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Assembling molecular superstructures with many distinct components will allow unprecedented control over
morphology at the nanoscale. Recently, this approach has been used to assemble periodic structures with
precisely defined features, such as repeating arrays of pores and channels, using a large number of building
blocks. Here we propose a predictive tool that allows us to optimize the nucleation and growth of unbounded,
ordered structures. In what follows, we call these structures ‘crystals,’ even though they may only be periodic
in one or two dimensions. We find that the nucleation barriers and growth pathways for crystals consisting of
many components exhibit generic features that are very different from those of simple crystals. To illustrate
the very non-classical nature of the nucleation and growth of such structures, we study the formation of one
and two-dimensional crystals with multicomponent unit cells. We find that, whilst the boundaries in the
non-periodic dimensions significantly affect the stabilities of these crystals, the nucleation barriers are largely
determined by the local connectivity of the associated bulk crystal and are independent of the number of
distinct components in the unit cell. We predict that the self-assembly of crystals with complex morphologies
can be made to follow specific pathways toward the target structure that successively incorporate key features
of the three-dimensional target structure. In contrast with simple crystals, it is possible to tune the kinetics of
nucleation and growth separately, thus minimizing defect formation. We show how control over self-assembly
pathways can be used to optimize the kinetics of formation of extended structures with arbitrary nanoscale
patterns.

I. INTRODUCTION

Experiments in complex self-assembly have demon-
strated that nanostructures composed of hundreds or
thousands of distinct components can be assembled ro-
bustly by designing highly specific interactions between
the subunits. Such structures are ‘addressable’ in the
sense that every subunit belongs in a specific location
within the three-dimensional target structure1–6. Using
designed interactions between putative neighbors, finite-
sized structures with an impressive array of nanoscale
features have been assembled by using single-stranded
DNA ‘bricks’ as the molecular building blocks7–10. More
recently, this approach has been used to assemble crystals
with multicomponent unit cells that are periodic in only
one or two dimensions11. These ‘semi-infinite’ crystals
are promising for a wide variety of applications in which
macroscopic materials with intricate, periodic nanoscale
features are desirable12–14.

Addressable crystals are an exciting prospect because
the use of many components offers direct control over
the mechanism of self-assembly. In conventional crystals,
thermodynamic stability and the kinetics of nucleation
and growth are inextricably linked. This relationship be-
tween stability and kinetics is customarily described by
the classical theory of nucleation, which predicts a single
free-energy barrier separating a disordered fluid phase
from a thermodynamically favored crystal phase15–17.
Under conditions where the fluid phase is only mildly
supersaturated, the rate-limiting free-energy barrier may
result in nucleation that is impractically slow. Typically
the only means of speeding up nucleation is to increase

the supersaturation of the fluid, but this strategy often
results in crystals with many defects5,18. Such limited
control over the self-assembly pathway is one fundamen-
tal reason why growing high-quality crystals of large par-
ticles, such as proteins19,20 and functionalized colloids21,
is notoriously difficult. However, with the introduction
of heterogeneous building blocks, it is now possible to
decouple the nucleation and growth kinetics while tun-
ing the stability of the crystal phase independently. The
ability to optimize the kinetics at all stages of assembly
is crucial for achieving high yields of intricate multicom-
ponent crystals.

The recent experiments on DNA-brick crystals indi-
cate that self-assembly only occurs in a narrow tempera-
ture window11 and that it appears to be non-hierarchical.
One might be tempted to assume that the nucleation of
these extended structures is qualitatively similar to the
(classical) nucleation of simple crystals, and therefore
different from the highly non-classical nucleation that
we reported in model studies of finite-sized addressable
structures22–24. However, as we show below, the nucle-
ation of addressable crystals can also be surprisingly non-
classical. Moreover, the compositional heterogeneity of
the multicomponent unit cell has profound effects on the
dominant self-assembly pathways well into the growth
phase. We predict non-hierarchical self-assembly at the
level of the simplest periodic structures, but our study
also shows that we can design hierarchical pathways that
achieve controlled multi-step nucleation on the way to the
completion of the entire crystal. Understanding how to
design such pathways will allow us to to engineer increas-
ingly complex crystals using a wider variety of molecular
building blocks25–27.
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II. FREE-ENERGY LANDSCAPES OF ADDRESSABLE

