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We performed dynamic simulations of spheres with short-range attractive interactions for many values of interaction strength
and range. Fast crystallization occurs in a localized region of this parameter space, but the character of crystallization pathways
is not uniform within this region. Pathways range from one-step, in which a crystal nucleates directly from a gas, to two-step,
in which substantial liquid-like clusters form and only subsequently become crystalline. Crystallization can fail because of slow
nucleation from either gas or liquid, or because of dynamic arrest caused by strong interactions. Arrested states are characterized
by the formation of networks of face-sharing tetrahedra that can be detected by a local common neighbor analysis.

Colloidal crystallization is of considerable interest because
of the value of colloidal assemblies to technology1,2 and the
value of colloidal dispersions as model systems3–5. Colloidal
particles can be made of controlled size, interaction strength,
and interaction range, making them useful models for explor-
ing the thermodynamic and kinetic factors that lead to the as-
sembly of equilibrium and nonequilibrium condensed states of
matter6–8.

A defining feature of many colloidal suspensions is that
their interactions can be short ranged compared to the nm to
µm size of the colloidal particles. For example, van der Waals
interaction, depletion interactions9, and DNA base-pairing in-
teractions5,10–12 used to promote colloidal crystallization typ-
ically act over a range of distances small compared to the par-
ticle size. As a result, colloidal suspensions can exhibit phase
behavior and assembly kinetics not typically seen in atomic or
molecular systems13–19.

A minimal and well-studied model of a colloidal disper-
sion is a collection of spheres of radius R0 interacting via the
‘square-well’ potential13,20–23

U(ri j) =

 ∞ ri j ≤ 2R0
−ε 2R0 < ri j ≤ 2(1+λ )R0
0 ri j > 2(1+λ )R0,

(1)

where ri j is the distance between the centers of particles i and
j. In this model the solvent in which particles are dispersed
is not represented explicitly. Square-well spheres display the
well-known phase behavior of particles with isotropic attrac-
tions14,15,24, summarized in Fig. 1. When the interaction range
λ is large (Fig. 1 (a)), the square-well system exhibits sequen-
tial phase transitions from gas to liquid to crystal as temper-
ature (i.e. the combination kBT/ε) decreases. (Here “gas”
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refers to a dilute suspension of colloids and “liquid” to a con-
centrated suspension.) As the interaction range decreases, the
gas-liquid coexistence curve decreases in temperature (Fig. 1
(b)), eventually becoming metastable with respect to fluid-
crystal coexistence (Fig. 1 (c)).

Many studies have shown that such metastable liquid-gas
phase separation can play a crucial role in colloidal crystal-
lization. Free-energy calculations14,15, and dynamic simula-
tions16,17,19,24,25 of short-range attractive spheres show that
the metastable liquid can promote a two-step crystallization
pathway in which colloids coalesce into liquid droplets from
which crystals nucleate. Two-step pathways have been ob-
served experimentally in colloidal particles confined in two di-
mensions26–28, in DNA-tethered nanoparticles29, and in pro-
teins30,31, as well as in simulations of DNA-tethered nanopar-
ticles32.

Colloidal liquid-gas phase separation also plays an im-
portant role in the formation of (physical) gels at deep su-
percooling. Gels are nonequilibrium, disordered networks
of particles with solid-like mechanical properties that result
from their percolating structures. Gelation occurs because
strong inter-particle bonding causes particles within aggre-
gates to rearrange too slowly to allow equilibration on ob-
served timescales. In the deeply supercooled spinodal regime,
rapid liquid-gas phase separation can cause the formation of
extended, non-compact colloidal aggregates which fail to re-
lax into compact colloidal droplets3,33. Many experimen-
tal studies of polymeric colloidal particles possessing deple-
tion attractions have found gelation to occur in preference to
crystallization34,35 (potentially exacerbated by effects of poly-
dispersity36,37). Microscopic analysis of the colloid-colloid
interaction networks formed during gelation shows gelation
to be characterized by certain (overlapping) locally-favored
motifs: gels in long-range repulsive colloids consist of net-
works of face-sharing tetrahedra (maximally bonded clus-
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Fig. 1 Phase diagrams of hard spheres of radius R0 with attractive square-well interactions of range 2(1+λ )R0, in the plane of density
(hard-core packing fraction φ ) and temperature (scaled interaction strength kBT/ε). Interaction ranges are (a) λ = 0.33, (b) λ = 0.25, and (c)
λ = 0.18. Blue circles represent densities of coexisting fluids, calculated using Gibbs ensemble Monte Carlo simulations, and blue curves are
fits to the coexistence curve for systems in the Ising universality class. Black circles represent densities of fluids coexisting with
face-centered-cubic (fcc) crystals, calculated using direct coexistence simulations. Crystal densities, to the right of these plots, are not shown.

ters of four particles)34,35, while gels of short-range-attractive
spheres consist of networks of maximally bonded clusters of
various sizes38.

Recently, several authors have investigated the generality
of crystallization and gelation mechanisms by characterizing
colloid dynamics across broad sections of parameter space.
Macfarlane et al. showed in experiments that DNA-linked
nanoparticle crystallization occurs for each nanoparticle size
only within a limited range of DNA lengths. Short lengths re-
sulted in effective interaction ranges smaller than the nanopar-
ticles’ polydispersity, disfavoring the crystal thermodynami-
cally, while large lengths inhibited kinetics39.

Several authors have performed Monte Carlo, molecular dy-
namics, or Brownian dynamics simulations of spheres with
short-range attractive interactions to investigate how assembly
mechanism and product depend on interaction strength and/or
concentration. Multiple studies have shown that crystalliza-
tion occurs via two-step nucleation for a window of temper-
atures below the metastable liquid-gas transition, with deeper
temperature quenches leading to gelation16,17,24. Extending
these studies to multiple concentrations, Fortini et al. showed
that crystallization coincides with the metastable liquid-gas
transition temperature at concentrations below the liquid-gas
critical concentration but occurs also at higher temperatures
at supercritical concentrations19. Performing single-particle
Monte Carlo simulations of square-well spheres at a single
packing fraction of φ = 0.04, Klotsa and Jack found an excep-
tion to the two-step rule: at a temperature near the metastable
liquid-gas transition, they found that crystallization can pro-
ceed via a one-step pathway without significant formation of

amorphous clusters25.
Complementing and extending these studies, we describe

in this paper the self-assembly dynamics of square-well-
attractive spheres over a broad spectrum of interaction
strengths and ranges. We simulated sphere dynamics us-
ing the virtual-move Monte Carlo algorithm40–43 parameter-
ized so that colloidal clusters diffuse at rates agreeing with
Stokes’ law. Consistent with the previously mentioned studies
at fixed interaction range, we find that efficient crystallization
occurs in a localized region of parameter space, with a high-
temperature boundary associated with the metastable liquid-
gas transition. However, we find that the character of crys-
tallization pathway varies within the region of efficient crys-
tallization. Near the high-temperature boundary, crystalliza-
tion proceeds along a one-step pathway via nucleation from
the gas. Further below this boundary, crystallization proceeds
along a two-step pathway via the formation of liquid-like clus-
ters from which crystals subsequently nucleate. We find that
poor crystallization at low temperature is characterized by the
formation of networks of face-sharing tetrahedra that can be
detected by a local common neighbor analysis44.

