numerical prefactors. By adding an
intrinsic bending potential [52] the Kuhn length [49], lk, in-
creases (for the polymer model used: lk =< R2

ee > /Lc =
2.02, where Lc is the contour length of the polymer chain) and
the packing length p [45] (the characteristic length at which
polymers start to interpenetrate) decreases, thus the Ne value
unavoidly decreases for a semiflexible model [55] in compar-
ison to the fully flexible Kremer-Grest model [53]. The glass
transition of a polymer model which contains a bending po-
tential (but not a torsional potential) is Tg = 0.4 [52].

B. Nanocomposites

For nanocomposites, we consider systems of spherical
nanoparticles in a dense polymer melt. In the nanocompos-
ite systems studied, a total number of Nt = 23600 monomers
were used in a cubic cell with nanoparticles of radius R = 1
or 2 (in nanocomposites with nanoparticles R = 4 and poly-
mer matrices N≤160, Nt = 9440 monomers were used,
whereas for R = 4 and polymer matrices N = 200 the to-
tal number of monomers was Nt = 23600). We define the
nanoparticle (filler) volume fraction ϕ in our simulations as
ϕ = πD3Nn

6V , where D is the nanoparticle diameter and < V >
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FIG. 1: Simulations yield Ne for the semiflexible polymer model
used in this study estimated from the M-coil estimator (Eq. (4)).
Solid lines interpolating between data points have been added to
guide the eye. For comparison, MD simulations of fully flexible
Kremer-Grest model (circles) [53] are included. Inset: Dependence
of Lpp for different polymers in the frozen particle limit.

is the total average volume of the nanocomposite simulation
box during the NPT simulation. The mass of nanoparticle is
m = 0.85πD3/6. Details of the nanocomposite systems stud-
ied (equilibration, length of the simulations) are given in [14]
and in Table II.

TABLE II: Nanoparticle volume fraction ϕ (%), simulation cell aver-
age length < L > measured in units of the monomer diameter σm,
number of nanoparticles Nn, radius of nanoparticles R, measured
in units of the monomer diameter, for nanocomposites. The ϕ (%),
< L >, correspond to nanocomposites with attractive nanoparticles
R = 1 (ϕ (%) and < L > of the other nanocomposites can be found
in supplemental information). In nanocomposites with R = 4 and
polymer matrix: N = 200 at ϕ≈10.7, 19.5, 26.9 %, the number of
nanoparticles embedded in the polymer matrix were Nn = 12, 25, 37
respectively.

ϕ (%) L(σm) Nn Nn Nn

R = 1 R = 2 R = 4

5.5 31.157 400 - -
10.3 31.863 800 100 5
14.5 32.569 1200 - -
18.2 33.282 1600 200 10
24.2 34.653 2400 300 15
36 38.53 4906 - -

In the next sections we investigate the effect of nanopar-
ticle volume fraction, polymer - nanoparticle interaction and
nanoparticle radius on the entanglement length Ne and prim-
itive path. In the nanocomposite systems studied we consider
the case of the primitive path analysis for both the frozen par-
ticle limit, where nanoparticles are held fixed in space dur-
ing the primitive path analysis, and the phantom particle limit.
In the phantom particle limit nanoparticles are unable to re-
strict polymer motion on the time scales relevant to repta-
tion dynamics. We approximate this limit, by removing the
nanoparticles from the simulated system prior to the primi-

0 5 10 15 20 25 30
volume fraction φ(%)

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

N
PF

R=1, attractive nanoparticles
R=1, repulsive nanoparticles
R=2, attractive nanoparticles
R=2, repulsive nanoparticles
R=4, attractive nanoparticles
R=4, repulsive nanoparticles

matrix: N=200

FIG. 2: Net packing fraction for polymers of N = 200, calculated
using Eq.(5), for differerent nanoparticle loading and radius for re-
pulsive (filled symbols) and attractive (open symbols) nanoparticles.
(i) polymer melt (black square), (ii) R = 1 (red squares), (iii) R = 2
(green diamonds), (iv) R = 4 (blue circles). The star symbols denote
the NPF for nanocomposites containing R = 1 attractive nanoparti-
cles in unentangled (N = 10) polymer matrix.

tive path analysis. In the frozen particle limit, the Ne contains
two types of entanglements: polymer-polymer and polymer-
nanoparticle entanglements, whereas in the phantom limit, it
contains only polymer-polymer entanglements.

