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Inverse methods of statistical mechanics are becoming productive tools in the design of materials with specific microstructures

or properties. While initial studies have focused on solid-state design targets (e.g, assembly of colloidal superlattices), one can

alternatively design fluid states with desired morphologies. This work addresses the latter and demonstrates how a simple iterative

Boltzmann inversion strategy can be used to determine the isotropic pair potential that reproduces the radial distribution function

of a fluid of amorphous clusters with prescribed size. The inverse designed pair potential of this “ideal” cluster fluid, with its

broad attractive well and narrow repulsive barrier at larger separations, is qualitatively different from the so-called SALR form

most commonly associated with equilibrium cluster formation in colloids, which features short-range attractive (SA) and long-range

repulsive (LR) contributions. These differences reflect alternative mechanisms for promoting cluster formation with an isotropic

pair potential, and they in turn produce structured fluids with qualitatively different static and dynamic properties. Specifically,

equilibrium simulations show that the amorphous clusters resulting from the inverse designed potentials display more uniformity in

size and shape, and they also show greater spatial and temporal resolution than those resulting from SALR interactions.

1 Introduction

The computational design of interactions for targeted self as-

sembly is a powerful approach in the search for new materials

with specified microstructures, properties, or functionality. It is

typically pursued via a strategy where the macroscopic behav-

iors of a subset of promising systems with different microscopic

interactions (e.g., patchiness1–6 or shape6–8) are characterized

by extensive “forward” molecular simulation calculations and

compared to one another using appropriate figures of merit.

Such forward approaches have been instrumental in discover-

ing novel organizational motifs in crystalline or microphase-

separated solids. However, since forward calculations (or ex-

periments) can be expensive and time-consuming for complex

systems, this method is perhaps most useful where physical in-

tuition can guide the selection of the microscopic interactions

to be considered. For example, possible locations and sizes

of attractive “patches” on colloidal particles could be chosen

a priori by considering how these variables affect mutual patch

alignment with nearest neighbors when particles are in a de-

sired superlattice structure versus other competing morpholo-

gies2,3,9–13.

For less intuitive materials design problems, systematic al-

ternatives to forward searches may be helpful. Inverse meth-

ods of statistical mechanics, which formally optimize micro-

scopic interactions toward attainment of a desired macroscopic

outcome, are one such emerging class of complementary tech-

niques14–17. Inverse approaches have been recently applied to
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gain insights into nontrivial materials design problems includ-

ing the search for isotropic, repulsive interactions that can sta-

bilize low-coordinated crystals in two (e.g., honeycomb and

square)18–20 or three (e.g., diamond and simple cubic)19,21–23

dimensions. However, such methods are not limited to design-

ing solid-state targets, and standard tools could in principle be

exploited to find interactions that imbue equilibrium fluid states

with desired microstructural features. Some of the organiza-

tional motifs of these designer fluids could, in turn, be captured

in non-equilibrium solid states (e.g., gels or glasses formed from

the flud via a rapid quench or compression).

Here, we present a simple methodology for the inverse de-

sign of fluid structure via optimization of an isotropic pair in-

teraction. It comprises two steps: generation of a configura-

tional ensemble of target microstructures via simulations using

an artificially complex, many-body interaction chosen to guar-

antee assembly of the desired morphology, and then use of a tool

from systematic coarse-graining24–29 to reduce the many-body

interaction to an effective pair potential. In the present work,

we adopt iterative Boltzmann inversion (IBI) for the latter step,

which uniquely determines the pair potential that will generate

the radial distribution function (RDF) of the target ensemble at

equilbrium. As a first application of this methodology, we at-

tempt to inverse design a pairwise potential that forms a fluid

of “ideal” amorphous equilibrium clusters of prescribed size.

Clustered fluids of colloidal particles have attracted consider-

able interest due their novel multiscale structure, their rich dy-

namic and rheological properties, and their potential functional-

ity 30–45.