It is important to note that the square-well model we have
studied neglects features of real colloidal particles that may
lead to complexity beyond that discussed here. The pairwise
nature of the square-well interaction cannot capture collec-
tive properties of counterions, depletants, or polymer coats
that mediate multi-body interactions between colloidal parti-
cles. For example, counterion entropy can favor gelation over
crystallization in a way that cannot be modeled at a pairwise
level45, and the entropy of mobile linkers in the dilute-linker
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Fig. 2 (a) Illustration of the common neighbor analysis for a bonded
pair of spheres with a 423 common neighbor environment: the
bonded pair shares four common neighbors, there are two bonds
among those common neighbors, and three common neighbors
participate in those two bonds. (b-g) Low-energy bond topologies
for clusters of size N ≤ 7. Linear polytetrahedral networks (b-e) and
a closed 5-loop of face sharing tetrahedral (f) exhibit nonzero values
of n212,n323,n434,n545, and/or n555. The octahedron (g) is a
maximally bonded cluster that is not composed of face-sharing
tetrahedra. It has the same number of spheres and bonds as the
3-tetrahedron (d) and a different common neighbor signature,
n200 = 2.

limit can favor the liquid state to the point of removing the
triple point from Fig. 1 (a)46. The square-well model also
treats solvent in an implicit manner; explicitly accounting for
solvent and the long-ranged hydrodynamics it mediates may
be important for colloidal crystallization under certain condi-
tions47,48.

1 Methods

1.1 Structure characterization

We characterized the dynamics by performing a common
neighbor analysis of the network of spheres linked by fa-
vorable square-well interactions, similar to the analysis de-
veloped by Honeycutt and Andersen44. At regular time in-
tervals, we recorded the number of bonded pairs of parti-
cles Nabc with a common neighbors, b bonds among those

common neighbors, and c common neighbors participating in
those bonds (see Fig. 2 (a)). We defined the relative number
nabc ≡ Nabc/N, where N is the number of particles. This anal-
ysis identifies gaseous, liquid, crystalline, and polytetrahedral
configurations. Perfect face-centered cubic and hexagonally
close packed crystals exhibit nonzero values only of n423 (bulk
hexagonal close-packed (hcp)), n424 (bulk hcp and fcc), n212,
and n312 (boundaries). Weakly interacting gases exhibit few
bonds and uniformly low values of all common neighbor met-
rics, while weakly structured liquids exhibit large values of
n200. Networks of face-sharing tetrahedra exhibit large values
of n323,n434,n545, and/or n555 (see Fig. 2 (b-f)). We character-
ize the crystallinity by the fraction fc of particles participating
in at least one 423 or 424 bond.

To quantify the difference in crystallinity between dynamic
simulations and simulations begun from fcc or bcc crystals
(see below), we use the ‘distance-to-equilibrium’ parameter

∆eq ≡max

(
nfcc

42x−nrandom
42x

nperfect
42x

,
nbcc

666−nrandom
666

nperfect
666

)
. (2)

Here the superscript ‘random’ describes yield of common
neighbor types from dynamic (randomly-initialized) simula-
tions, the superscripts ‘fcc’ and ‘bcc’ describe yields obtained
from fcc- and bcc-initialized simulations, respectively, and the
superscript ‘perfect’ describes the yield of a given environ-
ment in a bulk (perfect) fcc or bcc crystal, i.e. nperfect

42x = 6 and
nperfect

666 = 4.
In Figs. 6, 7, 8, 10, and 11 we use the following color

code to denote particle environments. Particles participating
in crystalline common neighbor environments (423 or 424)
are colored green. Particles that do not, and that participate
in polytetrahedral common neighbor environments (323, 434,
545, or 555) are colored red. The remaining particles that par-
ticipate in in liquid common neighbor environments (200) are
colored blue. The remaining particles that participate in other
common neighbor environments abc with a ≥ 2 are colored
magenta. The remaining (gas) particles are colored gray.

1.2 Thermodynamics

We tested the thermodynamic stability of finite-size crystals
by performing virtual-move Monte Carlo simulations (see be-
low) initialized from compact crystals containing approxi-
mately 1000 spheres in a simulation box with an overall hard-
core packing fraction of φ = 0.1. We used a 923-particle
cuboctahedron for the fcc crystal49 and a 1001-particle cuboc-
tahedron for the bcc crystal50. We initialized these crystals
with nearest-neighbor distances d = 2(1 + λ/2)R0, placing
nearest neighbors in the middle of their interaction range. We
defined the boundary of finite-size fcc stability (Fig. 4 (a)) by
the contour where n42x = n423 + n424 = 1. (As shown by the
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Fig. 3 (a) Translational and (b) rotational cluster diffusion constants, as a function of hydrodynamic radius RH, for virtual-move Monte Carlo
simulations of tetrahedral clusters composed of infinitely attractive square-well spheres. We show results for various interaction ranges λ
(legend). The clusters used in these calculations were tetrahedral, and ranged in size from 1 to 120 particles; panel (c) shows a cluster of 120
particles. Algorithm parameters were ∆t = 4λR0, ∆r = 1, and pt = 0.4(R0∆r/∆t)

2 (see text). Cluster diffusion constants approximate the
Stokes solutions (Dt ∝ RH

−1 and Dr ∝ RH
−3). For comparison, we show also the free-draining solutions (Dt ∝ RH

−3 and Dr ∝ RH
−5), which

describe substantially slower collective motion.

relatively sharp decay of n42x in Fig. 5 (a), the location of the
boundary is relatively insensitive to choice of threshold.)

We calculated the boundary of stability of bulk fcc crystals
by performing single-particle Monte Carlo (SPMC) direct co-
existence simulations of 1000 spheres in a slab geometry at
various temperatures and interaction ranges, choosing over-
all packing fractions that allowed sufficient sampling of both
fluid and crystal phases. We initialized the crystal slabs with
nearest-neighbor distances d = 2(1+λ/2)R0, and we initial-
ized the fluid phases with random configurations without hard-
core overlaps. As shown for example by the black points in
Fig. 1, these simulations allowed us to determine the coexis-
tence concentrations for the fluid phase (gas or liquid, depend-
ing on T and λ ) and the crystal phase (not shown). We defined
the boundary of bulk crystal stability at φ = 0.1 for each λ
as the temperature at where the interpolated fluid coexistence
concentration (black curves in Fig. 1) intersects φ = 0.1.

We calculated the boundary of stability of the bulk liquid
by performing SPMC Gibbs ensemble Monte Carlo simula-
tions of 1000 spheres separated in two boxes that exchange
spheres and volume51. Analogous to the direct coexistence
simulations, we performed the Gibbs ensemble simulations
at a range of temperatures for each interaction range, with
overall packing fractions chosen to allow sufficient sampling
of both phases, and we determined the boundary of liquid
(meta)stability at φ = 0.1 by interpolating the fluid coexis-
tence curves (see blue points and curves in Fig. 1). We initial-
ized both the gas and liquid box with random configurations
without hard-core overlaps.

1.3 Dynamics

To approximate the overdamped dynamics of strongly-
associating particles in solution we used the virtual-move
Monte Carlo algorithm40 (specifically, the version of the al-
gorithm described in the appendix of Ref.41). Under this al-
gorithm, which satisfies detailed balance, particles move lo-
cally according to the gradients of potential energy they expe-
rience, and collectively with a rate that can be controlled to a
degree by the user. We parameterized the algorithm in a man-
ner similar to that described in Ref.43, in order to ensure that
tightly-bound clusters of particles of hydrodynamic radius RH
diffused with rates close to those predicted by the Stokes’ law,

Dt =
kBT

6πηRH
,

Dr =
kBT

8πηRH
3 .