1. Effect of nanoparticle loading on polymer density

Nanocomposites with nanoparticles of R = 1 are simi-
lar to experimental systems of POSS nanoparticles (R = 1
nm) dispersed in polymer matrix (such as poly(ethylene-alt-
propylene)) [56]. Since we perform NPT simulations where
the volume of the simulation box < V > fluctuates, the
monomer density fluctuates and we can consider free volume
effects. The quantification of free volume can be measured by
calculating the net packing fraction (NPF):

NPF =
π(NnD

3 +Ntσm
3)

6 < V >
(5)

where < V > is the simulation average volume, Nn the num-
ber of nanoparticles, Nt is the total number of monomers, and
σm is the monomer diameter.

As can be seen in Fig.2, the net packing fraction can in-
crease (free volume decreases) as nanoparticle loading in-
creases. This effect becomes stronger by dispersing large
nanoparticles as also reported in [57]. While in [57] only
the dilute nanoparticle loading has been explored, we show
the net packing fraction for a wider nanoparticle concentra-
tion range. The polymer nanoparticle interaction alters the
free volume dramatically in the case of small nanoparticles
R = 1. Since the smaller nanoparticles have a high inter-
facial area which increases with the nanoparticle loading, it is
shown that the interfacial area is a factor that controls the pack-
ing fraction of such nanocomposite. However in nanocom-
posites containing larger attractive nanoparticles such as of
size R = 4, the interfacial area diminishes and does not con-
tribute to the net packing fraction. The polymer matrix has
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FIG. 3: Dependence of Ne using Eqs. (1), (2) and (3), in the
frozen (filled symbols) and phantom (open symbols) particle limits
of nanocomposites with attractive small nanoparticles of R = 1, for
nanoparticle loading ϕ = 14.5 %: (i) modified S-coil estimator:
Eq.(3) (circles), (ii) classical S-coil estimator: Eq.(1) (diamonds),
(iii) classical S-kink estimator: Eq.(2) (squares). Inset: Estimators
for nanoparticle loading ϕ = 5.5 %. The green line denotes the Ne

for pure polymer melts as extracted by Eq.(4).

a slight effect on NPF calculations (shown in Fig. 2), an un-
entangled polymer matrix can reduce slightly the net packing
fraction of the nanocomposites for all nanoparticle loadings.
By dispersing attractive nanoparticles in the polymer matrix
the polymer density around the nanoparticles increases [14].
By tuning the polymer-nanoparticle interaction ϵmp, not only
the interface but also the dispersion and aggregation behav-
ior (which have been explored by molecular dynamics simu-
lations [14, 21, 58, 59]) of the nanoparticles in nanocompos-
ites is altered. It was shown that attractive nanoparticles of
radii R = 1 − 4 can be dispersed in an unentangled or en-
tangled polymer matrix (Rg/R≈0.4 − 8) [14] in agreement
to previous simulation studies [21]. However, for repulsive
polymer nanoparticle interaction, poor dispersion is observed
for Rg/R≈0.4 − 4 (in our case radii R = 2 to R = 4) [14],
which has also been observed experimentally for systems with
weak interactions such as polystyrene - silica nanocomposite
[10, 17] and possibly for a repulsive nanoparticle nanocom-
posite such as PEP - silica [5].