CRYSTALS

In Ref. 23, we introduced a theoretical method for pre-
dicting the free-energy landscape of a finite-sized, aperi-
odic addressable structure. We then demonstrated in
Ref. 24 that this landscape can be used to describe the
mechanism of assembly, starting from a dilute solution,
in a near-equilibrium protocol. This study showed that
both the topology of the target structure and the choice
of stabilizing bond energies control the nucleation behav-
ior in finite-sized addressable structures, and that these
features can be tuned to design robust pathways for self-
assembly. Here we describe how this theoretical method
can be used to design self-assembly pathways for address-
able crystals with complex unit cells. In what follows,
we consider the assembly of a target structure that is
stabilized by specific, saturating bonds. To meet this re-
quirement, the interactions between subunits should be
short-ranged, and the subunit binding sites must only
be capable of forming one bond at a time. We implic-
itly assume that the bond distances between all pairs
of specifically bonded particles are similar and that the
placement of the binding sites on the subunits is consis-
tent with the geometry of the three-dimensional target
structure. Our approach is thus applicable to a wide va-
riety of molecular building blocks, including DNA bricks
and anisotropic colloids with functionalized patches.
In order for a specific three-dimensional crystal to be

thermodynamically stable, the bonds between neighbor-
ing particles must be significantly stronger than any off-
target interactions between subunits. We therefore con-
sider a model crystal in which the building blocks only
interact through ‘designed’ bonds. A simple example of
a target structure is shown in Figure 1a, where the de-
signed bonds are indicated by lines connecting particles
whose various colors indicate distinct component types.
A single unit cell, which contains exactly one particle of
each component, is highlighted. The connectivity of all
particles in the perfectly formed crystal can be uniquely
represented by a unit-cell graph, G, in which each vertex
indicates a distinct component. The edges of G repre-
sent the designed bonds, either between particles that are
physically adjacent within a single unit cell (solid lines
in Figure 1b) or between a particle and the periodic im-
age of its neighbor in an adjacent unit cell (dotted lines).
This distinction between types of edges depends only on
how the graph is drawn and does not affect the ther-
modynamic properties of the crystal. Importantly, all
topological properties of the infinite crystal are encoded
in this unit cell.
The free energy per unit cell of the perfect crystal,

relative to a dilute solution of free monomers, can be
determined directly from the unit cell graph,

∆FG ≡ −
∑

b∈E(G)

ǫb −
∑

v∈V(G)

(µv − β−1 ln qr), (1)

where E(G) and V(G) are the edge and vertex sets, re-

G1 G2 G3

G4 G5 G6

G7 G8 G9

a

c

G

G′

b

FIG. 1. A multicomponent crystal can be represented by a
unit-cell connectivity graph that contains a single copy of each
component. (a) A schematic of a two-dimensional crystal with
a 16-component unit cell, with one such cell highlighted, and
(b) its associated connectivity graph, G. All vertices of this
graph are distinct, and the edges indicate designed interac-
tions between components. Edges that connect a particle in
the highlighted cell to the periodic image of its neighbor are
shown here by dotted lines. (c) An example super cell, G′,
is composed of nine adjacent copies of the fundamental unit
cell.

spectively, of the unit cell, β ≡ 1/kBT is the inverse tem-
perature and kB is the Boltzmann constant. The chem-
ical potentials of the components, {µv}, and the magni-
tudes of the designed bond energies, {ǫb}, may, in prin-
ciple, be different for each component v or bond b. The
final term accounts for the loss of rotational entropy in a
completely assembled crystal, where qr is the rotational
partition function of a monomer. Eq. (1) follows from the
fact that the free energy of a macroscopic crystal must
be extensive in the number of unit cells, and the equation
∆FG = 0 defines the phase boundary at which the defect-
free crystal becomes stable. Although this suggests that
self-assembly will only occur if ∆FG < 0, we shall see
that it is possible to assemble stable, correctly bonded
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substructures under conditions where ∆FG > 0. In this
regime, a structure with many missing components is
substantially more stable than the defect-free target crys-
tal. This entropic effect is much larger than for simple
crystals since not all subunits form the same number of
designed bonds and, depending on the designed inter-
actions, some particles may be bound much less strongly
than others. However, this property of addressable struc-
tures is a strength, not a weakness: it means that, de-
pending on the experimental conditions such as temper-
ature and monomer concentrations, a given combination
of building blocks can form a variety of structures with
the same periodicity, but with very different patterns.
While a thermodynamic stability analysis is useful for