(3)

The natural time unit of this motion is then the Brownian time
scale

t0 =
η(2R0)

3

kBT
, (4)

where η is the (implicit) solvent viscosity and kBT is the ther-
mal energy. Simulations performed at particular values of
kBT/ε and λ can therefore be considered to apply to a wide
range of absolute particle sizes R0, the latter determining only
the value of t0. For example, for spherical colloidal particles
with radius R0 = 50 nm at room temperature (T = 293 K)
in water (η = 1.00× 10−3 Pa s), the Brownian timescale is
t0 = 2.5×10−4 s.

In the Appendix we describe in detail the procedure we
used. Briefly, the virtual-move algorithm generates collective
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Monte Carlo moves by proposing trial ‘virtual’ particle trans-
lations or rotations, and probabilistically recruiting neighbor-
ing particles to join this motion, in an iterative fashion. The
resulting trial move is accepted with a probability ensuring
detailed balance. In addition, one is free to attenuate the rate
at which collective motion is accepted, by imposing what are
effectively kinetic constraints. We chose these constraints in
order to enforce Eq. (3).

Each Monte Carlo move begins with either a trial translation
or a trial rotation, chosen with probability pt and pr = 1− pt,
respectively. For translations, we randomly selected a par-
ticle and translated it randomly within a ball of radius ∆t.
For rotations, we randomly selected a particle, randomly se-
lected a second particle within the interaction range of the
first, and rotated the second particle by an angle, chosen uni-
formly from the range (−∆r,∆r), around a randomly-oriented
axis n̂ passing through the center of the first particle. We chose
∆t = 4λR0, ∆r = 1, and pt = 0.4(R0∆r/∆t)

2. As discussed
in the Appendix, we found that with this choice of parame-
ters we could enforce Eq. (3) by suppressing the acceptance
rate for translation and rotation of a cluster of N particles of
hydrodynamic radius RH by factors N−1R−1

H and N−1R−3
H , re-

spectively. We chose to maximize the ratio of rates of inter-
nal cluster relaxation to whole-cluster diffusion, by working
with the smallest trial displacement ∆t that is large enough to
induce substantial collective motion (i.e. is large enough to
ensure that Stokes’ law could be maintained). This choice is
somewhat arbitrary, and whether it is physically appropriate
will likely depend on details of the experimental system one
wishes to model, but we note that one has some freedom to
influence this ratio if necessary.

In Fig. 3 we show measured diffusion constants for tetra-
hedral clusters of between 1 and 120 square-well spheres, in
the kBT/ε → 0 limit. Dt and Dr approximate the Stokes so-
lutions (Eq. 3) over a broad range of cluster sizes and inter-
action ranges. In this respect our procedure therefore cap-
tures an important aspect of solvent-mediated diffusion, with-
out representing solvent explicitly. Note that ‘long-ranged’
hydrodynamic coupling47 is not taken into account by this
procedure; to do so, one should represent solvent more explic-
itly48,52–54. Simple implementations of Brownian (Langevin)
dynamics integrators, and single-particle Monte Carlo simu-
lations in the limit of zero trial displacement55, result instead
in the ‘free-draining’ behavior Dt ∝ RH

−3 and Dr ∝ RH
−5. As

shown in Fig. 3 (note the logarithmic scale), such diffusion is
significantly slower than Stokes’ diffusion, even for relatively
modest cluster sizes.

As discussed in the Appendix, our procedure yields a time
per Monte Carlo cycle of

tcycle =
6
5

π ptλ 2t0, (5)

where t0 is the Brownian time scale (Eq. 4). We present results
relative to the physical time unit t0.

We carried out simulations of 1000 square-well spheres, in
periodically-replicated cubic simulation boxes, at a hard-core
packing fraction of φ = 0.1. We carried out independent simu-
lations for interaction ranges between (and including) the val-
ues λ = 0.005 and 1.35, and for temperatures ranging from
kBT/ε = 0.06 to 0.86. We initialized dynamic simulations
with random configurations, under the constraint that the par-
ticle hard cores could not overlap (equivalent to equilibrium
configurations in the kBT/ε → ∞ limit).

An open-source C++ library for implementing the
virtual-move Monte Carlo algorithm is available at
http://vmmc.xyz56.

2 Results

2.1 Dynamic and thermodynamic phase diagrams

In Fig. 4(a) we show in the temperature-range plane the fcc
crystal yield fc seen in dynamic simulations at time t = 105t0;
panel (b) shows yield also at times 103t0 and 104t0. High yield
(green) is found in a localized region of parameter space. Note
that the phase diagrams of Fig. 1 intersect the diagram of Fig. 4
via three vertical lines corresponding to particular values λ =
0.18, λ = 0.25, and λ = 0.33.

A necessary condition for high crystal yield is that the fcc
crystal is stable thermodynamically; this condition holds for
our compact fcc crystals below the solid green curve, marked
“g-c (finite)” in Fig. 4. Note that the dashed green bulk
gas-crystal coexistence curve (labeled “g-c”) derived from di-
rect coexistence simulations in a slab geometry lies above the
finite-size curve. This difference simply reflects the fact that a
finite crystalline cluster with free boundaries can melt within
the regime of bulk crystal stability, i.e. can be smaller than
the critical cluster size. Note also that the solid green curve
bends toward small λ and small kBT/ε at around λ = 0.32,
kBT/ε = 0.44. This bend occurs because the fcc crystal be-
comes unstable with respect to to a body-centered cubic (bcc)
crystal at large λ and small kBT/ε (see below).

A second necessary condition for high crystal yield ex-
pected from previous work14–19 is that a state point must lie
within the regime of metastable liquid-gas phase coexistence.
For large interaction ranges λ we determined the boundary
of liquid stability in bulk from Gibbs ensemble simulations
(dashed gray curve in Fig. 4), a technique that eliminates in-
terfacial effects by putting gas and liquid phases in separate
boxes that interchange both volume and particles51. For in-
teraction ranges smaller than λ = 0.15, we could not accu-
rately determine gas-liquid coexistence because crystalliza-
tion rapidly occurred within the liquid box. Instead, we es-
timated the onset of transient liquid-like structure as the curve
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Fig. 5 (a) Common neighbor metric n42x indicating fcc crystallinity after simulations of length t = 105t0 initiated from perfect fcc crystals.
(b) Common neighbor metric n666 indicating bcc crystallinity after simulations of length t = 105t0 initiated from perfect bcc crystals. (c)
Distance-to-equilibrium Deq (defined in Section 1.1) indicating how close the common neighbor metrics in the dynamic simulations (Fig. 4)
get to the closest of the two crystal-initiated simulations.

not clear to what extent the liquids at small interaction range
can be considered metastable, comparison of the onset of high
crystal yield (green pixels) with the liquid boundary (dashed
and solid curves) is consistent with crystallization coinciding
with the onset of transient liquid order and/or an extrapolation
of the metastable liquid curve.

While our results show that the stability of the crystal and
the onset of transient liquid structure are necessary conditions
for rapid crystallization, they are clearly not sufficient: large
regions of parameter space below the crystal and liquid bound-
aries appear blue or red in Fig. 4, indicating low crystal yield
after t = 105t0, despite the fact that the systems must even-
tually assemble into a thermodynamically favored fcc crystal.
The eventual (infinite-time) fate of the system can be inferred
from Fig. 5, in which we plot in panels (a) and (b) the crystal
yield that results from simulations initiated from a single fcc
or bcc crystal, respectively. Note that the fcc crystal becomes
unstable with respect to the body-centered cubic (bcc) crystal
at large l and low kBT/e , because bcc spheres can accom-
modate 8 nearest neighbors and 8 second-nearest neighbors at
these values of l , while fcc spheres can only accommodate
12 nearest neighbors. In this region of parameter space the
bcc crystal is therefore lower in energy than the fcc crystal.
Panel (c) displays a ‘distance-to-equilibrium’ parameter (see
Section 1.1) that summarizes how close dynamic simulations
come to equilibrium: anything not shown green corresponds
either to a metastable liquid or to an arrested gel.

