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The complex interplay of molecular scale effects, nonlinearitites in the orientational field and long-range elastic forces makes the
liquid-crystal physics very challenging. A consistent way to extract information from the microscopic, molecular scale up to the
meso- and macroscopic scale is still missing. Here, we develop a hybrid procedure that bridges this gap by combining extensive
Monte Carlo simulations, a local Landau-de Gennes theory, classical density functional theory, and finite-size scaling theory. As
a test case to demonstrate the power and validity of our novel approach we study the effective interaction among colloids with
Boojum defect topology immersed in a nematic liquid crystal. In particular, at sufficiently small separations colloids attract each
other if the angle between their center-of-mass distance vector and the far-field nematic director is about 30◦. Using the effective
potential in coarse-grained two-dimensional MC simulations we show that self-assembled structures formed by the colloids are
in excellent agreement with experimental data.

1 Introduction

Liquid crystals are fluids made of molecules that lack spher-
ical symmetry. Instead, their molecules contain elongated,
rigid cores that form nematic liquid crystals, or disk-like cores
that produce discotic liquid crystals or even more complex
shapes. This simple property of anisotropy produces a myriad
consequences for the optical, mechanical and thermodynamic
properties of liquid crystals. For example, as the temperature
is decreased they undergo a series of phase transitions where
the symmetry of their state is spontaneously broken. Starting
from a high temperature isotropic fluid, where all orientations
are equivalent, to a nematic state where orientational order is
broken, to a smectic phase, where positional order is broken
in one dimension.

The molecular anisotropy produces effects on a macro-
scopic scale. In the nematic state, all molecules tend to align
in the same direction, called the fluid’s director.1 But any lo-
calized deviation of molecular orientations from the director
will cause a restoring, elastic force. However, a single global
orientation cannot be satisfied for all boundary conditions. A
colloid immersed in the nematic fluid causes a specific prefer-
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ential alignment of the liquid crystal molecules on its surface,
which is termed anchoring. A spherical colloid has a symme-
try incompatible with a global nematic director. Thus, defects
in the orientational field will arise. These topological defects
are points or lines that minimize the free energy of the liquid
crystal subject to complex boundary conditions. Depending
on details of the fluid and the anchoring of its molecules at the
colloid, the orientational field can be of such dazzling com-
plexity that experts are just beginning to unravel its structural
details.2

If multiple colloids are immersed in a nematic liquid crystal,
the distortions of the local director field also give rise to effec-
tive interactions between the colloids mediated by the nematic
host fluid.3 These interactions may be used to self-assemble
the colloids into supramolecular entities in a controlled (i.e.,
directed) manner. In this way ordered assemblies of colloids
of an enormously rich structure with a great variety of symme-
tries may be built that would not otherwise exist without the
ordered nature of the host phase.4,5 These self-assembled col-
loidal structures are also of practical importance, as they can
be used to produce photonic crystals.6,7

The forces guiding colloidal self-assembly result from a
complex interplay of molecular scale ordering, mesoscopic
elastic interactions, and large scale topological arguments.
While the framework of the Landau–de Gennes theory is ap-
propriate for mesoscale effects, the elastic Frank–Oseen free
energy is appropriate for long-range interactions.8 However,
there is a gap between the microscopic, molecular informa-
tion and the coarse-grained approaches used at the meso and
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macroscopic scale. No consistent method exists to transfer
physical information from the molecular scale up to the scale
where elastic forces and nonlinearities in the nematic interac-
tions occur. Here, we pursue the goal of bridging this gap.
The task is not idle, as there are physical situations that have
so far eluded a precise explanation at the molecular level. As
a test case to demonstrate power and validity of a novel hy-
brid approach developed in this work we take on the problem
of colloidal self-assembly. Poulin and Weitz9 found experi-
mentally that in a nematic phase the colloidal center-to-center
distance vector rrr12 forms a “magic” angle of θ ≈ 30◦ with the
global director n̂nn0 if the liquid crystal molecules (mesogens)
favor a local planar anchoring at the colloid’s surface.10

Near an isolated colloid with planar anchoring the meso-
gens will produce a Boojum defect. While for such a sin-
gle topological defect long-range approximation analogous to
electrostatics can be sufficient, the complex interaction of mul-
tiple Boojum defects requires a more careful analysis. In pre-
vious theoretical attempts a much larger angle of about 50◦

is usually found.9,11 This number is based upon calculations
where one employs the electrostatic analog of the Boojum de-
fect topology.9 In fact, as stated explicitly by Poulin and Weitz
“This theoretical value is different from the experimentally ob-
served value for θ . . . since the theory is a long-range descrip-
tion that does not account for short-range effects”.9

Theoretical results similar to the experimental ones by
Poulin and Weitz9 were recently found by Tasinkevych et al.
through a direct minimization of a Landau-de Gennes free-
energy functional.8 These authors demonstrate that the ra-
dial component of the elastic force has an attractive minimum
around θ ≈ 30◦ for certain r12 = |rrr12|; this minimum shifts to
larger θ as r12 increases. However, to date and to the best of
our knowledge no molecular-scale work exists supporting the
result of Tasinkevych et al.8 or the experimental findings by
Poulin and Weitz9.

Another motivation for our work is the more recent experi-
mental observation that between a pair of colloids in a nematic
host repulsive and attractive forces act depending on θ .11 For
example, at θ ≈ 30◦ the colloids attract each other whereas at
θ = 0◦ and 90◦ repulsion between the colloids is observed.

To study these effects starting from a molecular-level based
description we employ a combination of Monte Carlo (MC)
simulations in the isothermal-isobaric and canonical ensem-
bles, two-dimensional (2D), coarse-grained MC simulations
in the canonical ensemble, classical density functional theory
(DFT), concepts of finite-size scaling (FSS), and Landau-de
Gennes (LdG) theory to investigate the effective interaction
between a pair of spherical, chemically homogeneous colloids
mediated by a nematic host phase.

The remainder of this manuscript is organized as follows.
We begin in Section 2 with an introduction of our model sys-
tem and its various constituents. Relevant theoretical concepts

are introduced in Section 3. In Section 4 we present results
of this study which we summarize and discuss in the closing
Section 5 of this manuscript.

2 Model

In this work we consider the self-assembly of colloidal parti-
cles in two and three dimensions. The colloids are immersed
in a nematic liquid-crystalline host fluid where an external
field is invoked to control the global director n̂nn0. The fol-
lowing three sections are devoted to introducing the various
constituents of our model and to specifying their interactions
with one another.