The classic paradigm for forming equilibrium clusters from

an isotropic pair potential focuses on models that exhibit a com-

bination of short-range attractive (SA) and longer-range repul-
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sive (LR) contributions, commonly referred to as an SALR

model30–38,44,45. Various functional forms for the attractions

have been studied (modeling, e.g., polymer-mediated depletion

forces between colloids), typically in combination with a repul-

sive Yukawa tail to model weakly screened Coulombic interac-

tions. The attractions drive particle association, but the longer-

ranged replusions lead to self-limited growth (i.e., finite sized

aggregates). In contrast to systems lacking competitive repul-

sions, the formation of clusters in SALR fluids can either sup-

press macroscopic phase separation to lower temperature and

density or eliminate it altogether30,31,46.

Although the SALR model qualitatively captures the effec-

tive pair potential and equilibrium cluster behavior seen in

some types of experimental systems (e.g., mixtures of charged-

stabilized colloids with weakly interacting polymers), it does

not generate microstructures reflecting properties typically ex-

pected in the idealized picture47 of such cluster phases31–38,45,46

that are found in other experimental systems48,49, which we de-

note here as ideal cluster (IC) fluids: particle assemblies that are

monodisperse, spherical, long-lived, and fluid-like in terms of

inter- and intra-cluster structure and mobility. Recently, Glotzer,

Kotov, and coworkers have demonstated that a many-body

potential which incorporates environment-dependent charge

renormalization during assembly can lead to clusters that are

monodisperse, spherical, and amorphous48–50. The role of

surface charge renormalization has been studied by others as

well51,52. However, whether many-body interactions are in gen-

eral neccessary to assemble the complex multiscale structures

of IC fluids has been an open question. Additionally, keeping

to the level of a pair interaction has the benefit that, through a

systematic mapping, it can be regarded as a low dimensional ap-

proximation of a given many-body interaction. The simplified

form can then yield key physical insights.

Here, we show that one can inverse design pair potentials

that readily assemble into IC fluids under equilibrium condi-

tions. Interestingly, these potentials exhibit a broad attractive

well together with a narrow repulsive barrier at larger sepa-

rations, which–while also a competitive balance between two

interactions–is qualitatively different from those of the SALR

fluid. These differences imply distinct physics governing clus-

ter formation in IC and SALR fluids, and we compare the static

and dynamic properties of clusters in these systems, introduc-

ing a new metric for cluster lifetime to quantitatively character-

ize the latter. In the analysis, we also discuss practical aspects

in the inverse design of pair potentials for complex fluids using

IBI.

The remainder of this paper is organized as follows. Section 2

outlines the constrained model used to generate configurational

ensembles of the targeted ICs, the IBI inverse design method

employed to discover the final IC potentials, the SALR model

used and the metric we introduce for the cluster lifetime anal-

ysis. Results of the inverse cluster design and comparisons be-

ween IC and SALR fluids are presented in Section 3. The paper

is concluded in Section 4 with a discussion of future goals and

possible improvements to the approach.

2 Methods

2.1 Constrained Monte Carlo simulations

The first step in the inverse design of ICs is to produce a phys-

ically realizable target RDF, gtgt(r), corresponding to a config-

urational ensemble with the desired structural properties. To

generate such RDFs, we utilize constrained Monte Carlo simu-

lations of N = 2048 total hard core (HC) particles of diameter

d, which are divided into equisized amorphous assemblies of ei-

ther ntgt = 8, 16, or 32 particles, each representing a single clus-

ter. To enforce cluster association, single-particle translations

are constrained by a many-body intra-cluster potential acting on

the instantaneous cluster radius of gyration, R, as

βϕintra(R)≡ A(R2 −R
2
)2 (1)

where β = 1/(kBT ) (kB is Boltzmann’s constant and T is tem-

perature), A is a positive scalar amplitude, and R is a target

radius of gyration. For a given ntgt there is a practical lower

limit to what R values can be sampled by a cluster due to hard-

core packing constraints; thus, any R below this limit yields

virtually identical behavior for appropriately chosen values of

A. For ntgt = 8, 16, and 32, we use R = 0.6d, 0.8d, and 1.2d

and A = 300, 265, and 170 respectively. For all particle pack-

ing fractions η = (π/6)Nd3/V studied (where V is volume),

these parameters yield corresponding average radii of gyration,

〈R〉 ≈ 0.860d, 1.105d, and 1.476d. The insensitivity of 〈R〉 with

respect to η for a given ntgt is due to the preset compactness of

the clusters.