As we will discuss below, low crystal yield within the ther-
modynamically stable crystal region is due to one of two ki-
netic effects, depending on the state point: either nucleation
from the liquid is slow, or crystallization is arrested by gela-

fc
n200
n323
n434
n545
n555

1 10 102 103 104 105

t/t0

1

0.8

0.6

0.4

0.2

0

(b)(a)
Metastable gas

Fig. 6 (a) Snapshot from a simulation with l = 0.03 and
kBT/e = 0.32. The system remains in the metastable gas phase up
to time t = 105t0. Particle color code is described in Section 1.1. (d)
Time series of the crystal yield fc (green), liquid (blue) and
polytetrahedral common-neighbor metrics.

tion. Furthermore, we find that the kinetics of crystallization
varies strongly even within the region of high yield: crystal-
lization may proceed in a two-step pathway via a liquid-like
intermediate, or it may proceed directly from a relatively ho-
mogeneous gas. The following five subsections discuss the
five qualitatively different dynamic regimes encountered when
broadly varying the interaction range and strength.

2.2 Metastable gas

The black square in Fig. 4 lies in the metastable gas regime.
Here, as shown in Fig. 6, the system remains in a gas state,
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not clear to what extent the liquids at small interaction range
can be considered metastable, comparison of the onset of high
crystal yield (green pixels) with the liquid boundary (dashed
and solid curves) is consistent with crystallization coinciding
with the onset of transient liquid order and/or an extrapolation
of the metastable liquid curve.

While our results show that the stability of the crystal and
the onset of transient liquid structure are necessary conditions
for rapid crystallization, they are clearly not sufficient: large
regions of parameter space below the crystal and liquid bound-
aries appear blue or red in Fig. 4, indicating low crystal yield
after t = 105t0, despite the fact that the systems must even-
tually assemble into a thermodynamically favored fcc crystal.
The eventual (infinite-time) fate of the system can be inferred
from Fig. 5, in which we plot in panels (a) and (b) the crystal
yield that results from simulations initiated from a single fcc
or bcc crystal, respectively. Note that the fcc crystal becomes
unstable with respect to the body-centered cubic (bcc) crystal
at large l and low kBT/e , because bcc spheres can accom-
modate 8 nearest neighbors and 8 second-nearest neighbors at
these values of l , while fcc spheres can only accommodate
12 nearest neighbors. In this region of parameter space the
bcc crystal is therefore lower in energy than the fcc crystal.
Panel (c) displays a ‘distance-to-equilibrium’ parameter (see
Section 1.1) that summarizes how close dynamic simulations
come to equilibrium: anything not shown green corresponds
either to a metastable liquid or to an arrested gel.

As we will discuss below, low crystal yield within the ther-
modynamically stable crystal region is due to one of two ki-
netic effects, depending on the state point: either nucleation
from the liquid is slow, or crystallization is arrested by gela-
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Fig. 6 (a) Snapshot from a simulation with l = 0.03 and
kBT/e = 0.32. The system remains in the metastable gas phase up
to time t = 105t0. Particle color code is described in Section 1.1. (d)
Time series of the crystal yield fc (green), liquid (blue) and
polytetrahedral common-neighbor metrics.

tion. Furthermore, we find that the kinetics of crystallization
varies strongly even within the region of high yield: crystal-
lization may proceed in a two-step pathway via a liquid-like
intermediate, or it may proceed directly from a relatively ho-
mogeneous gas. The following five subsections discuss the
five qualitatively different dynamic regimes encountered when
broadly varying the interaction range and strength.

2.2 Metastable gas

The black square in Fig. 4 lies in the metastable gas regime.
Here, as shown in Fig. 6, the system remains in a gas state,

1–16 | 7

t/t0 = 105 (1)

J = Y, h = Z (2)

10  s < 102 (3)

J h (4)

✏bb ✏rb ✏rr (5)
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Fig. 4 (a) Crystal yield fc from dynamic simulations after t = 105t0 as a function of interaction range λ and temperature kBT/ε , for systems
of 1000 square-well spheres at hard-core packing fraction φ = 0.1. The dashed (solid) green curve indicates the boundary of stability of bulk
(finite-size) fcc crystals, and the dashed (solid) gray curve indicates the boundary of stability of the bulk (finite-size) liquid (see text for
details). Symbols indicate representative state points for the various dynamic regimes shown in Figs. 6, 7, 8, 10, and 11. (b) Yield at three
times.
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Distance-to-equilibrium ∆eq (defined in Section 1.1) indicating how close the common neighbor metrics in the dynamic simulations (Fig. 4)
get to the closest of the two crystal-initiated simulations.

below which our dynamic simulations attained a relative num-
ber of liquid-like bonds n200 ≥ 0.1 at some point during our
dynamic simulations (solid gray curve in Fig. 4; see also
Fig. 12 (g)). We find that this curve coincides with the bulk liq-
uid curve over the interval of interaction ranges for which both
could be calculated, indicating that metastability of the liquid
is not strongly influenced by the existence of free boundaries
for system sizes on the order of 1000 particles. Although it is
not clear to what extent the liquids at small interaction range
can be considered metastable, comparison of the onset of high
crystal yield (green pixels) with the liquid boundary (dashed
and solid curves) is consistent with crystallization coinciding
with the onset of transient liquid order and/or an extrapolation
of the metastable liquid curve.

While our results show that the stability of the crystal and
the onset of transient liquid structure are necessary conditions
for rapid crystallization, they are clearly not sufficient: large
regions of parameter space below the crystal and liquid bound-
aries appear blue or red in Fig. 4, indicating low crystal yield
after t = 105t0, despite the fact that the systems must even-
tually assemble into a thermodynamically favored fcc crystal.
The eventual (infinite-time) fate of the system can be inferred
from Fig. 5, in which we plot in panels (a) and (b) the crystal
yield that results from simulations initiated from a single fcc
or bcc crystal, respectively. Note that the fcc crystal becomes
unstable with respect to the body-centered cubic (bcc) crystal
at large λ and low kBT/ε , because bcc spheres can accom-
modate 8 nearest neighbors and 8 second-nearest neighbors at
these values of λ , while fcc spheres can only accommodate
12 nearest neighbors. In this region of parameter space the
bcc crystal is therefore lower in energy than the fcc crystal.
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Fig. 6 (a) Snapshot from a simulation with λ = 0.03 and
kBT/ε = 0.32. The system remains in the metastable gas phase up
to time t = 105t0. Particle color code is described in Section 1.1. (d)
Time series of the crystal yield fc (green), liquid (blue) and
polytetrahedral common neighbor metrics.
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Fig. 7 (a-c) Snapshots from a simulation with λ = 0.03 and kBT/ε = 0.3 that exhibits one-step crystallization (a) before nucleation, (b) after
nucleation, and (c) at the end of the simulation (t = 105t0). (d) Time series of the crystal yield fc and liquid and polytetrahedral common
neighbor metrics. Liquid-like environments (blue curve and particles) are seen throughout crystallization, but the crystal that nucleates and
grows does not have substantial liquid-like character. Arrows indicate the time points of the snapshots.

Panel (c) displays a ‘distance-to-equilibrium’ parameter (see
Section 1.1) that summarizes how close dynamic simulations
come to equilibrium: anything not shown green corresponds
either to a metastable liquid or to an arrested gel.