2.1 Host phase

The liquid crystal host phase is composed of N mesogens in-
teracting with each other in a pairwise additive fashion. The
interaction potential can be cast as

φmm (rrri j,ωi,ω j) = φiso (ri j)+φanis (rrri j,ωi,ω j) (1)

where rrri j = rrri − rrr j is the distance vector conncecting the cen-
ters of mass of a mesogenic pair located at points rrri and rrr j,
respectively, and ri j =

∣∣rrri j
∣∣. According to eqn. (1) the full

interaction potential is split into an isotropic (φiso) and an
anisotropic part (φanis) where the latter depends on the orienta-
tions ωi and ω j of the mesogenic pair. In fact, ωi, j = (θi, j,ϕi, j)
where θi, j and ϕi, j are Euler angles implying that the mesogens
have uniaxial symmetry.

For the isotropic contribution we adopt the well-known
Lennard-Jones potential

φiso (ri j) = 4εmm

[(
σ
ri j

)12

−
(

σ
ri j

)6
]
= φrep (ri j)+φatt (ri j)

(2)
where εmm is the depth of the attractive well, σ is the van der
Waals diameter of the isotropic core, and φrep and φatt repre-
sent repulsive and attractive contributions to φiso, respectively.

To derive an expression for the anisotropic contribution in
eqn. (1) we follow Giura and Schoen.12 From a lengthy but
relatively straightforward derivation these authors show that

φanis (rrri j,ωi,ω j) = φatt (ri j)Ψ(r̂rri j,ωi,ω j) (3)

In eqn. (3) the anisotropy function is given by

Ψ(r̂rri j,ωi,ω j) = 5ε1P2 [ûuu(ωi) · ûuu(ω j)]

+5ε2
{

P2 [ûuu(ωi) · r̂rri j]+P2 [ûuu(ω j) · r̂rri j]
}
(4)

where ûuu(ωi, j) and r̂rri j = rrri j/ri j are unit vectors specifying the
orientation of mesogens i and j and the orientation of the
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center-of-mass distance vector, respectively, both in a space-
fixed frame of reference. In addition, P2 (x) = 1

2

(
3x2 −1

)
is the second Legendre polynomial and the (dimensionless)
anisotropy parameters 2ε1 = −ε2 = −0.08 are fixed through-
out this work. Notice also that the first term on the right-hand
side of eqn. (4) matches the orientation dependence of inter-
actions in the Maier-Saupe model13,14 whereas the next two
terms account for the anisotropy of mesogen-mesogen attrac-
tions with enhanced sophistication.

2.2 External field

For a suitable choice of thermodynamic state parameters the
host phase introduced in Section 2.1 exhibits isotropic liquid
and nematic phases.12 Unfortunately, when a nematic phase is
forming in the bulk it is impossible to determine beforehand
the direction of n̂nn0. In fact, there is an infinite number of easy
axes15 with which n̂nn0 may align in the bulk nematic phase.

To predict and control n̂nn0 it has therefore become customary
to place the liquid crystal between solid substrates with spe-
cially prepared surfaces that tend to align mesogens in their
vicinity in a desired way.16 Because orientational order in a
nematic liquid crystal is a long-range phenomenon, substrate-
induced alignment of mesogens allows one to control n̂nn0 on a
length scale exceeding by far a molecular one. A host of dif-
ferent techniques to achieve a particular substrate anchoring
of mesogens experimentally has been known for quite some
time.17

In this work we take the substrates to be planar and struc-
tureless such that their surfaces are separated by a distance sz
along the z-axis. Thus, the interaction between a mesogen and
the substrates can be cast as

φms (zi,ωi) = εms

[
2
5

(
σ

∆zi

)10

−
(

σ
∆zi

)4

g(ωi)

]
(5)

where ∆zi = zi ± sz/2 is the distance of mesogen i from the
lower (+) and upper (−) substrate plane, respectively. Hence,
φms may be viewed as a local, orientation dependent external
field, the strength of which is controlled by εms. Throughout
this work we take εms/εmm = 5.00.

The value of εms is chosen for two reasons. First, it guar-
antees a sufficiently strong alignment of mesogens with the
surface so that fluctuation of n̂nn0 over the course of the sim-
ulations are negligible. Second, εms is still small enough to
prevent from freezing those portions of the host phase that are
located in the vicinity of the substrates.

The orientation dependence of the external field in our
model enters through the anchoring function

g(ωi) = [ûuu(ωi) · êeex]
2 (6)

where êeex is a unit vector parallel to the x-axis. Hence, the an-
choring function discriminates energetically between a desired

orientation of mesogens parallel with this axis and less desired
ones for which |ûuu(ωi) · êeex|< 1. In other words, g(ωi) may be
viewed as a mathematical “device” mimicking aligning sub-
strates in experimental setups. On account of its definition in
eqn. (6), g(ωi) allows one to more or less pin n̂nn0 to the x-axis
on average where |n̂nn0 · êeex| ≃ 1 due to thermal fluctuations.

2.3 Colloidal particles

In addition, colloidal particles are immersed into the nematic
liquid crystal. These colloids are spherical in shape, where
r0 = 3.00σ is their hard-core radius, and have a chemically
homogeneous surface. Similar to the planar substrates we en-
vision the surfaces of the colloids to have been treated such
that mesogens have a specific orientation with respect to the
local surface normal of a colloid. Following earlier work by
some of us18 we take the mesogen-colloid interaction poten-
tial to be given by

φmc (rrri,ωi) = εmc

[
a1

(
σ

rc
i j − r0

)10

−a2

exp
[
−η
(

r c
i j − r0

)]
r c

i j − r0
gc
(
r̂rr c

i j,ωi
)]

(7)

where rc
i j =

∣∣∣rrri − rrrc
j

∣∣∣ is the distance between the center of mass
of mesogen i at rrri and that of colloid j at rrrc

j. Hence, rc
i j −

r0 is the distance of the center of mass of mesogen i from
the surface of colloid j. The strength of the mesogen-colloid
interaction is controlled by εmc which we maintain constant so
that εmc/εmm = 3.50. Again, this value has been selected on
the basis of the same rationale given in Section 2.2.

In eqn. (7), η is the inverse Debye screening length and
parameters a1 and a2 have been introduced to guarantee that
the minimum of φmc remains at a distance r0+σ from the col-
loid’s center of mass and to maintain the depth of the attractive
well at εmc irrespective of η .18 Throughout this work we fix
ησ = 0.50.

Last but not least, we introduce another anchoring function
in eqn. (7) which we take to be given by

gc
(
r̂rr c

i j,ωi
)
=
[
1−
∣∣r̂rrc

i j · ûuu(ωi)
∣∣]2 (8)

where r̂rr c
i j = rrr c

i j/r c
i j is the local surface normal of the colloid.

Hence, the anchoring function introduced in eqn. (8) serves to
align mesogens in a degenerate15, locally planar fashion with
respect to the colloid’s surface.

3 Theory

To eventually simulate the self-assembly of several colloidal
particles in a coarse-grained fashion we seek to represent the
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nematic host phase through an effective interaction potential.
Key to this approach (as in all coarse-grained treatments) is a
sensible protocol to integrate out irrelevant degrees of freedom
while preserving the correct physics. Here, we seek to link a
molecular-level description of the nematic host to a continuum
treatment.