estimating the phase boundaries of a multicomponent
crystal, it does not predict whether a structure will as-
semble robustly. Thus, in order to study the kinetics of
self-assembly, we calculate a free-energy landscape that
takes into account all possible partial structures of the
target crystal. These partial structures correspond to
the connected clusters of the infinite target crystal. In a
dilute solution, we can assume that the solution of cor-
rectly bonded clusters is ideal. The fugacity of a cluster
represented by a connectivity graph g is then

zg ≡ exp



β
∑

b∈E(g)

ǫb + β
∑

v∈V(g)

µv + k−1
B ∆Sr(g)



 . (2)

The first two terms account for the designed interactions
and for the chemical potentials of the monomeric units
that are incorporated in this cluster. The third term ac-
counts for the loss of rotational entropy of the monomers
upon association. (For further details, see Supplemen-
tary Information Sec. S1A.) In order to examine the
effects of the connectivity of the unit cell, we shall ini-
tially assume that all bond energies are equal and that all
monomeric units have the same chemical potential. The
generalization to random heterogeneity in the bond en-
ergies is straightforward, and its effect on the free-energy
landscape is discussed in Refs. 23 and 24. However, the
selective tuning of the strengths of individual bonds can
lead to highly unusual free-energy landscapes for crystal
self-assembly, with no counterpart in the self-assembly of
crystals consisting of only a few components. This will
be discussed in Sec. III C.
In order to predict the free-energy barrier for nucle-

ation, we must account for all distinct clusters of the
infinite target crystal. This includes clusters that span
multiple unit cells and thus contain multiple particles of
the same type. Because we can only explicitly consider
finite unit cells in our calculations, we define a ‘super’
cell, G′, that consists of multiple adjacent copies of the
fundamental unit-cell, G. However, we must take care to
exclude unphysically connected clusters that are intro-
duced by edges between periodic images of neighboring
particles. We may thus only examine clusters with fewer
edges than Emax, the length of the shortest path connect-
ing a particle with its periodic image in a crystal of super

cells. For example, in the nine-unit-cell super cell shown
in Figure 1c, some connected subgraphs with Emax = 12
percolate through the super cell and are therefore un-
physical.
Because the total number of distinct clusters grows ex-

ponentially with Emax, directly enumerating these clus-
ters quickly becomes intractable. We instead group the
clusters into sets with the same numbers of edges, E,
and vertices, V , since these topological properties are
the primary determinants of the cluster fugacity given in
Eq. (2). We determine the number of clusters in each
(E, V )-set and then estimate 〈exp[k−1

B ∆Sr(g)]〉E,V
in or-

der to calculate the average fugacity of each set of clus-
ters. (See Supplementary Information Sec. S1B for fur-
ther details of these calculations.) Finally, we calculate
the free energy of a cluster composed of a given number
of particles, regardless of the identities of the particles
involved,

F (V ) ≡ −kBT ln
∑

g

1
[

|V(g)| = V
]

zg, (3)

where V is the number of particles in the cluster and the
indicator function 1[·] evaluates to unity if its argument
is true and to zero otherwise. Eq. (3) defines the free-
energy landscape as a function of the degree of assembly
of the target crystal.
Besides providing a practical algorithm for calculat-

ing the free-energy landscape of an addressable crys-
tal, our approach provides an important insight into
the thermodynamics of these structures. By comput-
ing the total number of distinct connected clusters in
a super cell of size |G′|, we are over-counting every dis-
tinct cluster by a factor |G′|/|G|. It is then clear from
Eq. (3) that all free-energy differences are in fact in-
dependent of our definition of the unit cell, assuming
that the unit cell does not possess any rotational sym-
metries (see Supplementary Information Sec. S1C). We
therefore find that the number of distinct components
in the unit cell does not affect the thermodynamics of
self-assembly, including both the height of the nucleation
barrier, ∆F ‡ ≡ max[F (V )]−F (1), and the unit-cell sta-
bility, ∆FG. All effects related to the use multiple dis-
tinct components instead originate from the non-periodic
dimensions or any spatially heterogeneous motifs within
the unit cell, as we shall see in the following sections.
We discuss some practical aspects of this observation in
Sec. IV.