As we will discuss below, low crystal yield within the ther-
modynamically stable crystal region is due to one of two ki-
netic effects, depending on the state point: either nucleation
from the liquid is slow, or crystallization is arrested by gela-
tion. Furthermore, we find that the kinetics of crystallization
varies strongly even within the region of high yield: crystal-
lization may proceed in a two-step pathway via a liquid-like
intermediate, or it may proceed directly from a relatively ho-
mogeneous gas. The following five subsections discuss the
five qualitatively different dynamic regimes encountered when
broadly varying the interaction range and strength.

2.2 Metastable gas

The black square in Fig. 4 lies in the metastable gas regime.
Here, as shown in Fig. 6, the system remains in a gas state,
with low values of all common neighbor metrics. In this
regime the face-centered cubic (fcc) crystal is the stable state,
while the liquid is unstable with respect to the gas. The
metastability of the gas for times up to t = 105t0 indicates the
existence of large free-energy barriers for direct crystal nucle-
ation from the gas.

2.3 One-step crystallization

As the temperature decreases below the metastable liquid tran-
sition (dashed and solid gray curves in Fig. 4) the crystal yield
increases, as indicated by the sharp change from red (low
yield) to green (high yield) pixels in Fig. 4. As shown in Fig. 7
(black circle in Fig. 4), dynamic crystallization pathways near

the metastable liquid transition involve crystal nucleation from
a fluid with substantial liquid-like fluctuations but no signifi-
cant gas-liquid phase separation. Before the sharp increase
in crystal fraction fc at around 6× 103t0 (Fig. 7 (b)), there
are substantial fluctuations in the liquid common neighbor
metric n200, but the average value of n200 remains less than
0.2 (one liquid-like bond per five spheres). The nucleation
event at around 6× 103t0 does not occur at the expense of
liquid-like structure, as it would if the crystal nucleated from
within a liquid-like droplet. Instead, the value of n200 in-
creases during the nucleation event. Thus, Fig. 7 illustrates
a one-step pathway that appears to be facilitated by strong but
non-critical density fluctuations. A similar pathway was iden-
tified in Ref.25. As discussed below, the region of parameter
space in which we observe a one-step pathway is very narrow,
consistent with the fact that it was not found in many other
studies.

2.4 Two-step crystallization

Beyond this narrow region of one-step nucleation we find a
broad range of parameters where crystallization occurs via a
two-step pathway, illustrated in Fig. 8 (a-d) and (e-g) (black
star and diamond, respectively, in Fig. 4). First, liquid-like
clusters (Fig. 8 (a) and (e)) quickly nucleate, grow, and merge,
resulting in an increase in the liquid common neighbor metric
n200. Later, crystals (Fig. 8 (b) and (f)) nucleate from within
those droplets, resulting in a decrease in n200 and an increase
in the crystallinity metric fc. The nucleation time increases
with increasing range λ , as can be seen by comparing the com-
mon neighbor time series of Fig. 8 (d) and (g). For λ ≥ 0.2 the
time for crystal nucleation from the liquid exceeds our simu-
lation time t = 105t0.
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Fig. 8 (a-c) Snapshots from a simulation with λ = 0.03 and kBT/ε = 0.28 exhibiting fast two-step crystallization: (a) before crystal
nucleation, (b) after crystal nucleation, and (c) at the end of the simulation (t = 105t0). (d) Time series of the crystal yield fc and liquid and
polytetrahedral common neighbor metrics. Arrows indicate the time points of the snapshots. (e-f) Snapshots from a simulation with λ = 0.17
and kBT/ε = 0.48 exhibiting slow two-step crystallization: (e) before crystal nucleation and (f) after crystal nucleation, at the end of the
simulation (t = 105t0). (g) Time series of the crystal yield fc and common neighbor metrics.
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Fig. 9 Parametric pathway diagram illustrating the evolution of
liquid structure (n200) on the horizontal axis and crystalline structure
( fc) on the vertical axis, for a slice of state points with λ = 0.03 and
0.22≤ kBT/ε ≤ 0.3. All trajectories show high crystal yield
fc > 0.7 after t = 105t0. For most state points (kBT/ε ≤ 0.28)
crystallization follows a two-step pathway, where first n200 increases
and then n200 decreases while fc increases. For kBT/ε = 0.3
crystallization proceeds via largely a one-step mechanism, with n200
remaining low throughout assembly. (b) Maximum value of n200
during assembly as a function of λ and kBT/ε , restricted to those
state points for which fc > 0.7 after t = 105t0. Most points are
green, indicating a two-step pathway with large intermediate values
of n200. A narrow strip of state points near the extrapolated location
of the gas-liquid curve are blue, indicating one-step assembly for
which n200 is low throughout.

To illustrate the crossover from one-step to two-step path-
way more generally, we show in Fig. 9(a) a parametric plot
of the liquid common neighbor metric n200 versus the frac-
tional crystal yield fc, for a slice of state points (λ = 0.03
and 0.22 ≤ kBT/ε ≤ 0.3) having crystal yields fc > 0.7 at
t = 105t0. Most of these systems (kBT/ε ≤ 0.28, includ-
ing the example kBT/ε = 0.28 from Fig. 8) follow a pro-
nounced two-step pathway. First, n200 increases with lit-
tle increase in fc, corresponding to liquid droplet nucleation,
growth, and coalescence. Subsequently, n200 decreases and fc
increases, corresponding to crystal nucleation (fast or slow)
from within the liquid droplet. In contrast, the example sys-
tem with kBT/ε = 0.3 (Fig. 7) does not exhibit pronounced
two-step nucleation; instead, a crystal nucleates directly from
the gas.

In Fig. 9 (b) we show the maximum value of n200 along each
pathway for which fc ≥ 0.7 after t = 105t0. The narrow strip
of values along the top of this region, near the metastable liq-
uid transition, exhibit one-step behavior, with correspondingly
low (blue) values of nmax

200 .

2.5 Metastable liquid

At larger interaction ranges (λ ≥ 0.2) and for temperatures
close to the gas-liquid curve we find that the liquid remains
metastable up to times t = 105t0. The liquid metric n200 is
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Fig. 10 (a) Snapshot from a system with λ = 0.2 and kBT/ε = 0.54
which remains as a metastable liquid up to time t = 105t0. (b) Time
series of the crystal yield fc and liquid and polytetrahedral common
neighbor metrics.

large, and the crystal metric fc increases until it reaches a
plateau that persists until the end of the simulation. An exam-
ple trajectory is shown in Fig. 10 (white pentagon in Fig. 4).
For larger systems and times that are longer (but still accessi-
ble to the corresponding experiments), this region of parame-
ter space may give rise to good crystals.

2.6 Gelation

At low temperature, our simulated systems display the fast
formation and persistence of polytetrahedral gels34,35, which
are bonded networks of face-sharing tetrahedra. As illus-
trated for small networks in Fig. 2 (b-f), polytetrahedral net-
works exhibit nonzero values of the common neighbor metrics
n212,n323,n434,n545, and n555. All but the n212 metric do not
appear in perfect close-packed crystals; 212 environments ap-
pear on the 100 and 110 surfaces of fcc crystals. As shown
for example in Fig. 11 (white triangle in Fig. 4) the metrics
n323,n434,n545, and/or n555 increase quickly and remain large
up to times t = 105t0, while metrics characterizing crystals ( fc)
and mobile liquids (n200) remain low.