3.1 Continuum approach

As already pointed out in Section 1, the presence of a colloid
in a nematic liquid crystal causes n̂nn(rrr) to deviate from n̂nn0 in
certain regions near the colloid’s surface. Associated with this
distortion of n̂nn(rrr) is a local deviation between the nematic or-
der parameter and its bulk value in the absence of any colloid.
Both, the distortion of n̂nn(rrr) and the associated decline of S (rrr)
cause changes in the free energy of the composite system (i.e.,
colloid plus nematic host). Adopting a continuum perspec-
tive a key quantity is the local alignment tensor Q(rrr) whose
components can be cast as

Qαβ (rrr) =
S (rrr)

2
[
3nα (rrr)nβ (rrr)−δαβ

]
(9)

where S (rrr) is the nematic order parameter, nα (rrr) is the α-
component of n̂nn(rrr), and δαβ is the Kronecker symbol. The
assumption underlying eqn. (9) is that a spatial variation of
the degree of nematic order of uniaxial symmetry and a de-
formation of the nematic director field are coupled (see also
Section 4.4) .

Therefore, the total change in free-energy density may read-
ily be expressed as

∆ f (rrr) = ∆ fLdG (rrr)+ fel (rrr)+ fcore (10)

where the Landau-de Gennes contribution is given by

∆ fLdG (rrr) =
A
2

Qαβ Qβα +
B
3

Qαβ Qβγ Qγα +
C
4
(
Qαβ Qβα

)2

−∆ f0 (11)

using Einstein’s summation convention. Equation (11) is es-
sentially a Taylor expansion of the free-energy density in
terms of the order parameter tensor at the isotropic-nematic
(IN) phase transition. In eqn. (11), A, B, and C are unknown
expansion coefficients depending only on density ρ and tem-
perature T . Assuming uniaxiality, we employ the identities
Qαβ Qβα = 3

2 S and Qαβ Qβγ Qγα = 3
4 S3 This allows us to

rewrite eqn. (11) as

∆ fLdG (rrr) =
3
4

AS2 (rrr)+
1
4

BS3 (rrr)+
9
16

CS4 (rrr)−∆ f0 (12)

To simplify the notation we also temporarily dropped the ar-
gument rrr of the components of Q(rrr) on the righthand side of
eqn. (11).

In eqn. (11) as well as in eqn. (12)

∆ f0 = AS2
b +BS3

b +CS4
b (13)

is a similar LdG free-energy density of the nematic host phase
obtained for the same T and ρ but in the absence of col-
loids and relative to the free-energy density of a corresponding
isotropic fluid. In eqn. (13), Sb is the (global) bulk nematic
order parameter. To arrive at the expression in eqn. (13) the
same identities linking products of the alignment tensor to the
nematic order parameter have been used as before.

Next, the elastic contribution to ∆ f in the one-constant ap-
proximation (see below) may be cast as

fel (rrr) =
L
2
(
∂γ Qαβ

)(
∂γ Qβα

)
=

3
4

L [∇S (rrr)]2 +
K
2

{
[∇ · n̂nn(rrr)]2 +[∇× n̂nn(rrr)]2

}
=

3
4

L [∇S (rrr)]2 + fFO (rrr) (14)

where fFO (rrr) is the (local) Frank-Oseen free-energy density
and eqn. (9) has also been used. In eqn. (14), L is an elastic
and K is the Frank constant. The two are related via

K =
9
2

LS2 (rrr) (15)

To apply eqn. (14) some caution is advisable. This is be-
cause the expression for fFO (rrr) in eqn. (14) is derived under
the assumption that spatial variations of n̂nn(rrr) occur on a length
scale that is large compared to a molecular one. As we shall
demonstrate below this is true in our system almost every-
where except inside the core of defects. To avoid an improper
calculation of fFO (rrr) we restrict the evaluation of eqn. (14)
to regions outside the defect core.19–21 The latter is defined
through the inequality S (rrr)≤ SIN where SIN is the nematic or-
der parameter at the IN phase transition in the host phase (and
in the absence of any colloidal particle; see below).

Because we are restricting the use of eqn. (14) by “cutting
out” the defect core some correction to ∆ f due to the core
region is required. As pointed out by de las Heras et al. it is
necessary to include such a correction to the change in free-
energy density because of the nanoscopic size of our colloidal
particle.22 This correction, represented by fcore in eqn. (10),
will be discussed in some in Section 4.3.

Last but not least, we emphasize that within the framework
of the present continuum theory the standard approach is to
minimize the functional23

∆F [S (rrr) , n̂nn(rrr)] =
∫

drrr ∆ f [S (rrr) , n̂nn(rrr)] (16)

However, this procedure has a twofold drawback. First, the
minimization bears the danger that its solutions S (rrr) and n̂nn(rrr)
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do not necessarily correspond to the global minimum of ∆F .
This is in particular so if the structure of S (rrr) and n̂nn(rrr) in ther-
modynamic equilibrium is rather complex.24 Second, there is
no way within the framework of the continuum approach to
determine the material constants A, B, C, and K (or L). Here
one usually resorts to experimental information which is avail-
able for a few liquid crystals.25

In closing, we emphasize that the expressions given in
eqn. (12) and eqn. (14) correspond to the same ground state.
For example, in the absence of any perturbation, that is if
S (rrr) = Sb and n̂nn(rrr) = n̂nn0, ∆ fLdG = fel = 0.

3.2 Molecular approach

3.2.1 Basic properties. Here we pursue an alternative ap-
proach based upon a molecular picture of the host phase and
suitable for implementation in MC simulations. If carried out
according to the acknowledged rules of the art, MC gives us
immediate access to S (rrr) and n̂nn(rrr) for a thermodynamic equi-
librium situation via suitably defined ensemble averages. One
may then feed S (rrr) and n̂nn(rrr) into expressions such as eqn. (12)
and eqn. (14) to eventually obtain the absolute minimum of
∆F [after an integration of ∆ f (rrr) over volume, see also Sec-
tion 4.3].

Thus, to eventually compute ∆F we begin by introducing
the local alignment tensor

Q(rrr) =
1

2ρ (rrr)

⟨
N

∑
i=1

[3ûuu(ωi) ûuu(ωi)−1]δ (rrri − rrr)

⟩
(17)

at the molecular level where 1 is the unit tensor and ⟨. . .⟩ de-
notes an ensemble average.18,26 In eqn. (17), ρ (rrr) is the local
number density. Because Q(rrr) can be represented by a 3×3
matrix it has three eigenvalues which we obtain numerically
using Jacobi’s method.27 We take the largest eigenvalue of
Q(rrr) as the local nematic order parameter S (rrr) and the as-
sociated eigenvector as the nematic director field n̂nn(rrr).