III. RESULTS

We now apply this theory to examine the stabil-
ity, nucleation and growth of semi-infinite crystals com-
posed of four-coordinated DNA bricks22. We consider
model structures built from a minimal repeating unit of
4× 4× 4 particles; we therefore define a = 4 to be the
length of one minimal repeating unit in all dimensions.
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We also fix the chemical potential of every component to
be µ = kBT ln ρ, where the per-component number den-
sity in the reference fluid is ρ = 1× 10−5. While the
results that we present here are specific to model DNA-
brick crystals, these examples highlight many generic fea-
tures of addressable multicomponent crystals.

A. Nucleation and stability of semi-infinite structures

We first consider two cases of three-dimensional, peri-
odic DNA-brick structures: ‘columns,’ which are periodic
in the z dimension, and ‘slabs,’ which are periodic in both
the x and y dimensions. Schematics of these structures,
as well as example three-dimensional models of tetrahe-
drally coordinated DNA bricks, are shown in Figure 2a.
Unsurprisingly, we find that both the stability boundaries
and lines of constant nucleation-barrier height for these
structures shift toward stronger bonds (or, alternatively,
to lower temperatures) relative to the bulk crystal, i.e.,
a structure in which all lattice sites are occupied (Fig-
ure 2b). These boundaries converge to the bulk values
as l → ∞. We observe similar trends for both columns
and slabs having the same number of particles, la or za,
respectively, in the non-periodic dimensions. For these
structures, we predict a single nucleation barrier under
conditions where the target structure is thermodynam-
ically stable. As a result, clusters consisting of more
particles than the critical nucleus are expected to grow
without bound. This prediction is consistent with exist-
ing experiments on DNA-brick crystals, which found an
optimal temperature window for assembly with randomly
assigned DNA sequences11.

The free-energy landscapes shown in Figure 2c-d indi-
cate that the kinetics of nucleation and growth are af-
fected differently by the design of the unit cell. We note
that for every cluster size V > 1, the cluster free energy
of a semi-infinite structure, Eq. (3), is determined by a
subset of the connected clusters of the bulk lattice. In
particular, the removal of certain maximally connected
substructures, which form the greatest number of bonds
for a given number of particles and are associated with
the local minima of F (V ), drastically alters the land-
scape. This effect can be seen in the divergence of the
free-energy profiles of the l = 2a and z = 2a structures
from the bulk profile in Figures 2c and 2d. A more ex-
treme example is the z = a slab (Figure 2d), which has
a planar connectivity graph, and, as a result, is miss-
ing the strongly connected substructures that give rise
to the step-like behavior of the bulk free-energy pro-
file. These examples show that the thermodynamic driv-
ing force for self-assembly, ∂F/∂V , can be significantly
weaker for semi-infinite structures than for the bulk crys-
tal under equivalent conditions. However, the free en-
ergies of small clusters, which determine the nucleation
barrier, converge much more rapidly to the bulk values
(Figure 2b). This is because the non-classical nucleation
barriers shown in Figure 2c-d are primarily determined

by the appearance of certain stable motifs, which may
span multiple adjacent unit cells and are only weakly af-
fected by the non-periodic boundaries of a semi-infinite
structure. These observations imply that semi-infinite
structures can be self-assembled at lower supersatura-
tion than the corresponding bulk crystal without signifi-
cantly affecting the nucleation rate. Simple crystals con-
tain fewer defects when they are grown at low supersatu-
ration, and recent simulation results5 have demonstrated
that the same holds for the assembly of addressable struc-
tures. The free-energy landscapes of semi-infinite struc-
tures are thus more favorable than those of bulk crystals
for achieving defect-free self-assembly. In Sec. III C, we
shall show how this feature can be exploited in the design
of a hierarchical self-assembly pathway.