We find that the decrease in crystal yield at low tempera-
ture is accompanied by proliferation of these polytetrahedral
networks. This correspondence can be seen across parame-
ter space by referring to Fig. 12 (a-e), in which we compare
(a) the crystal yield fc after t = 105t0 with (b-e) the maxi-
mum value of the polytetrahedral common neighbor metrics
n323,n434,n545, and n555 achieved during the simulations. Al-
though each common neighbor metric shows somewhat dif-
ferent dependence on λ and kBT/ε , comparison of Fig. 12 (a)
with Fig. 12 (b-e) shows that pathways involving large maxi-
mum values of the polytetrahedral common neighbor metrics
account for most of the region in Fig. 12 (a) where the close-
packed crystals are stable but yield is low.
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Fig. 11 Snapshots from a simulation with λ = 0.27 and kBT/ε = 0.3 that forms a polytetrahedral gel (a) before gelation, (b) after gelation,
and (c) at the end of the simulation (t = 105t0). (d) Time series of the crystal yield fc and liquid and polytetrahedral common neighbor
metrics. Arrows indicate the time points of the snapshots.
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Fig. 12 (a) Relative crystal yield fc after t = 105t0 as a function of interaction range λ and temperature kBT/ε . (b-e) Maximum values of the
polytetrahedral common neighbor metrics (b) n323, (c) n434, (d) n545, and (e) n555 over the course of the simulations, as a function of
interaction range λ and temperature kBT/ε . The region of parameter space in the lower right of (a) (“gel”) where fc < 0.7 is mostly
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(time to first achieve fc = 0.7) on a logarithmic scale. (g) Maximum values of the liquid common neighbor metric n200.
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The predominance of polytetrahedral common neighbor
metrics at low temperature suggests an explanation for the dy-
namic inaccessibility of the bcc crystal. Since the region of
parameter space where the bcc crystal is stable (Fig. 5 (b))
is contained within the region where the polytetrahedral com-
mon neighbor metrics are large (Fig. 12 (a-e)), there is no re-
gion of parameter space where bcc crystallization proceeds ef-
ficiently. Rather, polytetrahedral gelation forestalls bcc crys-
tallization wherever the bcc crystal is thermodynamically sta-
ble.

The only large region below the gas-liquid and liquid-
crystal curves where neither fc nor the polytetrahedral metrics
are large is the region marked “metastable liquid” in Fig. 12
(a). As discussed above, crystal yield is low in this regime
because the nucleation time is longer than 105t0, not because
there is substantial polytetrahedral gelation. To see that nucle-
ation times extrapolate beyond 105t0 in the metastable liquid
regime, in Fig. 12 (f) we plot the time (on a log scale) at which
each system first achieves a crystal yield of fc = 0.7. Nucle-
ation times increase to the right and top within the high-yield
region until they pass beyond the t = 105t0 window. Fig. 12 (g)
shows that beyond the high-yield region, the maximum value
of n200 remains high, indicating that these systems achieve
similar levels of liquid structure as in the high-yield region,
the main difference being that crystals have not yet nucleated
from the liquid after 105t0.

3 Conclusions

Our results confirm that colloidal crystallization displays fea-
tures common to many examples of self-assembly, in that it
happens efficiently in only a small regime or ‘sweet spot’ of
parameter space25,57–59. We confirm that efficient crystal nu-
cleation of spherical particles with short-range attractions hap-
pens via a two-step pathway throughout most of parameter
space. However, by performing a systematic investigation of
colloidal crystallization as a function of interaction strength
and range, we have found that largely one-step crystallization
from the gas can occur for certain combinations of parameters.
Specifically, over a narrow range of interaction strengths and
ranges near the extrapolated location of the metastable liquid-
gas boundary, we find that crystal nucleation is not preceded
by substantial liquid-vapor phase separation and does not oc-
cur at the expense of liquid-like order. It is possible that small
liquid-like fluctuations associated with the liquid-vapor phase
boundary serve to speed nucleation, perhaps by lowering the
interfacial tension between crystal and gas14. Given that we
see the onset of liquid-like fluctuations in the simulation boxes
we used for our dynamic simulations exactly where Gibbs-
ensemble simulations suggest that the bulk liquid-vapor phase
boundary lies, we do not expect the location of the one-step
nucleation regime to change strongly with system size.

Our simulations show that low crystal yield at low tempera-
tures or large interaction strengths is accompanied by particu-
lar local bond geometries. Crystal yield is low whenever there
are many common neighbor configurations associated with
face-sharing tetrahedra. Local bond geographies have been
associated with arrested dynamics in related systems. For ex-
ample, Karayiannis et al. showed that crystallization of hard
spheres from concentrated amorphous fluids is limited by the
persistence of five-fold coordinated local configurations60,61.

Our result that gelation in short-range attractive spheres
is associated with polytetrahedral order is largely consistent
with a recent analysis of gelation in an experimental colloid-
depletant mixture38. In Ref.38 Royall et al. found that gelation
can be explained by the formation of overlapping networks of
locally favored states, defined for each cluster size m ≤ 13 as
the structure (set of bonds) that minimizes the potential energy
for a reference potential. Royall et al. used a Morse potential
for their calculations, which fit the potential of mean force for
their system and led to locally favored states with predom-
inantly polytetrahedral order62: all but one of the locally fa-
vored states in Ref.38 are sections of a 13-particle icosahedron
consisting of 20 face-sharing tetrahedra, and are thus them-
selves clusters of face-sharing tetrahedra. The one exception
is the octahedron (Fig. 2 (g)), which has the same number of
spheres (6) and bonds (12) as three face-sharing tetrahedra
(Fig. 2 (d)), but is not composed of tetrahedra. The octahe-
dron thus shows a distinct common neighbor signature: in-
stead of exhibiting nonzero values of the polytetrahedral com-
mon neighbor metrics, the octahedron exhibits only a nonzero
value of the common neighbor metric n200 that is prevalent at
temperatures above gelation (Fig. 12 (g)).

We note also that within the square-well system, gelation
can be detected by the study of local bond environments and
does not require identifying minimum-energy clusters. In-
deed, our results suggest that gels contain large numbers of
some local configurations that do not minimize the potential
energy: while 323, 434, and 555 bonds associated with polyte-
trahedral gelation are found in clusters that maximize the num-
ber of bonds, 545 bonds are not. Instead, 545 bonds are found
in curved, linear polytetrahedral motifs as shown in Fig. 2 (e).
As seen by comparing Fig. 2 (e) to Fig. 2 (f), these motifs do
not maximize the number of bonds because they do not close
into complete loops of face-sharing tetrahedra. The useful-
ness of local bond environments vs minimum-energy clusters
is encouraging because the identity of maximally bonded clus-
ters is known to vary strongly with potential. For example,
in contrast to the Morse potential, square-well spheres with
vanishingly small interaction ranges can have many distinct
maximally bonded clusters for each cluster size63–68.

Finally, our dynamic protocol suggests which combina-
tions of temperature and colloid interaction range will yield
best crystallization on the time scale 105t0, where t0 =
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η(2R0)
3/kBT . For example, for spherical colloidal particles

with radius R0 = 50 nm, at room temperature (T = 293 K)
in water (η = 1.00×10−3 Pa s), our results predict that crys-
tallization after t = 105t0 = 25 s will be best for an attractive
interaction of range 0.04R0 = 2 nm and strength 0.32kBT =
0.19 kcal/mol.
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5 Appendix: Virtual-move Monte Carlo algo-
rithm

To efficiently approximate the overdamped and hydrodynami-
cally coupled dynamics of strongly associating particles in so-
lution, we used the virtual-move Monte Carlo (VMMC) algo-
rithm40,42, specifically the variant described in the appendix of
Ref.41. We parameterized the algorithm to satisfy the Stokes
solutions for the translational and rotational diffusion of clus-
ters of hydrodynamic radius RH,

Dt =
kBT

6πηRH
,

Dr =
kBT

8πηRH
3 ,

(6)

while allowing as much internal relaxation of each cluster as
possible. Our parameterization allows us to present results
across interaction ranges and particles sizes relative to the nat-
ural Brownian time unit

t0 = η(2R0)
3/kBT, (7)

where η is the solvent viscosity, R0 is the hard-core radius of
the spherical particles, and kBT is the thermal energy.