We also introduce a longer-ranged Yukawa repulsion between

the cluster center-of-mass (COM) pairs, which improves con-

vergence of the IBI scheme (discussed below) and is defined by

βϕCOM(rCOM)≡
B

rCOM

exp[−rCOM/z] (2)

where rCOM is the pair COM distance between two clusters and

B and z are the repulsive amplitude and range, respectively. We

set z = 0.12 for all systems and B = 1 × 1012, 1 × 1015, and

1× 1021 for ntgt = 8, 16, and 32, respectively, for all η . These

parameters furnish very steep, hard-core-like repulsions around

the clusters with effective hard-core diameters of deff ≈ 3.18d,

3.98d, and 5.60d, respectively. From deff, we can also obtain

the effective volume fraction of whole clusters (treating them as

renormalized objects) via the expression ηeff = ηd3
eff/(ntgtd

3).
Given these definitions, we propagate the Monte Carlo tra-

jectories via cluster COM translational moves (10%) and single-

particle displacements (90%). Note that cluster rotational moves

are unnecessary as the single-particle moves are sufficient to

randomize the intra-cluster structures.

Once gtgt(r) has been obtained, we must smooth out the dis-

continuous peak at contact that results from the use of the hard-

core constraint, so as to be consistent with the use of continu-

ous pair potentials as required by the molecular dynamics IBI
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framework. To do this, we construct an approximate hard-core

mapping onto a steep, purely repulsive 50-25 Weeks-Chandler-

Andersen (WCA) potential53 (in dimensionless form)

βϕWCA(r)≡ H(r0 − r)

(

4

[(

dWCA

r

)50

−

(

dWCA

r

)25]

+1

)

(3)

where H(x) is the Heaviside step function, dWCA is the effec-

tive core diameter and r0 ≡ 21/25dWCA). The mapping uses

a linear extrapolation of the hardcore target RDF, gtgt,HC(r),
near contact into the core region to locally approximate the

well known cavity distribution function, ytgt,HC(r)
53. It is gen-

erally accepted that ytgt,HC(r) ≈ ytgt,SC(r), where ytgt,SC(r) is

any steeply repulsive soft-core (SC) analog that approximates

the hard core version via some non-unique mapping criterion.

For our purposes, the simplest mapping, dWCA = d, is suffi-

cient. The final soft-core profile is constructed as gtgt,WCA(r)≈
exp[−βϕWCA(r)]ytgt,HC(r), which we denote as gtgt(r) in the re-

maining sections.

2.2 Iterative Boltzmann inversion

IBI is a conceptually simple and popular approach for solv-

ing the inverse statistical-mechanical problem of discovering

the unique pair-potential u(r) corresponding to a particular

RDF24–28. In general, there is no guarantee that such a poten-

tial exists according to the Henderson theorem54; however, if

the potential exists, IBI is a suitable tool for recovering it. In-

verse designed potentials depend on the state point of interest

(η and T dependent); however, varying T at fixed η leads to

trivial rescaling of the potential, thus all potentials are reported

in units of thermal energy for generality. The explicit density

dependence of our potentials is discussed in Section 3.2.