B. Growth pathways in structures with complex

morphologies

One consequence of the preferred assembly of extended
structures that incorporate only a subset of the compo-
nents of the target crystal is that the cluster size, while
still an unambiguous measure of the progress of ‘correct’
assembly, does not measure the degree of assembly of
the defect-free target structure. As an example, we con-
sider two crystals from a class of structures with non-
convex unit cells in Figure 3. (An analysis of a variety of
such structures is presented in Supplementary Informa-
tion Sec. S2.) These structures exhibit mesoscale features
that are larger than a single building block but smaller
than the entire unit cell. Here the relevant mesoscale
features are an interior channel (in the case of the col-
umn in Figure 3a), and periodically repeating rectangu-
lar pores (in the case of the slab in Figure 3b). In the
case of the hollow column, we can now distinguish be-
tween large clusters that comprise only a single face of
the column and clusters that completely enclose the inte-
rior channel as intended (see Figure 3a). Using our the-
oretical approach, we can calculate the probability that
a cluster of a given size completes a full loop around the
interior channel. (For details of this calculation, see Sup-
plementary Information Sec. S3). Similarly, for the case
of the perforated slab, we can calculate the probability
that a cluster of a given size completely encloses at least
one rectangular pore. The results of these calculations,
which are relatively insensitive to the precise value of the
bond strength, are shown in Figure 3.
Our calculations show that the probability of complet-

ing each mesoscale feature increases sharply beyond a
particular cluster size. Strikingly, we find that the dom-
inant near-equilibrium assembly pathways are highly re-
producible, despite the enormous number of potential on-
pathway clusters. Furthermore, in both examples, the
completion of these features occurs far beyond the ini-
tial nucleation barriers and deep into the growth phase
of the crystal (i.e., the regime where the free energy is
steadily decreasing with increasing cluster size). There is
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FIG. 2. Non-periodic boundaries affect the stabilities of DNA-brick crystals to a greater extent than they affect the nucleation
behavior. (a) Schematic diagrams of ‘columns’ and ‘slabs,’ which are periodic in the z and x-y dimensions, respectively. Example
three-dimensional DNA-brick structures are shown below, with the minimal repeating length, a, indicated. (b) Stability
boundaries and lines of constant nucleation-barrier height; the equivalent values for the bulk crystal are indicated by solid
lines. (c-d) The free-energy landscapes of select columns and slabs, assuming βǫ = 10. As l and z increase, these landscapes
converge to the bulk free-energy landscape. The z = a slab has a planar connectivity graph and thus exhibits drastically
different nucleation behavior.

also a significant change in the slope of F (V ) accompa-
nying the completion of these features, confirming that
the enclosing of a channel or a pore significantly enhances
the thermodynamic driving force for subsequent growth.
We stress that the cluster size at which a channel or pore
is enclosed is unrelated to the number of components in
the unit cell, and is in fact is considerably larger than the
number of particles contained in a single unit cell. This
example illustrates that, in order to predict the domi-
nant growth pathway, it is necessary to consider maxi-
mally connected substructures that extend over multiple
adjacent unit cells.

C. Design of hierarchical assembly pathways

The free-energy profile in Figure 3b shows that several
metastable clusters may be encountered during the self-
assembly of a periodic structure consisting of unit cells
with a complex topology. A free-energy landscape with
these features is indicative of hierarchical self-assembly:
since some of these clusters are separated by significant
free-energy barriers, the growth of the target structure
is likely to proceed via a sequence of discrete, partially
assembled structures. By selectively stabilizing specific
substructures, it is even possible to design a free-energy
landscape with a globally stable phase that differs from
the complete crystal in either composition or cluster size.
The selective stabilization of on-pathway clusters thus en-
ables the specification of experimental protocols in which
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FIG. 3. The dominant growth pathways of DNA-brick crystals with complex morphologies are highly reproducible. (a) The
free-energy landscape of a 3a× 3a column with an a× a interior channel (βǫ = 9.6), and the probability, penclosed(V ), that a
cluster of V subunits encloses this channel, as indicated on the three-dimensional model. (b) The free-energy landscape of a
3
2
a×

3
2
a× 2a unit-cell slab with a periodic array of a× a pores (βǫ = 10.5), and the probability that a cluster of V subunits

encloses at least one pore. The column is periodic in the z direction, while the slab is periodic in the x and y directions. For
both structures, the sharp increase in penclosed(V ) is accompanied by a decrease in the slope of F (V ) but is unrelated to the
number of components in the fundamental unit cell, V (G).

the growing cluster is guided from one thermodynami-
cally stable phase to the next. Below, we demonstrate
how knowledge of the free-energy landscape of a struc-
ture with a bimodal bond-energy distribution can be used
to design such hierarchical assembly pathways.