The VMMC algorithm40–42 moves individual particles and
groups of particles with attempt and success frequencies de-
signed to (1) preserve the correct equilibrium distribution, (2)
ensure that particles move according to gradients in the po-
tential energy, and (3) allow the dependence of diffusion co-
efficients on cluster size (e.g. Eq. (6)) to be controlled. The
algorithm achieves this by proposing individual Monte Carlo
moves, self-consistently generating individual or collective
moves from the proposed moves, and accepting those moves
in a way that satisfies the above three conditions.

In our implementation, trial individual translations are at-
tempted with probability pt by randomly selecting a particle
and then attempting to translate it randomly within a ball of
radius ∆t. Because our particles are spherically symmetric,
collective rotations cannot be generated from trial rotations
about the center of mass of a single particle. Our trial rotations
are attempted with probability pr = 1− pt by randomly se-
lecting a particle, randomly selecting a second particle within
the interaction range of the first, and then attempting to rotate
the second particles by a randomly-chosen angle in the range
(−∆r,∆r) around a randomly oriented axis n̂ centered at the
first particle.

Acceptance rates in the VMMC algorithm consist of three
factors: (1) a factor built on the Metropolis criterion ensur-
ing that the system relaxes toward equilibrium and particles
move according to gradients in the potential energy (2) a fac-
tor ensuring that motions of clusters are not oversampled with
respect to the motion of isolated particles, and (3) a factor en-
forcing a prescribed dependence of diffusion coefficients on
cluster size. The first factor is generic for any application of
the VMMC algorithm. The second factor is usually used to
produce realistic dynamics, but can be omitted when the algo-
rithm is used only to sample an equilibrium distribution. The
third factor has a general form that depends on the scaling of
diffusion coefficients Dt and Dr on hydrodynamic radius RH
(e.g. Dt ∝ RH

−1 and Dr ∝ RH
−3 in Eq. 6), but the parameters

of the algorithm (pt, ∆t, and ∆r) must be tuned to ensure that
the prefactor of the diffusion laws match the prescribed val-
ues43. Below, we review the VMMC algorithm and discuss
our parameter optimization.

5.1 Review of the VMMC algorithm

We followed the ‘symmetrized’ version of the VMMC algo-
rithm discussed in Refs.41,42. Trial ‘virtual’ single-particle
translations and two-particle rotations are generated as dis-
cussed above, with probability pt and pr = pt−1, respectively.
Trial collective moves are generated by iteratively testing each
link between particles inside the moving group and particles
outside the moving group, starting with an initial translation
or rotation, until no links remain to be tested. When each link
i j is tested, the particle outside the moving group ( j) is pre-
linked to the moving group with probability

plink
i j = Ii jmax

(
0,1− exp

(
β (Ui j−Ui′ j)

))
, (8)

where Ii j = 1 if particles i and j are within their mutual in-
teraction range and Ii j = 0 otherwise, Ui j is the initial inter-
action energy, and Ui′ j is the interaction energy when particle
i executes a virtual move but particle j does not. After making
a virtual move particle i is returned to its initial coordinates. If
particle j is pre-linked to the moving group, then the probabil-
ity of the reverse move (translation or rotation in the opposite
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direction) is calculated,

preverse
i j = max

(
0,1− exp

(
β (Ui j−Ui′′ j)

))
, (9)

where Ui′′ j is the interaction energy when particle i does the
reverse virtual move and particle j stays still. After the reverse
virtual move i is restored to its initial position. Then, the pre-
linked particle j is linked (admitted) to the moving group with
probability

plink
i j = min

(
1,

preverse
i j

plink
i j

)
; (10)

otherwise, the link is marked as frustrated. This procedure is
continued until it converges on a final moving group, with all
links having been tested between particles inside and outside
the group.

Since the algorithm will move the entire group by the ini-
tial translation or rotation, the acceptance of collective moves
must be scaled by a factor of 1/N to prevent over-sampling the
motion of particles that are in large clusters. This is achieved
by rejecting moves in situ when the number of particles in a
moving group grows larger than 1/x (translations) or 2/x (ro-
tations), where x is a random number on the interval (0,1]
chosen at the beginning of each Monte Carlo step. The factor
2 appears because only rotations of groups of at least two par-
ticles are explicitly simulated for spherical particles; rotations
of individual particles can be assumed to occur at any arbitrary
rate while having no effect on the center of mass motion of the
particles.

An additional scaling of acceptance probabilities can be ap-
plied to control the dependence of diffusion on cluster size.
The Stokes scalings (Eq. 6) can be perfectly enforced in the
limit where particles are tightly bound to each other within
well-defined clusters and do not interact outside of these clus-
ters. In this limit, any trial Monte Carlo move results in the
recruitment of the entire cluster into a moving group, fol-
lowed by the translation or rotation of the entire cluster. The
VMMC algorithm can enforce Eq. 6 in this limit by rejecting
moves in situ when the hydrodynamic radius RH of the mov-
ing group exceeds Rmin/y (translations) or Rmin/y3 (rotations),
where Rmin is the minimum possible hydrodynamic radius
(see below) and y is another random number on the interval
(0,1]. Following previous implementations of the VMMC al-
gorithm40 we estimate the hydrodynamic radius RH of a group
G as a generalization of the radius of gyration,

RH
2 ≡ 10〈|(~r−~rcenter)× n̂|2〉~r∈G , (11)

where~rcenter is the group’s center of mass (center of rotation)
and n̂ is the direction of the translation (axis of rotation) for
translations (rotations). This factor is the same for for trans-
lations that occur in opposite directions, and for rotations that
occur with opposite sense, as is required for detailed balance.

We take ~r ∈ G to include all points within the hard cores of
the particles. The minimum hydrodynamic radius for both
translations and rotations (single-sphere translations or effec-
tive two-sphere rotations about an axis n̂ parallel to the separa-
tion vector between the particles) is the physical sphere radius
R0 (it would be R0/

√
10 without the factor of 10 that appears

in Eq. (11)).
Once a moving group has been generated that is not rejected

in situ due to its number of particles or hydrodynamic radius,
two additional factors contribute to its acceptance probability.
First, the move is rejected if there are any frustrated links be-
tween particles inside and outside the moving group. Second,
moves that remain valid are accepted with probability

Wacc = min

1, ∏
〈i j〉0↔p

exp
(
−β
(
Ui′ j−Ui j

)) , (12)

where the product runs over all pairs of particles (i in the mov-
ing group and j outside it) that are non-interacting before the
move and have positive pair energy after the move, or vice
versa. Together, these factors ensure that the system satisfies
superdetailed balance, a condition that implies detailed bal-
ance69. For square well spheres that have only zero, negative,
or infinite positive interaction, Eq. 12 reduces to a rejection if
the move results in any hard-core overlap,

Wacc = ∏
i∈G , j/∈G

θ(ri′ j−2R0), (13)

where θ is the heaviside step function.
For rotations of moving groups large enough to interact with

their periodic images we imposed an additional rejection if a
move resulted in a hard core overlap with a periodic image.
Such overlaps occurred only for gels.