2. Effect of nanoparticle loading on entanglement length Ne

The modified S-coil, classical S-coil, and S-kink estima-
tors (Eqs.(1), (2), (3)) for determining Ne are applied on the
nanocomposite systems, and shown in Fig. 3 for two nanopar-
ticle loadings and nanoparticle size of R = 1. In general,
both S-coil, S-kink (Eqs.(1) and (2) respectively) and modi-
fied S-coil estimators (Eq.(3)) cannot correctly predict the Ne

value for all N exceeding Ne. Eqs.(1) and (2) converge to
Ne value slowly with increasing N , whereas Eq.(3) tends to
approach Ne from above rather than from below, but over-
estimating its value for weakly entangled chains. However,
they clearly show the effect of the volume fraction on the be-
haviour of the Ne. In particular, at a nanoparticle loading of
5.5% (inset of Fig.3), all the estimators show no changes in

the Ne value, between the phantom and frozen particle lim-
its, for N = 200. In this case, the nanoparticles do not affect
the primitive path of the polymer chains. By increasing the
nanoparticle loading above than 5.5%, to 14.5%, it can be seen
that the values of all three estimators reduce in the frozen parti-
cle limit, in comparison to phantom particle limit. This shows
that at such loading, nanoparticles are additional topological
constraints, that increase the length of the primitive path and
unavoidably decrease the entanglement length. Moreover, (in
particular in Fig.3 from 5.5% to 14.5% loading), it can be seen
that the Ne in the phantom limit (red symbols) increases for
all polymers. This indicates that small attractive nanoparti-
cles can alter the polymer primitive network. A similar trend,
but to a smaller extent, has been also observed at a nanopar-
ticle loading of 10.3% (results not shown). By increasing the
nanoparticle loading, there is a higher deviation between the
phantom and frozen particle limits, and there is a further de-
crease of the total entanglement length. In addition to previous
estimators, the M-coil estimator (Eq.(4)) is used for nanocom-
posites with small nanoparticles (R = 1) in order to have an
N -independent estimation of Ne. Clearly as can be seen in
Fig.4, by increasing the volume fraction of nanoparticles dis-
persed in the polymer matrix, the Ne is reduced due to the
contour length of primitive path, Lpp, increase. It is noted that
these Ne values contain two types of entanglements: polymer-
polymer and polymer-nanoparticle entanglements. Results
from molecular dynamics [36] and dissipative dynamics [34]
simulations of nanorods embedded in a polymer matrix in-
dicate that the inclusion of nanorods into the polymer ma-
trix does not significantly alter the polymer-polymer entangle-
ments network at low nanoparticle loading, instead it creates
additional topological constraints of polymer-nanorod origin.

Moreover, we depict in Table III, the Ne values (and num-
ber of ”kinks” < Z >) in the frozen particle limit as calculated
by the S-coil, S-kink and S-modified estimators for long poly-
mers N = 200, in nanocomposites at different nanoparticle
loading, for both repulsive (Re) and attractive (A) nanopar-
ticles. It can be seen that outside the error margin there is
no difference in these Ne (and < Z >) values. The Ne val-
ues estimated from M-coil agree with those estimated from
S-coil for long polymers (N = 200), within the error mar-
gin. Similarly, for nanocomposites consisted of a matrix of
polymers N = 100, the type of nanoparticles do not alter the
Ne in the frozen particle limit (results not shown). Thus in
the case where small nanoparticles are dispersed in a polymer
matrix, the polymer-nanoparticle interaction does not play any
role on the primitive path. The topological constraints cre-
ated by nanoparticles seem to dominate the entanglement net-
work even if the polymer dimensions can be altered [14] by the
polymer nanoparticle interaction. We also report in Table III
the number of kinks < Z > in the phantom limit. We can see
that in the phantom limit, < Z > decreases with nanoparticle
loading (whereas it increases in the frozen limit due to poly-
mer nanoparticle entanglements). This shows that nanopar-
ticle loading reduces the polymer-polymer entanglements for
nanocomposites containing nanoparticles of radius R = 1.

The concept of entanglement length is useful because it re-
lates changes in structure to rheological properties [45, 55,
60]. In polymer melts and semidilute solutions, a temperature
and concentration dependent material constant, the plateau
shear modulus G0

N , which is of the order of 106 Pa, or five or-
ders of magnitude smaller than the shear modulus of ordinary
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FIG. 4: Dependence of Ne using Eq. (4) in the frozen particle limit
in nanocomposites with attractive small nanoparticles of R = 1 for
different nanoparticle loading: (i) 10.3 % (blue symbols), (ii) 14.5
% (green symbols), (iii) 18.2 % (black symbols), (iv) 24.2 % (red
symbols), (ii) 36 % (star symbols). Inset: Dependence of Lpp for
different polymers in the frozen particle limit. The vertical lines show
the Ne extracted values at each nanoparticle loading.