For both of the structures examined in the previous
example, we choose a subset of bonds that stabilize
maximally connected substructures, which correspond
roughly to the local minima in homogeneous-bond-energy
landscapes. These bonds, which are highlighted in Fig-
ure 4a-b, are assigned bond energies −ǫB, while all other
bonds are assigned −ǫA. We apply Eq. (1) to predict the
phase boundaries separating stable substructures, and
then use the complete free-energy landscape to map the
detailed phase diagrams shown in Figure 4e and 4f. (For
details, see Supplementary Information Sec. S4).

In the case of the self-assembling column (Fig-
ure 4a,c,e), assembly may proceed via compositionally
distinct phases. By choosing ǫB to be significantly larger
than ǫA, we assemble a structure consisting primarily of
type-B bonds that does not enclose the interior channel
(phase II). On the other hand, we predict that crystals
assembled in the hatched region of the phase diagram
will enclose this channel, as shown previously in the case

ǫA = ǫB (phase III). We also note that the height of the
dominant nucleation barrier depends primarily on the
strongest bonds, whereas the phase boundaries depend
in general on both ǫA and ǫB. This means that rapid
nucleation occurs closer to the phase boundary, i.e., at
lower supersaturation, in phase II, where only part of the
complete structure is stable. We therefore expect to as-
semble the target crystal with fewer defects by following
an annealing protocol that passes slowly through phase
II before entering phase III.

In the case of the perforated slab (Figure 4b,d,f), a
large difference in the two bond energies leads to multi-
ple nucleation barriers, as well as phases in which finite-
sized clusters are the lowest-free-energy structures. In
the region marked phase III, we find that a fluid of 30-
particle substructures is thermodynamically stable. This
phase is separated from the completely unassembled fluid
(phase I) by a narrow region of stability (phase II) of 27-
particles clusters, which correspond to 30-particle clus-
ters missing one of their four ‘arms.’ Upon equilibration
in both phases II and III, the free-energy landscapes in-
dicate that a proliferation of clusters with type-B bonds
will coexist with a mostly monomeric solution of the re-
maining unassembled components. In the hatched re-
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FIG. 4. Hierarchical self-assembly pathways can be designed by selectively strengthening bonds in an addressable crystal. (a-b)
Connectivity graphs representing the structures examined in Figure 3 with specific substructures highlighted; unterminated
edges continue into adjacent unit cells. Darkened edges are assigned bond energies −ǫB, while all other edges are assigned bond
energies −ǫA. (c-d) Representative free-energy landscapes showing both hierarchical and non-hierarchical assembly pathways,
corresponding to the labeled points in the phase diagrams below. Depending on the bond energies, a secondary nucleation
barrier, ∆F ‡‡, may appear following the assembly of the stabilized substructure. (e-f) Phase diagrams showing the conditions
under which various substructures are globally stable, and the predictions of a simple stability analysis (dashed lines). Lines of
constant nucleation-barrier height are shown in red. In (e), the phases are as follows: I, unassembled fluid; II, infinite cluster
with type-B bonds; III, complete crystal; and IV, infinite cluster with type-A bonds. In (f), the phases are: I, unassembled
fluid; II, 27-particle cluster; III, 30-particle cluster; IV, complete crystal; and V, mixed clusters with fewer than 24 particles.

gion of phase IV, the complete crystal is globally sta-
ble, although the first 30-particle substructure is kineti-
cally separated from further growth by a large secondary
nucleation barrier, ∆F ‡‡. As a result, we predict that

assembly in this region will proceed via a series of nu-
cleation events, each having a well defined nucleation
barrier. If this region is entered from phase III, then
these nucleation events will correspond to the assembly
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of type-A ‘linker’ substructures between pre-assembled
type-B clusters. It is important to point out that compa-
rable behavior is not observed upon stabilizing the com-
plementary substructure, such that ǫA > ǫB. Instead of
monodisperse 24-particle clusters connected by type-A
bonds, we find a stable phase (phase V) corresponding to
a mixture of various substructures, including some that
incorporate type-B bonds. This mixed phase arises be-
cause, in this case, the selected substructure is poorly
stabilized by a low density of designed interactions, and,
as a result, corresponds to a low-probability cluster on
the homogeneous-bond-energy landscape. Thus, while it
is in principle possible to stabilize any part of the unit cell
with a judicious choice of bond energies, maintaining con-
trol over a multistep assembly pathway requires attention
to the intrinsic stabilities of competing substructures.