However, to compute ∆ fLdG (rrr) and fel (rrr) the material con-
stants A, B, C, and K are required. Whereas this is relatively
straightforward within the framework of MC simulations as
far as K is concerned, one encounters serious difficulties to
compute A, B, and C reliably. We address these difficulties
below.

For the calculation of K we employ a method suggested
by Allen and Frenkel.28,29 In their approach one considers
fluctuations of Fourier components Q̃(kkk) of Q(rrr). In the
limit of |kkk| → 0 simple linear relationships exist from which
the Frank constants K1, K2, and K3 associated with bend,
twist, and splay deformations of n̂nn(rrr) can be estimated re-
liably. Stieger et al.30 have recently applied the method of
Allen and Frenkel28,29 to show that for the present model of
the host phase K1 ≃ K2 ≃ K3 = K so that the one-constant

form1 of fel in eqn. (14) is an excellent approximation. Un-
der the thermodynamic conditions used here (see Section 4.1),
K ≃ 1.66εmmσ−1 is obtained.

3.2.2 Classical density functional theory. To compute
A, B, and C the situation is more difficult. In principle, one
could obtain these constants from the order-parameter distri-
bution P(Sb) obtained for a bulk nematic phase without col-
loidal particles. However, as discussed in detail by Eppenga
and Frenkel26 and later by Greschek and Schoen31 it is next
to impossible to determine B and C with sufficient statistical
accuracy from P(Sb).

We therefore resort to a different approach based upon
classical mean-field DFT. As demonstrated elsewhere32 the
change in free energy-density of the bulk nematic relative to
the isotropic phase can be cast as

β∆ fn = ρ
1∫

−1

dxα (x) ln [2α (x)]+ρ2 ∑
l=2

l even

S2
l ul (18)

where β = 1/kBT (kB is Boltzmann’s constant), x= cosθ , and
θ is the azimuthal angle if we take the z-axis of our coordinate
system to coincide with n̂nn0. Members of the set {Sl} defined
on the interval [0,1] are order parameters and {ul} are param-
eters that account for the contribution of anisotropic mesogen-
mesogen interactions to the free energy, respectively.32

The integrand on the right-hand side of eqn. (18) contains
the orientation distribution function α (x). It depends only on
θ due to the uniaxial symmetry of the nematic phase and is
normalized according to

1∫
−1

dxα (x) = 1 (19)

which implies that in the isotropic phase α (x) = 1
2 . Again, be-

cause of the uniaxiality of the nematic phase we expand α (x)
in terms of Legendre polynomials {Pl} via

α (x) =
1
2
+ ∑

l=2
l even

2l +1
l

SlPl (x) =
1
2
+ξ (x) (20)

Inserting this expression into eqn. (18), expanding the inte-
grand in a Taylor series around ξ = 0 (i.e., at the IN phase
transition), and retaining in this expansion terms up to O

(
ξ 4
)

allows us to recast eqn. (18) as

∆ fn = a(ρ)(T −T ∗)︸ ︷︷ ︸
A

S2
b −

32ρkBT
105

S3
b +

64ρkBT
315

S4
b (21)

if we limit ourselves to the leading term l = 2 in the expres-
sion for ξ and use S2 = Sb. In eqn. (21), a = 2ρkB/5 and
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T ∗ =−5ρu2/2kB where the latter is the temperature at which
the isotropic phase becomes thermodynamically unstable. As-
suming ∆ fn = ∆ f0 one easily obtains

B = −8ρkBT
105

(22a)

C =
4ρkBT

35
(22b)

by comparing terms of equal power in Sb in eqn. (21) with
corresponding ones in eqn. (13). Hence, B < 0, C > 0, and A
changes sign at T = T ∗ as it is to be expected at the IN phase
transition.1

3.2.3 Elements of finite-size scaling theory. Unfortu-
nately, the expression for T ∗ given in the preceding sec-
tion depends on u2 which in itself depends on the level of
sophistication at which pair correlations are treated within
mean-field DFT. For example, at simple mean-field (SMF)
level, where one completely ignores pair correlations, u2 =
−32πε1εmm/15. A more elaborate, temperature dependent
form for u2 obtains at so-called modified mean-field (MMF)
level [see eqn. (3.7) and eqn. (3.8) of Ref.12] where one
takes into account pair correlations to some extent via an
orientation-dependent Mayer f -function.

Unfortunately, at SMF level T ∗ turns out to be grossly un-
derestimated whereas at MMF level its value is equally grossly
overestimated as a previous FSS study of the IN phase transi-
tion suggests.31 This failure can be linked to the complete ne-
glect of pair correlations at SMF level and their overestimation
in liquidlike phases at MMF level.12

To improve this situation we pursue a different approach
invoking concepts of FSS theory. First, within LdG theory it
is a relatively simple matter to show that33

TIN = T ∗+
1

27
B2

aC
(23)

Second, with an improved estimate for TIN and coefficients
for a, B, and C from DFT one can hope to obtain an improved
estimate for T ∗ from the above expression.

In FSS theory one makes explicit use of the fact that in any
molecular simulation one is always confronted with systems
of finite extent. Considering moments

Sn
b =

1∫
0

dSb Sn
bP(Sb) (24)

of the order-parameter distribution the key quantity in FSS are
cumulants of its various moments. Here, the second-order cu-
mulant

g2 =
S2

b

S2
b

(25)

is particularly useful.31 If a phase transition is discontinuous
in principle (as the IN phase transition) but rounded on accout
of the finiteness of the system under study one anticipates pairs
of cumulants for different system sizes to have a common in-
tersection31 which scales as L −d where L is the linear extent
of a system of dimension d.34

Moreover, it has been demonstrated by Vollmayer et al.35

that the “distance” of a unique cumulant intersection from the
point at which the phase transition would occur in the ther-
modynamic limit scales as L −2d . Thus, one can expect that
for sufficiently large systems it may seem that even at a dis-
continuous phase transition all cumulants intersect in a unique
point which then for all practical purposes may be taken as the
state point at which the phase transition would occur in the
thermodynamic limit.

4 Results

4.1 Numerical details

Our results are based upon MC simulations in a specialized
isothermal-isobaric ensemble discussed in detail elsewhere.18

In this ensemble a thermodynamic state is specified by N, T ,
the ratio of side lengths of the simulation cell in the x- and y-
directions sx/sy, the distance sz between the solid substrates,
and the transverse component P∥ =

1
2

(
Pxx +Pyy

)
of the pres-

sure tensor P. The specialized isothermal-isobaric ensemble
is employed to equilibrate the system. Production runs were
carried out in the canonical ensemble using the average side
lengths from the isothermal-isobaric equilibration run as fixed
input values.36

We generate a Markov chain by a conventional Metropolis
protocol where it is decided with equal probability whether
to displace a mesogen’s center of mass by a small amount or
to rotate the mesogen around a randomly chosen axis. All
mesogens are considered sequentially such that a MC cycle
commences once each of the N mesogens has been subjected
to either a displacement or rotation attempt.