TABLE III: Nanoparticle volume fraction ϕ (%), nanoparticles of ra-
dius R = 1 and type: repulsive (Re), attractive (A), polymer matrix:
N = 200, Ne(S-coil,S-kink,modified S-coil), number of ”kinks”
< Z > in the frozen limit, number of ”kinks” in the phantom limit,
< Z >(phantom).

ϕ (%) type Ne(S-coil) Ne(S-kink) Ne(m.S-coil) < Z > < Z >(ph.)

22.9 Re 18.2±2.1 8.1±0.8 19.4±2.4 23.8±1.9 3.7±0.1
24.2 A 23.2±1.9 7.6±0.7 25.6±2.5 25.6±1.7 4.3±0.1
17.3 Re 32.8±6.5 15.3±3.9 37.2±8.5 12.9±3.5 4.7±0.2
18.2 A 31.8±5.4 11.1±2.5 36.5±7.3 17.7±3.5 4.7±0.2
13.8 Re 44.8±4.9 21.2±3.4 54.6±7.4 8.7±1.8 4.5±0.2
14.5 A 38.6±4.9 17.1±3.1 45.6±7 11.1±2.3 4.8±0.2
10 Re 47.2±2.2 24.9±1.8 57.8±3.4 7.1±0.7 4.9±0.2

10.3 A 47.4±2.3 22.7±1.7 58.3±3.5 7.9±0.7 5.1±0.1
5.4 Re 53.9±3.5 28.8±1.1 68.8±6 5.9±0.3 5±0.2
5.5 A 47.2±2.3 26.6±0.9 58.1±3.7 6.5±0.3 5.5±0.2

solids, is related to rheological entanglement length, Ne
rheol,

by Eq.(6) [45, 61]:

G0
N =

4

5

ρkBT

Nrheo
e

(6)

where, ρ is the monomer density, and kBT is the thermal en-
ergy. The rheological entanglement length Ne

rheo should be
equal to Ne calculated from Eq.(1) (the classical S-coil esti-
mator) for loosely entangled polymer chains [61]. In poly-
mer nanocomposites the validity of Eq.(6) is unclear, and es-
pecially at high nanoparticle loading; however, a dependence
of the plateau modulus G0

N (ϕ) = G0
N (ϕ = 0)×f(ϕ) [56, 62]

on the filler degree ϕ has been observed for repulsive nanopar-
ticle nanocomposites when Rg > Rfiller (such as PEP-POSS,
PI-POSS [56]) [63–65], where f(ϕ) is given by [56, 64]:

f(ϕ) = 1 + [η]βϕ+ a2(βϕ)
2 + a3(βϕ)

3 + ..... (7)
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volume fraction φ 

0
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8

N
e(φ

=0
)/

N
e(φ

)

fitting to PEP-POSS nanocomposite, β=1.5
Guth-Gold, β=1
Eilers
Einstein
R=1, attractive nanoparticles, M-coil
R=1, attractive nanoparticles,  S-coil
R=4, attractive nanoparticles,  S-coil

FIG. 5: Dependence of Ne((ϕ = 0)/Ne(ϕ) ratio in the frozen par-
ticle limit at different nanoparticle loading: i) fitting of Eq.(7) on
PEP-POSS nanocomposite [56] (blue line), (ii) Guth-Gold relation
(red line), iii) Eilers relation (black line), iv) Einstein relation (green
line), v) attractive nanoparticles: R = 1, M-coil estimator: Eq.(4)
(circles) vi) attractive nanoparticles: R = 1 S-coil estimator: Eq.(1)
(squares) vii) attractive nanoparticles: R = 4 S-coil estimator: Eq.(1)
(diamonds). The simulation data are shown for a matrix: N = 200.

where, η = 2.5 [66, 67], a2 = 14.1 [68], and β is an effec-
tiveness factor [56]. For β = 1 and a3 = 0, Eq.(7) leads to
the Guth-Gold relation [68], while if additionally a2 = 0 the
Einstein-Smallwood relation [64, 66, 67] is obtained. Another
model for estimating the plateau moduluus has been proposed
by Eilers [69] where, f(ϕ) = [1 + 1.25ϕ/(1− 1.35ϕ)]2.