IV. DISCUSSION

Using a simple, graph-based approach, we have studied
the factors than control the robust assembly of extended
multicomponent structures consisting of many distinct
building blocks. Below, we briefly summarize our main
findings and then discuss some of the implications.

• We find that classical nucleation theory fails to describe
the self-assembly of addressable multicomponent crys-
tals. In particular, in addressable structures, nucle-
ation and growth can be tuned independently.

• Magic-number clusters play a key role in the nucleation
of addressable structures and can even be made stable.

• In addressable crystals, the thermodynamics of self-
assembly is insensitive to the number of distinct com-
ponents used to construct a periodically repeating
structure, provided that this number is large enough
to specify the geometry of the fundamental unit cell.

• Depending on the conditions, the same set of build-
ing blocks can form a variety of patterns that are sub-
structures of the complete lattice. Periodic structures
of incompletely formed unit cells may be entropically
favored over ‘perfect’ lattices.

• None of these findings are specific to structures with
DNA-mediated bonds. These observations apply
equally to addressable crystals that are periodic in all
three dimensions, such as multicomponent zeolite-like
structures.

Critical nuclei or magic clusters

In the case of the DNA-brick lattice considered here,
the nucleation barrier is highly non-classical because
the most stable intermediate structures contain specific
(‘magic’) numbers of particles and are not spherical. This
non-classical behavior is due to the fact that nucleation
proceeds preferentially via maximally connected clusters

that have the lowest free energy for a given number of
particles. In particular, in structures with a low coordi-
nation number, the number of distinct, maximally con-
nected clusters is small. Moreover, the initial increase in
the free energy of pre-critical clusters is a result of the loss
of translational entropy due to the formation of designed
bonds and need not be proportional to the surface area
of the cluster, as assumed by classical nucleation theory.

Choosing an optimal number of building blocks

In practice, not all interactions between subunits can
be made perfectly specific. As a result, in a multicom-
ponent solution with possible unintended interactions, a
rate-limiting nucleation barrier may not be sufficient to
guarantee on-pathway assembly. Misassembly due to ag-
gregation is thus likely to limit the number of distinct
components that can be accommodated in an addressable
structure. In our calculations, the total concentration of
monomers in the reference fluid is proportional to the
number of distinct components in the unit cell. In order
to incorporate additional components while maintaining
a constant supersaturation, the total concentration of
subunits in the solution must be increased, enhancing
the probability of amorphous aggregation via incidental
interactions. Alternatively, fixing the total concentration
while increasing the designed bond energies may not be
straightforward, due to the physical limitations of the
molecular building blocks and the slower kinetics that
are typically associated with stronger bonds18. These
considerations suggest that a robust design should use
the smallest number of building blocks that is consistent
with the target structure.

Not one but many patterns

Although the assembly of the fully-formed target struc-
ture only occurs if the solution is supersaturated with
respect to the defect-free, periodically repeated unit cell,
there is always a regime where infinite structures of in-
completely formed unit cells are thermodynamically sta-
ble, even though ∆FG > 0. Such structures are en-
tropically favored due to the enormous number of dis-
tinct ways of partially assembling a semi-infinite crystal.
These infinite substructures are similar to simple crys-
tals with point defects, since the thermodynamic stabil-
ity of the crystal is increased by leaving some compo-
nents in each unit cell unassembled; however, this effect is
much more significant in addressable periodic structures,
in particular those with complex morphologies and het-
erogeneous bond energies. Accounting for this entropic
effect is crucial for the design of hierarchical assembly
pathways, since a stability analysis based on the complete
unit cell significantly underestimates the region in which
an infinite structure is thermodynamically favored (Fig-
ure 4f). The ability to design a variety of periodic pat-
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terns using different mixtures of the same set of building
blocks is a unique feature of structures with addressable
complexity: this makes it possible to ‘tune’ the shape of
the repeating pattern, such as an array of holes with con-
trollable shapes, simply by changing the composition of
the monomeric solution. The possibility to create such
structures is directly related to the fact that partially
assembled structures may be thermodynamically stable
well before the perfect structure that contains all building
blocks becomes the favored structure.