The IBI procedure requires an initial-guess potential u1(r),
which at the lowest densities we take to be the target potential

of mean force u1(r) ≡ −kBT ln[gtgt(r)]. At higher densities, we

use converged results from the lower densities. Simulation of

u1(r) provides the first trial RDF, g1(r), and a new potential is

calculated according to the general formula

ui+1(r)≡ ui(r)+αmkBT ln

[

gi(r)

gtgt(r)

]

(4)

where αm is a mixing parameter to help control the conver-

gence. The simulation step and potential update steps are carried

out successively until satisfactory convergence in u(r) [g(r)]
is achieved. For our highly structured RDFs (orders of mag-

nitude variation; see Fig. 1), αm is best kept very small and

αm ≈ 0.005− 0.02 provides the best convergence while main-

taining a quasi-equilibrium system during the iterative proce-

dure. In practice, the potential is also always cut and shifted at

a lengthscale rc after each IBI iteration. For the work here, a

value of rc = 8d was sufficient and could be lowered in some

cases, e.g., when considering smaller clusters.

Implementation of IBI is accomplished through the Versa-

tile Object-oriented Toolkit for Coarse-graining Applications

(VOTCA)28, which is implemented with the GROMACS 4.5.3

molecular dynamics (MD) package55. We perform simula-

tions comprising N = 2048 particles using a time step of dt ≈
0.0003

√

d2m/(kBT ) (m is the particle mass) and a velocity-

rescale thermostat for T with characteristic time constant τ =
100dt, where rescaling is done every 10dt. VOTCA utilizes

GROMACS trajectories to calculate RDFs and potential updates

accoring to Equation 4.

2.3 SALR model systems

To contextualize the behaviors of the newly designed IC po-

tentials, it is useful to make comparisons to results of an

SALR interaction potential known to exhibit equilibrium clus-

ter phases30–38. Specifically, we compare IC results with those

from a ternary mixture model developed in a previous study31

that can generate both amorphous and microcrystalline clusters.

The pair potential in this model is defined as

βϕSL|i, j(xi, j)≡ 4[χ +(1−2δi, j)∆χ ](x
−2α
i, j − x−α

i, j )+Q
e−xi, j/ξ

xi, j/ξ
(5)

where x= r/d is a non-dimensionalized interparticle separation,

d is the characteristic particle diameter, χ quantifies a short-

range attractive strength (we choose α = 100 to set attractive

wells of O(1%) of the core diameter), and Q and ξ respectively

set the magnitude and range of a long-range Yukawa repulsion.

Additionally, δi, j is the Kronecker delta, with i (or j) =−1,0,1
corresponding to small, medium, and large particles, respec-

tively; the generalized interparticle distance is defined xi, j ≡
x− (1/2)(i+ j)(∆d/d). The remaining parameters are pertur-

bative shifts to particle size ∆d and energy ∆χ , respectively. The

values of χ , Q, and ξ were tuned to generate SALR clusters of

comparable size to the optimized ICs.

To generate amorphous cluster phases, we follow our previ-

ous work31 and examine three-component mixtures that approx-

imate suspensions with 10% size polydispersity by using 20%

small, 60% medium, and 20% large particles with size perturba-

tion ∆d = 0.158d, where we set ∆χ = 0.25χ to gently promote

mixing. To examine the more commonly studied monodisperse

single-component model that exhibits microcrystalline clusters,

we simply set ∆d = ∆χ = 0.

With the SALR model, we perform three-dimensional MD

simulations of N = 2960 particles in the canonical ensemble

with periodic boundary conditions using LAMMPS56. We

use an integration time-step of dt = 0.0005
√

d2m/(kBT ), in-

clude interactions out to a cut-off distance of rc = 8d, and fix

temperature via a Nosé-Hoover thermostat with time-constant

τ = 2000dt.