The addition of small nanoparticles in the polymer matrix
decreases the Ne value, as shown in Fig.4, thus the plateau
shear modulus G0

N increases, according to Eq.(6), since it is
approximately inverse proportional to Ne. In Fig. 5 we depict
a comparison between the plateau modulus experimental mea-
surements [56], theoretical predictions [56, 69] and simulation
data for the Ne(ϕ = 0)/Ne(ϕ) ratio, at different nanoparticle
loadings. The ratio of Ne(ϕ)/Ne(ϕ = 0), as calculated by
our simulations, decreases with the nanoparticle volume frac-
tion. At a volume fraction, ϕ = 24.2%, there is approximately
60% decrease in Ne mainly due to the polymer - nanoparticle
entanglements. Instead in a polymer nanorod composite such
a decrease in Ne appears at a much smaller nanorod volume
fraction, ϕnanorod≈11% [34]. It seems from Fig.5 that the Ne

decrease in nanocomposites with small nanoparticles follows
quantitatively the theoretical trends of Guth-Gold relation (Eq.
(7)), however Eq. (7) is not necessarily proportional to the ra-
tio of Ne values. The Einstein relation [66] is invalid for a such
small nanoparticle composite, in contrast to nanocomposites
with bare spherical nanoparticles studied through the slip-link
model [23]. Small nanoparticles, such as R = 1, can reinforce
polymers effectively. All three estimators in Fig.5 show that
the mechanical reinforcement effect in nanocomposites can be
induced by the change of primitive path network due to the ad-
ditional topological contraints created by small nanoparticles.
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FIG. 6: Dependence of Ne using Eqs. (1), (2) and (3), in the frozen
(filled blue symbols) and phantom (open symbols) particle limits of
nanocomposites with attractive nanoparticles of R = 2 for nanopar-
ticle loading ϕ = 25.8 %: (i) modified S-coil estimator:Eq.(3)
(blue circles), (ii) classical S-coil estimator:Eq.(1) (blue diamonds),
(iii) classical S-kink estimator:Eq.(2) (squares). Inset: Estimators of
nanocomposites at ϕ = 26.9 % with nanoparticles of R = 4. The
green line denotes the Ne for pure polymer melts as extracted by
Eq.(4).

3. Effect of nanoparticle radius on entanglement length Ne

Increasing the radius of the nanoparticles at a constant vol-
ume fraction decreases the surface area to volume ratio of the
nanoparticles. The effect of the nanoparticle radius on the
Ne(ϕ) from our simulations is depicted in Fig. 6. We ob-
serve that by increasing the nanoparticle radius to R = 2
we can see a decrease to the discrepancy between the phan-
tom and frozen particle limit. In particular, at ϕ = 25.8%,
the S-coil estimator predicts for polymers (N = 200) a value
of Ne = 66.1±2.4 in the frozen limit (from M-coil estima-
tor Ne = 64) and Ne = 72.5±1.9 in the phantom limit.
Specifically, for nanocomposites with nanoparticles R = 4,
the Ne estimators in the phantom and frozen limit are indis-
tinguishable. This implies that nanoparticles of R = 4 do
not alter the underlying polymer network for polymer lengths
used in our study. Tuteja also found that Ne is unaffected
by nanoparticles of R = 5 nm at low nanoparticle loading
(ϕ = 8%) [70, 71]. The interparticle distance of nanoparti-
cles is: ID = D((2/πϕ)0.333 − 1). For all the nanoparticle
volume fractions studied ID < Rg (Rg≈8 for N = 200).
In that regime, there is no change in Ne, in the frozen limit,
when Rg≈D, whereas it changes only if Rg >> R (Figure in
supplemental information).