Robust self-assembly pathways

Our calculations suggest several means of speeding up
robust self-assembly and controlling the assembly mecha-
nism in complex, ordered structures. Because equivalent
nucleation barriers can be achieved at lower supersatura-
tion in semi-infinite crystals, it is likely that defect-free
annealing is easier to achieve in complex structures than
in the corresponding bulk crystal. We have demonstrated
that the topology of the connectivity graph not only con-
trols the nucleation barrier, but also determines the as-
sembly pathway deep into the growth phase. Clusters
spanning multiple unit cells, and thus containing more
than one copy of some components, are required to as-
semble the key three-dimensional features at equilibrium,
despite the fact that these features can all be formed,
by definition, within a single unit cell. The dominant
growth pathways for structures with complex morpholo-
gies correspond to predictable features of the free-energy
landscape, implying that these pathways are designable
as well.

Steering assembly to proceed via intermediate structures

We have also shown how to design a multi-stage as-
sembly mechanism by exploiting the heterogeneity inher-
ent in a multicomponent crystal. With control over the
stabilities of partial structures and the nucleation bar-
riers between them, one can propose a time-dependent
protocol to guide assembly through several intermediate
phases before arriving at the final crystal structure. Such
a protocol might be as simple as changing the tempera-
ture, with the heterogeneous bond energies held constant.
More exotic pathways might also be programmed us-
ing specific interaction free-energies that are themselves
temperature-dependent, such as the hybridization free
energies of complementary DNA strands28,29. Alterna-
tively, we can optimize the assembly conditions to achieve
step-wise assembly without using a time-dependent pro-
tocol by designing a free-energy landscape with multiple
sequential nucleation barriers. While it is always possible
to leave some subunits of a crystal completely disassem-
bled by tuning the designed bond energies independently,
careful attention to the underlying free-energy landscape
is necessary to preferentially nucleate a particular finite-

sized structure. Our example calculations demonstrate
that it is advantageous to strengthen bonds that coin-
cide with an intrinsically stable substructure in order to
establish a pathway to a target region of the phase dia-
gram.

Outlook

We expect that the approach to hierarchical assembly
described here will open up new routes to more intricate
three-dimensional structures. Although hierarchical as-
sembly is often associated with a greater tendency for
aggregation30–32, we speculate that kinetic traps might
be avoided by preventing large, fully assembled substruc-
tures from interacting directly: the presence of other
building blocks that link the substructures together is
essential. In our example of multi-step assembly, the
growth pathway must cross a secondary nucleation bar-
rier involving linker subunits that assemble reversibly.
With control over the bond strengths in the linker re-
gion, in addition to the overall structure topology, it is
straightforward to apply the predictive tool presented
here to optimize the kinetics at this stage of assembly
as well.

Experimentally, this strategy for hierarchical assembly
is currently realizable using DNA bricks. In this system,
the hybridization free energies between subunits can be
specified independently by rationally designing the com-
plementary DNA sequences. Unlike the single optimal
assembly temperature reported in Ref. 11, we expect that
an assembly protocol that passes through a stable cluster
phase before forming the complete crystal would exhibit
two distinct transition temperatures. Furthermore, the
strategies described here for lowering the nucleation bar-
rier near the fluid–crystal phase boundary are expected
to reduce the hysteresis in the observed freezing and melt-
ing temperatures. As a result, we expect that such strate-
gies will broaden the temperature range over which high
quality crystals can be assembled. These predictions can
also be tested with physically realistic Monte Carlo sim-
ulations using the model described in Refs. 22 and 24.
Through the analysis of dynamic assembly trajectories,
simulations of this type could be used to validate the
predicted growth pathways in structures with complex
morphologies.

Finally, we stress once more that the general principles
described in this paper are in no way limited to DNA
bricks. These principles could also apply to other forms
of multicomponent molecular assembly, or to the assem-
bly of multicomponent colloidal structures, provided that
the building blocks have been designed to reproduce the
functionality assumed in our model.
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We propose a general theory to design self-assembly pathways for addressable

crystals with complex, multicomponent unit cells.
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