Our results are typically based upon 1.5× 105 MC cycles
for equilibration followed by another 1.0× 106 cycles during
which relevant ensemble averages are taken. To save com-
puter time we cut off mesogen-mesogen interactions beyond
center-of-mass separations rc = 3.00σ . In addition, we em-
ploy a combination of a Verlet and link-cell neighborlist. A
mesogen is considered a neighbor of a reference mesogen if
their centers of mass are separated by less than rN = 3.50σ .

As we are not interested in simulating any particular mate-
rial we express all quantities in dimensionless (i.e., “reduced”)
units. For example, energy is given in units of εmm, length in
units of σ , and temperature in units of εmm/kB. Other derived
units are obtained as suitable combinations of these basic ones
(see Appendix B.1 of the book by Allen and Tildesley37).
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We consider a thermodynamic state characterized by T =
0.95 and P∥ = 1.80 corresponding to a mean number density
ρ ≃ 0.92 for which the host phase is sufficiently deep in the
nematic phase indicated by Sb ≃ 0.70. For all the simulations
and regardless of the spatial arrangement of the colloidal pair
we take sz = 24.0 so that the immediate environment of the
colloids is not affected directly by the presence of the solid
substrates whose sole purpose is to fix n̂nn0.

4.2 Bulk phase

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

TIN0.95 1.00 1.05 1.10

S
b

T

Fig. 1 Plot of the nematic order parameter Sb as a function of
temperature T (■). Data are shown for N = 1000 mesogens. The IN
phase transition occurs at TIN and is obtained from an analysis of the
second-order cumulant (see text). The full line represents a spline
fitted to the discrete data points and intended to guide the eye. Also
shown is SIN = 1

3 at TIN predicted by LdG theory (•) (see text).

We begin our presentation of properties of the bulk phase in
the absence of any colloidal particle. To illustrate that under
the thermodynamic conditions chosen the host fluid is in the
nematic phase we present in Figure 1 a plot of Sb across the
IN phase transition. Because of the relatively small system
size the IN phase transition appears to be rounded despite its
in principle discontinuous character.

Another well-known finite-size effect is visible in the
isotropic phase (i.e., for T > TIN) where Sb approaches a small
nonzero plateau value of about 0.069. This can be explained
by assuming that the liquid crystal consists of molecular-size
domains in which mesogens align their longer axes preferen-
tially because of the form of φmm. In the isotropic phase these
domains are uncorrelated. However, their number is finite
so that by averaging Sb over the ordered domains a residual
nonzero value is obtained.

At this stage it is noteworthy that finite system size affects
the nematic order parameter only in the isotropic phase and
near the IN phase transition [see, for example, Figure 6(b)

of Ref.12 or Figure 2(b) of Ref.31] whereas Sb is insensi-
tive to system size sufficiently deep in the nematic phase.
Hence, under the present thermodynamic conditions (see Sec-
tion 4.1) a significant system-size effect is not anticipated for
the pure host phase (i.e., in the absence of colloidal particles).
The presence of the colloids will cause formation of nearly
isotropic domains of a certain size determined by the surface
curvature of the colloidal particle (i.e., by its size). In these
domains, S (rrr) is small but nonzero. However, size and shape
of the domains and the actual value of S (rrr) reflect the true
physics of the system and should not be confused with finite-
size effects in the bulk and in the absence of the colloids as
discussed before.

Another feature illustrated by the plot in Figure 1 is that the
value predicted by LdG theory

SIN =−2
9

B
C

=
1
3

(26)

agrees remarkably well with SIN ≃ 0.36 obtained from MC
using FSS (see below). Moreover, SIN from LdG theory turns
out to be universal in that it neither depends on ρ nor T . This
is similar to Maier-Saupe theory where a similar universal
value is found.38 However, more recent MMF DFT calcula-
tions showed that instead SIN exhibits a temperature depen-
dence such that a limiting value of SIN is approached from
above if TIN is sufficiently high.12

10-4

10-3

10-2

10-1

100

0.95 1.00 1.05 1.10

g 2
 −

 1

T

10-3

10-2

10-1

1.01 1.02 1.03

Fig. 2 Plots of second-order cumulants g2 as functions of
temperature T for N = 500 (•), N = 1000 (•), and N = 5000 (•).

To estimate TIN (and therefore SIN) we resort to FSS theory
and compute g2 from eqn. (25) using Sn

b =
⟨
Sn

b

⟩
for three sys-

tem sizes corresponding to N = 500, N = 1000, and N = 5000
mesogens. That data obtained for these system sizes are sig-
nificant and meaningful is concluded from the much more de-
tailed analysis of the IN phase transition in the present model
conducted earlier by Greschek and Schoen.31
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Results of the present calculations displayed in Figure 2 in-
dicate that above TIN (i.e., in the isotropic phase), g2 turns
out to be independent of system size as one would expect ac-
cording to the scaling behavior of ⟨Sb⟩ ∝ N−1/2 and that of⟨
S2

b
⟩

∝ N−1.26,31 As one approaches TIN from above, g2 first
passes through a maximum if N is sufficiently large and then
declines sharply with decreasing T where in the nematic phase
g2 turns out to be the smaller the larger N is. Most importantly,
however, all three curves plotted in Figure 2 pass through a
common intersection demarcating TIN ≃ 1.02 according to the
discussion in Section 3.2.3.

Equipped with this result and with expressions for a, B, and
C [see Equations (22a) and (22b)] we are now in a position
to estimate T ∗ where we find T ∗/TIN ≃ 0.746. For MBBA,
Senbetu and Woo’s experimental data allow us to estimate
T ∗/TIN ≃ 0.904 which is of about the same order of mag-
nitude.39 Thus, we conclude that our combined MMF DFT-
LdG-FSS approach provides a sufficiently realistic description
of the nematic host phase.

-0.002

-0.001

 0

 0.001

-0.5 -0.25  0  0.25  0.5  0.75  1

∆f
0

Sb

Fig. 3 Plot of the change in LdG free energy density ∆ fLdG as a
function of the nematic order parameter S for T > TIN ( ),
T = TIN ( ), T < TIN ( ), and T = T ∗ ( ).

With the parameters T ∗, a, B, and C we plot the LdG free
energy density ∆ f0 from eqn. (13) in Figure 3. As expected,
the absolute minimum of ∆ f0 corresponds to the isotropic
phase (Sb = 0) for T > TIN. Exactly at T = TIN, ∆ fLdG exhibits
a double minimum, one at Sb = 0, the other one at Sb > 0 in the
nematic phase. The depth of both minima is the same, that is
isotropic and nematic phases coexist. At T slightly below TIN
the depth of the minimum at Sb > 0 exceeds that at Sb = 0 so
that the nematic phase is thermodynamically stable whereas
the isotropic phase is only metastable. Finally, at T = T ∗ the
plot of ∆ f0 exhibits a saddle point at Sb = 0 indicating that the
isotropic phase is unstable for all T ≤ T ∗.