Also we can observe that in nanocomposites with nanopar-
ticles of R = 2 in a polymer matrix N = 200 (see Fig. 6)
the Ne in the phantom limit is enhanced with respect to its
polymer melt value. In order to investigate further the poly-
mer path network, we calculated the polymer tube diameter
[37, 72] and depict it in Fig. 7:

< αpp >=< Ree
2 > /Lpp(ph) (8)

in which Lpp(ph) is extracted in the phantom limit. As can
be seen in Fig.7, for attractive small nanoparticles, the tube
diameter increases with the nanoparticle loading, whereas for

0 5 10 15 20 25 30 35
volume fraction, φ %

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

<
α pp

>
(φ

)/<
α pp

>
(φ

=0
)

attractive nanoparticles, R=1
attractive nanoparticles, R=2
attractive nanoparticles, R=4
repulsive nanoparticles, R=1
repulsive nanoparticles, R=5

FIG. 7: Tube diameter αpp of polymers (N = 200) at different
nanoparticle loading normalized with its value in bulk, obtained from
primitive path analysis at the phantom limit for different nanopar-
ticle volume fractions: (i) attractive nanoparticles (R = 1) (open
squares), (ii) attractive nanoparticles (R = 2) (diamonds), (iii) at-
tractive nanoparticles (R = 4) (circles) (iv) repulsive nanoparticles
(R = 1) (filled squares), (v) repulsive nanoparticles (R = 5) (filled
triangles) [39].The tube diameter of polymers (N = 200) in bulk is:
αpp=10.35.

repulsive nanoparticles it remains constant in agreement to the
data by Li et. al. [39]. This increase means that such small
nanoparticles (R = 1) do alter the polymer network, and the
polymers disentangle with nanoparticle loading. This implies
that in the case of attractive nanoparticles, the Ne in the phan-
tom limit is increased, as observed in Fig. 3. While the total
Ne (in the frozen limit) of the nanocomposite decreases with
the nanoparticle loading (see Fig.4), the polymer-polymer en-
tanglements convert to polymer-nanoparticle entanglements
approximately for nanoparticle loading ϕ≥15%. This disen-
tanglement effect does also appear in thin polymer films [73],
under cylindrical confinement [74, 75], on a bare flat surface
[76] and on the vicinity of large repulsive spherical nanopar-
ticles at a high nanoparticle loading [39]. Furthermore, the
polymer chain dynamics can also be affected by the nanopar-
ticle volume fraction. Since by increasing the nanoparticles
loading the tube diameter increases, that can enhance the poly-
mer chain’s diffusivity. However, direct studies of diffusion
remain quite difficult to study the slow reptational dynamics
of nanocomposites using molecular dynamics simulations.

IV. CONCLUSIONS

The polymer density, polymer/polymer and poly-
mer/nanoparticle topological constraints (entanglements)
of polymers in melts and nanocomposites containing spher-
ical nanoparticles were investigated by means of molecular
dynamics simulations. We applied different Ne(N) estima-
tors for the calculation of the number of entanglements in
our systems, and extracted the N–independent entanglement
length Ne. We observe that the total Ne decreases even with
low volume fraction of small nanoparticles, and significantly
for ϕ≥25%. This decrease of Ne, in the nanocomposite,
originates from the polymer/nanoparticle entanglements, be-
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cause the contour length of the primitive path, Lpp, increases
with the addition of nanoparticles. In order for polymer
nanoparticles entanglements to be formed , the polymers need
to be substantially larger than the nanoparticles in order to
wrap around them, and in that case the nanoparticles act as
topological constraints. Interaction between polymers and
nanoparticles does not affect the total entanglement length
when there is good nanoparticle dispersion. For the case of
attractive small nanoparticles (such as R = 1) the polymer
polymer entanglements decrease (increase of tube diameter)
due to the expansion of the polymer chains for ϕ≥15%. This
effect on the polymer network is enhanced by the nanoparticle
loading. Instead for the case of repulsive nanoparticles the

tube diameter remains the same up to ≈24% nanoparticle
loading in agreement with previous studies [39].
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[44] M. Kröger, Comput. Phys. Commun. 168, 209 (2005).
[45] R. Everaers, S. K. Sukumaran, G. S. Grest, C. Svaneborg,

A. Sivasubramanian, and K. Kremer, Science 303, 823 (2004).
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