5.2 Parameter optimization

The prescribed dependence of diffusion coefficients with clus-
ter size (Eq. 6) is derived for the VMMC algorithm in the
limit of vanishingly narrow potential energy wells. In this
limit, trial moves always take particles out these wells. If the
wells are deep relative to kBT and the clusters are isolated,
this causes the algorithm to recruit the entire cluster into the
moving group, always accept the move, and thus generate dif-
fusion coefficients dictated by the in situ rejection of collective
moves as a function of hydrodynamic radius.

In practice, potential energy wells are not vanishingly nar-
row. Properly modeling the motion of such systems requires
(1) allowing degrees of freedom internal to the clusters to relax
and (2) ensuring that the prescribed diffusion laws are obeyed
even when whole-cluster moves are not always generated. We
sought to satisfy these conditions by choosing algorithm pa-
rameters that allow clusters to internally relax as much as pos-
sible without violating the Stokes scaling. We achieved this
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by selecting the smallest values of ∆t and ∆r that resulted in
the Stokes solutions for a test set of tetrahedral clusters of size
1 to 120 (8 spheres along each edge) for a range of interac-
tion ranges λ and T → 0 (infinite square well attractive inter-
action). We determined the optimal algorithm parameters in
four steps.

First, we recorded the translational diffusion coefficient Dt
from translation-only VMMC simulations of isolated tetrahe-
dral clusters with range λ = 0.11 and compared it to the pre-
dicted value from Eq. 6,

DStokes
t = D0

t
R0

RH
, (14)

where

D0
t =

∆t
2

10tcycle
(15)

is the translational diffusion coefficient for a single sphere
translating with Monte Carlo dynamics. As shown in Fig. 13
(a), we found that for a range of tetrahedral cluster sizes
Dt � DStokes

t for ∆t ≤ 0.2R0, Dt ' 0.7DStokes
t for ∆t = 0.4R0,

and Dt ' DStokes
t for ∆t ≥ R0. Although the translational dif-

fusion coefficient is not quite saturated at the Stokes limit at
∆t = 0.4R0, we chose to parameterize ∆t near this value be-
cause this balances a diffusion coefficient near the Stokes limit
with ample internal relaxation: as shown in Fig. 13 (b), more
single-particle than whole-tetrahedron moves are accepted for
∆t = 0.4R0, while the reverse is true for ∆t = R0.

Second, we recorded the rotational diffusion coefficient Dr
from rotation-only VMMC simulations of the same tetrahedral
clusters and compared it to the predicted value from Eq. 6,

DStokes
r = D0

r

(
R0

RH

)3

, (16)

where

D0
r =

θms(∆r)∆r
2

6tcycle
(17)

is the rotational diffusion coefficient for a single sphere ro-
tating with Monte Carlo dynamics. In Eq. 17 θms(∆r) is the
mean-squared rotation angle (about a fixed arbitrary axis cen-
tered at the center of mass) that a sphere would experience
if we applied our Stokes-scaled VMMC algorithm to volume
elements within the sphere. This factor is necessary for rota-
tions because, unlike for translations, the hydrodynamic radius
(Eq. 11) depends on the center and axis of rotation. Defining
θ(∆r, n̂,~r) as the center-of-mass rotation angle for a rotation
by ∆r around n̂ centered at~r, we find

θms(∆r) =
1

∆r
2

〈
(θ(∆r, n̂,~rcenter))

2
(

R0

RH(~rc, n̂)

)3
〉

n̂,|~rc|<R0

,

(18)
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Fig. 13 (a) Ratio of translational diffusion coefficient to the value
predicted by the Stokes solution (Eq. 14) for translation-only
VMMC simulations of tetrahedral clusters composed of spheres
with infinite square well attractive interactions of range λ = 0.11.
(b) Ratio of accepted single-sphere moves to whole-cluster moves
for the same set of simulations. (c) Ratio of rotational diffusion
coefficient to the value predicted by the Stokes solution (Eq. 16) for
rotation-only VMMC simulations of the same tetrahedral clusters.
(d) Ratio of translational to rotational diffusion coefficients for a
four-sphere tetrahedron with infinite square well attractive
interactions as a function of the attempt probability for translations.
The ratio is normalized such that the Stokes solution corresponds to
a value of 1 (see Eq. 20). (e) Translational and (f) rotational
diffusion coefficients vs hydrodynamic radius for simulations of
tetrahedral clusters of various sizes composed of infinite square well
attractive spheres with various interaction ranges λ (legend), using
the full translating and rotating VMMC algorithm with parameters
∆t = 4λR0, ∆r = 1, and pt = 0.4(R0∆r/∆t)

2. For comparison, the
Stokes solutions (Dt ∝ RH

−1 and Dr ∝ RH
−3) and free draining

solutions (Dt ∝ RH
−3 and Dr ∝ RH

−5) are shown as lines.
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where

RH(~rc, n̂) =
(

15
2πR3

0

∫
~r<R0

|(~r−~rc)× n̂|2
)1/2

(19)

is the center- and axis-dependent hydrodynamic radius. In
the limit ∆r→ 0, we numerically calculated θms(∆r)→ θ 0

ms '
0.14. As shown in Fig. 13 (c), we find that for a range of
tetrahedral cluster sizes Dr saturates from below near a value
1.5DStokes

r for ∆r ≥ 1. (Dr drops again for ∆r ≥ 5 due to the
inability to resolve rotations when individual rotations exceed
π radians.) We chose to parameterize ∆r = 1 to ensure that ro-
tations are saturated at the large-∆r limit, allowing translations
to accommodate internal relaxation.

Third, we adjusted the attempt probability for translation
and rotation, pt and pr = 1− pt, to correct for the numerical
discrepancies between the predicted and measured diffusion
coefficients for tetrahedral clusters (the factors 0.6 for trans-
lations and 1.5 for rotations discussed above). We achieved
this by performing VMMC simulations of a tetrahedra of four
spheres with various translation attempt probabilities pt and
comparing the relative diffusion coefficients to the expected
relationship (see Eq. 6)

Dt

Dr
=

4
3

RH
2. (20)

If the prefactors for the diffusion coefficients followed Eq. 15
and Eq. 17, Eq. 20 would be satisfied for

pt

pr
=

20
9

θms(∆r)

(
R0∆r

∆t

)2

= c
(

R0∆r

∆t

)2

. (21)

Inserting the ∆r → 0 limit, θms(∆r) ' 0.14, into Eq. 21, we
find c ' 0.31 and pt ' 0.6. Instead, Fig. 13 (d) shows that
pt = 0.7 (corresponding to c = 0.4) results in better agreement
with Eq. 20. We therefore fix pt via Eq. 21 with c = 0.4.

Finally, we showed that fixing the parameters as above re-
sults in diffusion coefficients agreeing with the Stokes solu-
tions (Eq. 6) for tetrahedra of various sizes and with vari-
ous interaction ranges. We fixed the translational step size
∆t = 4λR0 to be proportional to the interaction range to en-
sure that the ratio of single-particle to whole-cluster moves
be consistent across interaction ranges. We fixed ∆r = 1 and
pt = 0.4(R0∆r/∆t)

2 as described above. Together, this param-
eterization fixes the time per Monte Carlo cycle,

tcycle =
6
5

π ptλ 2t0, (22)

where t0 is the natural Brownian time scale (Eq. 7). Fig. 13
(e) and (f) show that Dt and Dr follow the Stokes solutions
(Eq. 6) over a broad range of cluster sizes and interaction
ranges, in stark contrast to single-particle Monte Carlo simu-
lations, which follow the much more strongly size-dependent
free draining solutions Dt ∝ RH

−3 and Dr ∝ RH
−5 for small

step sizes.
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A thorough computational investigation of colloidal crystallization across

parameter space illustrates several distinct mechanisms for crystallization

and dynamical arrest.
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