4.3 Core region

(a) (b)

(c)
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x
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(c)

z
y

x

Fig. 4 (a) Director field n̂nn(rrr) (dashes) and local nematic order
parameter S (rrr) (see attached color bar) projected onto the x–y plane.
The grey semicircle marks the upper hemisphere of a colloidal
particle with part of a Boojum defect topology centered on its north
pole. (b) Three-dimensional sketch of the variation of n̂nn(rrr) for a
hyperbolic hedgehog defect topology. (c) Variation of S (rrr) (left
ordinate, □), the Frank-Oseen contribution fFO (rrr) [right ordinate,
■, see eqn. (14)], and the biaxial order parameter ζ (rrr) (left
ordinate, see text, •) as functions of x− r0 and z = 0 cutting
through the defect core. Notice that the data plotted have been
averaged over a strip of width δy = 1.2 centered on y = 0 to get a
reasonably smooth variation of all three quantities shown. The
vertical solid line marks the radius Rcore of the circular defect core.
Red marks have been added to all three parts of the figure to assist
the reader in relating them.

Turning now to our composite system in which colloids are
immersed into the nematic host phase, we begin by consider-
ing a single colloidal particle first. Plots of the local nematic
order parameter S (rrr) and the director field n̂nn(rrr) in Figure 4(a)
reveal the formation of a defect near the colloid’s north pole
and that this defect is of the Boojum topology as anticipated
for a locally planar anchoring of mesogens at the colloid’s sur-
face. Upon entering this region, S (rrr) declines sharply so that
the defect has a well-defined boundary.

As already mentioned in Section 3.1, special precaution has
to be taken to treat the contribution of the defect core to ∆ f (rrr).
Within the defect core the variation of n̂nn(rrr) bears a lot of struc-
tural similarity with a hyperbolic hedgehog defect in the bulk
[see Figure 4(b)] represented by n̂nn(rrr) = (x,y,−z)T where su-
perscript T denotes the transpose.

Moreover, plots in Figure 4(c) show that outside the defect
core both S (rrr) and fFO (rrr) vary rather weakly. Hence, the as-
sumption underlying eqn. (14), namely the variation of n̂nn(rrr)
on a length scale exceeding the molecular one, is well justi-
fied. Therefore, fel ≈ fFO outside the defect core to a good
approximation [see eqn. (14)].

Inside the defect core, however, n̂nn(rrr) varies on a molecular
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scale such that fFO passes through a relatively sharp maximum
and then declines sharply as one approaches the center of the
core region [see Fig 4(c)] so that the assumption underlying
fFO (rrr) is no longer justified. To account for the free-energy
contribution of the defect core we therefore resort to a proce-
dure suggested earlier by Lubensky et al..20

These authors derive an analytic expression for the free en-
ergy of defect cores considering analytical director fields (such
as the one for the hyperbolic hedgehog defect) [see eqn. (8) of
ref.20]. Because of the plots in Figure 4(a) and Figure 4(b)
we take half of this free energy and assign it to a spheri-
cal core volume 4

3 πR3
core to obtain a free-energy density of

fcore = K/R2
core where Rcore is the radius of a circular Boojum

defect core. We determine the size of the core region by cut-
ting through the center of the defect core of an isolated colloid
along the x-axis and take as Rcore that value of x at which S (rrr)
drops below SIN for the first time. Using Rcore ≃ 1.80 [see Fig-
ure 4(c)] we obtain fcore ≈ 0.50kBT which is not an unrealistic
value as we conclude by comparison with the much more so-
phisticated DFT study of defect-core free-energy densities of
de las Heras et al.22

To approximate the free-energy density of more complex
defect topologies to be discussed in Section 4.4 we assume
that fcore is the same everywhere in the core region irrespective
of the defect topology. Hence, the free energy of the defect
core is obtained from the expression

Fcore = fcore

∫
Vcore

drrr = fcoreVcore (27)

where Vcore = { rrr|S (rrr)≤ SIN} is the total volume of the defect
core. In practice, we determine Vcore by partitioning the entire
system into small cubes of side length δ s = 0.2 and count the
number of cubes in which S (rrr)≤ SIN. The total volume of all
these small cubes is then equal to Vcore. In a similar fashion we
compute ∆ f (rrr) for small equally sized volume elements and
obtain ∆F through a three-dimensional integration of ∆ f (rrr)
along the x-, y-, and z-axis using a simple trapezoidal rule.

However, it needs to be stressed that this is truly only a
rough approximation to the free energy of defect cores even
though it is a standard one in the literature.20,33 Perhaps the
most significant assumption behind the expression in eqn. (27)
is that of insensitivity of fcore to variations in the topology of
defects as illustrated by plots in Figure 4. To improve this situ-
ation one could in principle invoke the approach of Lubensky
et al.20 and try to find an analytic expression for n̂nn(rrr) inside
the defect core such that for each and every topology observed
a different fcore might obtain analytically. However, if and to
what an extent this is possible is currently unknown and would
require a study in its own right.

Nevertheless, we feel that the assumption of a assigning the
same constant fcore regardless of the specific defect topology

is not unrealistically crude. This is concluded from the work
of Lubensky et al.20 who show that even for rather disparate
n̂nn(rrr) the free energy of the defect core is more or less the same
such that Fcore ∝ Vcore to a reasonable degree.

4.4 The effective interaction potential
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Fig. 5 Upper panel (a)–(c) shows plots of the three-dimensional
defect topologies of a pair of colloids (grey spheres) immersed in a
nematic host fluid for various angles θ between the center-of-mass
distance vector rrr12 and the far-field nematic director n̂nn0 given in the
plots. Defect regions are colored in red subject to the condition
S (rrr)≤ 1

3 . Plots in the middle panel (d)–(f) show the corresponding
local director field (dashes) and the local nematic order parameter
(see attached color bar) projected onto the x–y plane where grey
circles are similar two-dimensional projections of the colloids. Plots
of the biaxiality order parameter are shown in the lower panel
(g)–(i). In all cases n̂nn0 · êeex = 1.

Based upon results presented in Sections 4.2 and 4.3 we
now focus on the effective interaction between a pair of col-
loids immersed in the nematic bulk host phase. We begin in
Figure 5 by considering a pair of colloids in contact with each
other. Plots (a)–(c) in the upper panel of Figure 5 indicate that
part of the Boojum defects at isolated colloids interact at suf-
ficiently close proximity of these colloids. For example, for
an angle θ = 0◦ between the intercolloidal center of mass dis-
tance rrr12 and the far-field nematic director n̂nn0 a toroidal defect
structure exists surrounding the point of contact between the
colloids. As θ increases this torus is first “ripped apart” and
eventually a handle-like structure forms at θ = 90◦.

Plots (d)–(f) in the middle panel of Figure 5 are projections
of n̂nn(rrr) onto the x–y plane for the same angles as in parts (a)–
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(c) of the same figure. These plots indicate that n̂nn(rrr) = n̂nn0
except in the immediate vicinity of the colloidal pair. As one
approaches the colloids, n̂nn(rrr) is deformed with respect to n̂nn0.

Finally, we plot in parts (g)–(i) of Figure 5 the local bi-
axiality order parameter ζ (rrr). We compute this quantity
from our MC simulations via the smallest and middle eigen-
value of Q(rrr) in eqn. (17) which can be expressed as λ− =
− [S (rrr)+ζ (rrr)]/2 and λ0 = − [S (rrr)−ζ (rrr)]/2, respectively,
for a system with biaxial symmetry because TrQ(rrr) = 0.
From Figure 5(g)–5(i) one notices that biaxiality is relatively
small and restricted to the immediate vicinity of the colloids’
surfaces. We ascribe this to the nanoscopic size of our colloids
(i.e., to the large curvature of their surfaces). A comparison
with plots in Figure 5(d)–5(g) illustrates the structural similar-
ity between both sets of plots. More specifically, where S (rrr)
is lowest, ζ (rrr) is largest.

This also offers another route to treating Fcore at least in
principle because the plots in Figure 5 suggest that inside the
defect core Q(rrr) remains non-singular. Instead of invoking
the approximations introduced in Section 4.3 one could there-
fore try to use directly Q(rrr) from eqn. (17) obtained in the MC
simulations and plug it into the right-hand side of the expres-
sion on the first line of eqn. (14). The required differentiation
of Q(rrr) has, of course, to be performed numerically but would
allow one to compute fel (rrr) also inside the defect core.

Unfortunately, in practice we found that our data are way
too noisy to follow this route and obtain reliable values for
fel (rrr) inside the defect core. A reliable numerical differentia-
tion of Q(rrr) would need a much finer discretization of the grid
on which this quantity is stored because of its rather strong
spatial variation inside the defect core. Notice, that this does
not contradict the smoothness of plots in Figure 4(c) as the
data shown there have been averaged over a fairly wide strip
inside the defect core.

The magnitude of the spatial variation of Q(rrr) is reflected
in part by the plot of fFO (rrr) in Figure 4(c) sufficiently deep in-
side the defect core. In this region, fFO (rrr) exceeds its typical
values in the elastic regime just outside this region by about
two to three orders of magnitude. As is clear from eqn. (14)
the large value of fFO (rrr) can immediately be traced back to
a very strong spatial variation of n̂nn(rrr) inside the defect core
which is linked to a similarly strong spatial variation of Q(rrr)
because of eqn. (9).

Consequently, to be able to differentiate this quantity nu-
merically and reliably would require a better resolution of
Q(rrr) on a much finer grid. This obviously would entail much
longer MC simulations to obtain reasonably good statistics
which, unfortunately, is beyond reach given the number of
simulations and the typical system sizes necessary to map out
the effective interaction potential between the colloidal pair
with sufficient resolution. Because of these constraints and
because of the discussion in Section 4.3 we conclude that our

present treatment of the free-energy contribution of the defect
core offers the best possible approximation.
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Fig. 6 The effective free energy ∆Feff in units of the change in free
energy associated with an isolated Boojum colloid ∆FB. Vertical
dashed lines demarcate minima in the curves plotted; the limiting
value θ ≈ 49◦ is also indicated (see text); r12 = 7.20 (•), r12 = 8.00
(■)

In addition to a distortion of n̂nn(rrr) plots in Figures 5(d)–5(f)
reveal regions in which S (rrr) ≪ Sb. From the parallel three-
dimensional plots in Figures 5(a)–5(c) one sees that the vol-
ume of these regions changes with θ . Hence, it seems intuitive
to introduce an associated change in effective free energy

∆Feff = Fel +Fcore +∆FLdG −2∆FB (28)

where ∆FB is the change in free energy associated with a sin-
gle Boojum defect. In computing ∆FB we assume that it also
consists of an elastic Frank, a defect-core, and a LdG free en-
ergy contribution. In practice, it turns out that the contribu-
tion of each of the first three terms on the right-hand side of
eqn. (28) for the interacting colloidal pair relative to the cor-
responding contribution to ∆FB is roughly of the same order
of magnitude in the range of kBT in agreement with plots pre-
sented in Figure 6 and in Figure 7.

Data for ∆Feff plotted in Figure 6 exhibit a number of inter-
esting features. First, one notices that depending on θ , the sum
Fel +Fcore + ∆FLdG may be larger or smaller than 2∆FB
and therefore ∆Feff may be viewed as a repulsive or attractive
effective interaction potential acting between a colloidal pair
and mediated by the nematic host phase. Second, the mini-
mum in the plot of ∆Feff shifts to larger angles θmin as the
intercolloidal center-of-mass distance increases. This is fully
in line with experimental observations made by Smalyukh et
al.11 and theoretical observations made by Tasinkevych et
al..8 Third, these latter authors could also demonstrate that
their experimental value of θmin increases monotonically to-
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wards a limiting value. This limiting value is found by real-
izing that for a single Boojum defect (corresponding to a suf-
ficiently separated pair of colloids) the spatial variation of the
nematic director field bears close resemblance to the spatial
variation of the electrostatic field associated with interacting
quadrupoles. For the latter the orientation dependence of the
electrostatic energy can be cast as

U ∝ 9−90cos2 θ +105cos4 θ (29)

from which θmin ≈ 49◦ follows without further ado.
One also notices from the plots in Figure 6 an upward shift

of the curves that causes larger spatial regions in which the
effective potential ∆Feff is repulsive. In particular, such a re-
pulsive region exists for angles θ ≳ 70◦ and r12 = 8.00. This
is fully in line with trajectories of colloids measured by Sma-
lyukh et al.11 by video microscopy and presented in their Fig-
ure 2.
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Fig. 7 Contour plot of ∆Feff/∆FB (see attached color bar) as a
function of rrrT

12 = (x12,y12,0)
T. Curves plotted in Figure 6

correspond to r12 = 7.20 ( ) and to r12 = 8.00 ( ),
respectively.

From curves such as the ones presented in Figure 6 we are
now in a position to present in Figure 7 a more refined con-
tour plot of ∆Feff illustrating in a broader way the structural
complexity of the effective-potential landscape.

Using the data plotted in Figure 7 we can now also in-
vestigate structures that several colloids would form in a ne-
matic host phase. For simplicity, and because the experi-
ments used a quasi two-dimensional setup11 we consider a
two-dimensional, coarse-grained system treating the nematic
host implicitly via ∆Feff. To account for the evolution of
the colloids in configuration space we employ a conventional
canonical-ensemble Metropolis MC scheme.

To that end we store ∆Feff on a two-dimensional regu-
lar grid with a spacing of 0.2 between neighboring nodes.
As a position of a colloid will normally not coincide with
a grid point, we interpolate ∆Feff between the four nearest-
neighbor grid points in a bilinear fashion to get ∆Feff at

the actual center-of-mass position of a colloidal disk. A
displacement of a disk is then accepted with a probability
min [1,exp(−∆Feff/∆FB)].
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Fig. 8 “Snapshots” from canonical-ensemble MC simulations of
colloidal disks immersed in a nematic host phase taken into account
implicitly via the effective interaction potential ∆Feff shown in
Figure 7. (a) ϕ = 0.065, (b) ϕ = 0.234 (sx = sy = 50 and
n̂nn0 · êeex = 1). The direction of the far-field director n̂nn0 is indicated in
the figure.

For two packing fractions ϕ = Ncollπr2
0/sxsy of Ncoll col-

loidal disks, characteristic “snapshots” from the simulations
at thermodynamic equilibrium are shown in Figure 8. Here sx
and sy are linear dimensions of the simulation cell. As one can
see colloidal disks tend to form linear chains at the lower pack-
ing fraction where the symmetry axis of each chain forms an
angle of θ ≈ 30◦ with n̂nn0 [see Figure 8(a)] whereas at higher
packing fraction a more extended two-dimensional network of
colloidal disks exists at thermodynamic equilibrium [see Fig-
ure 8(b)]. Both types of structures bear a remarkable resem-
blance to those displayed in Figure 1(b) and Figure 1(e) of the
work by Smalyukh et al.11

5 Discussion and conclusions

By means of a novel hybrid approach we investigate the self-
assembly of spherical colloidal particles with chemically ho-
mogeneous surfaces at a coarse-grained level of description.
Our hybrid approach combines molecular-scale methods and
theories such as MC computer simulations, classical DFT, and
elements of FSS theory with macroscopic theories such as
LdG and the Frank-Oseen treatment of the free-energy density
associated with elastic deformations of the director field. The
goal of this approach is to integrate out less relevant degrees of
freedom in a controlled fashion while maintaining the correct
physics of a composite system such as the present one. The
philosophy of our approach is quite general and may perhaps
be applied to other composite systems as well. An example
in this respect could be that of Janus colloids immersed into a
nematic host phase.
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In our case, the colloids are immersed into a nematic liquid-
crystal host phase. Self-assembly is driven by effective inter-
actions mediated by the host. The effective iteractions corre-
spond to a change in free energy caused by defects (i.e., re-
gions of lower nematic order) in the host phase. These defects
cause a local decline of nematic order and distortion of the
director field. Both features arise because of the mismatch be-
tween the local alignment of mesogens at the curved surface of
the colloids and the nematic far-field director n̂nn0. They depend
on the arrangement of the colloids in space.

We are treating both the local lowering of nematic order and
the distortion of the director field at mean-field level assuming
that the former can be adequately accounted for by LdG the-
ory and the latter within the standard expression for the Frank
elastic free energy. The mean-field character is reflected by
the fact that we compute LdG expansion parameters a, B, and
C from mean-field DFT and that the elastic contribution to
the change in free energy does not account for fluctuations of
n̂nn(rrr). However, the Frank free energy is computed only out-
side the defect core where n̂nn(rrr) changes on a length scale large
compared to a molecular one.

Applying LdG theory within the framework of molecular
simulations poses a fundamental problem because under most
conditions statistical accuracy is insufficient to compute the
LdG expansion coefficients B and C.26 However, employing
classical DFT allows one to express analytically the LDG co-
efficients in terms of thermodynamic state parameters such as
density and temperature.

A key ingredient in LdG theory is the temperature T ∗ at
which the isotropic phase becomes thermodynamically unsta-
ble. It is related to the temperature TIN at which one has IN
phase coexistence. To improve our DFT estimate of T ∗ for the
LdG treatment we locate TIN through an analysis of second-
order cumulants of the nematic order parameter within the
frameowrk of FSS theory.

An alternative route to the LdG coefficients has recently
been proposed by Gupta and Ilg.40 Starting from a state point
in the isotropic phase for which they can compute the free
energy semi-analytically, Gupta and Ilg apply an external or-
dering field to drive the system into an ordered nematic phase.
In the ordered state the free energy can then be calculated by
thermodynamic integration. The intrinsic free-energy contri-
bution can be related to functions that can, on the one hand,
be determined numerically through reliable fit functions and
that one can, on the other hand relate to the LdG expansion
coefficients analytically.

A crucial ingredient in the approach of Gupta and Ilg is the
ordering field which for their Gay-Berne model of a liquid
crystal has a magnitude of the order of one. When applying
the technique of Gupta and Ilg to our model system we found
that the magnitude of the ordering field had to be about five
orders of magnitude larger to drive a system from the isotropic

to the nematic phase. We believe that this huge difference in
the external field is caused by the almost spherical shape of
mesogens in our model. Because of the disparate magnitude
of the ordering fields it turned out that for the present model
the approach of Gupta and Ilg could not be applied reliably.

However, our combined MC-DFT-FSS approach allows us
to compute the effective interaction potential reliably. A com-
parison with experimental data reveals that

1. the effective potential has a minimum at an angle θ ≈ 30◦

between the intercolloidal distance vector rrr12 and the far-
field nematic director n̂nn0 if the colloids are sufficiently
close to each other.

2. the position of the minimum shifts monotonically to
larger θ if r12 increases.

3. depending on θ and r12 the effective potential may be
repulsive or attractive.

These features turn out to be in semi-quantitative agreement
with experimental observations.9,11

Encouraged by the apparent consistency of these obser-
vations with experimental data we perform coarse-grained,
canonical-ensemble MC simulations of several colloidal disks
immersed in a nematic host phase that is now treated implic-
itly through the effective interaction potential. In that regard
our approach has a multiscale character. The structures ob-
served at different packing fractions agree again qualitatively
with experimental data11 despite the much larger colloids used
experimentally.

However, it needs to be stressed that the simulations of sev-
eral colloids is based upon the assumption of pairwise addi-
tivity of the effective interactions. A priori there is no guar-
antee that this assumption is valid. However, the excellent
qualitative agreement between structures observed within our
approach with those seen experimentalls seems to justfy the
assumption of pairwise additive effective interactions a poste-
riori.

In summary, we have shown that the self-assembly of col-
loidal particles in a nematic liquid crystal is driven by the
occurrence of colloid-induced defects associated with a local
elastic distortion of the director field. This also implies that in
an isotropic phase no such self-assembly would occur as the
effective interaction potential would vanish identically.

We are grateful for financial support from the Deutsche
Forschungsgemeinschaft via the International Graduate Re-
search Training Group 1524.
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15 B. Jérôme, Rep. Prog. Phys., 1991, 54, 391–451.
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