2.4 Cluster-size distribution and bond order analysis

To characterize the instantaneous scale of the equilibrium clus-

ter aggregates, we calculate cluster-size distributions (CSDs)
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Fig. 1 Comparison of the target (hard-core) and optimized radial dis-

tribution functions g(r) for ntgt = 8, 16, and 32 at packing fraction

η = 0.04.

quantifying the probability P(n) of observing aggregates com-

prising n particles. As is customary30–38, two particles are con-

sidered part of the same cluster if at least one of the following

conditions are met: (1) their centers are within a pre-defined

cutoff distance rcut, making them direct neighbors; and/or (2)

their centers are both within rcut of one (or more) other parti-

cle(s), i.e., are connected via some percolating pathway. For the

IC systems, we generally use rcut = 1.25d (as discussed later,

results are not very sensitive to the choice of rcut); for the SALR

systems, we choose rcut to be the range of the attractive well,

which varies slightly depending on choices of parameters but is

generally around rcut ≃ 1.05d. Throughout the remainder of the

manuscript, a phase is considered clustered with aggregates of

a preferred equilibrium size n∗ based on the presence of a local

maxima in the CSD at n∗ occurring in the range 1 ≪ n∗ ≪ N.

Calculation of CSDs, which depend on many-body interpar-

ticle correlations, provides a practical means to access impor-

tant information regarding how well clustering is reproduced in

our pair-potential system. In particular, matching RDFs via IBI

does not guarantee that the correct cluster size is reproduced,

nor does it provide information on any undesired (i) polydisper-

sity of emergent aggregates and (ii) free monomer or other small

aggregates, both of which are absent in our constrained, target

simulations.

As a complement to the CSD analysis, we use a previously

published approach57 to calculate probability distributions P(x)
where x = q4, q6, w4, and w6 are the four standard parame-

ters characterizing local bond-orientational order (BO).58. The

comparison of these distributions between the constrained and

optimized systems provides a first-order quantification of how

effectively the RDF mapping preserves higher-order, local struc-

tural correlations within clusters. In calculating the local BO pa-

rameters, we employ the same rcut used in the CSD calculation

for identification of each particle’s nearest neighbors.

2.5 Cluster persistence

Despite the frequent measurement of static CSDs, there is lit-

tle discussion in the literature regarding the dynamic stability

(“lifetime”) of the contributing aggregates. In fact, we are not

aware of any generally accepted methods that quantify cluster

dynamics in particle-based systems other than measurements of

monomer mean-squared displacements59 and dynamic structure

factors60, especially in ways that captures cluster persistence by

explicitly incorporating dynamic bond information. To facili-

tate such measurements, we introduce the correlation function

Φ(t), which quantifies the fractional similarity of associates in

clusters (FSAC) at an initial time t = 0 and a lag-time t > 0,

where particles are associates at a given time if they are in the

same cluster. More specifically, the correlation function can be

written

Φ(t)≡
1

N

N

∑
i=1

[

Φi,shared(t)

Φi,total(t)

]

(6)

where Φi,shared(t) counts the the number of particle i associates

that are common to t = 0 and t > 0 while Φi,total(t) is the com-

bined sum of particle i associates at t = 0 and t > 0 (without

double counting particles common to both times).

For example, if particle 1 is in a cluster with particles {2, 3,

4} at t = 0, and in a cluster with particles {2, 3, 5} at some t > 0,

then Φ1,total(t) = 4 while Φ1,shared(t) = 2. The fractional simi-

larity of associates to particle 1 is then Φ1,shared(t)/Φ1,total(t) =
0.5. In the special case that particle i is a monomer at both

time-points we assume Φi,shared(t)/Φi,total(t) = 1, thus ensuring

monomers that remain as monomers contribute positively to the

score. Averaging the score of every particle then yields Equa-

tion 6.

The correlation function has the range Φ(t) = [0,1], where

Φ(t > 0) = 1 means that all clusters (including monomers)

contain the same particles at both time-points and Φ(t) = 0

means that all particles possess temporally exclusive sets of

associates. In a macroscopic system with finite-sized clusters,

Φ(t → ∞) = 0 due to single-particle and cluster diffusion. How-

ever, this is not captured in a finite-sized box as particles can

wrap through the periodic boundaries. As such, we include an

additional rule: if two particles i and j ever move further than a

half box-length away from one another at t > 0, each is subse-

quently treated as a new, previously unrecognized particle with

respect to the other at all future time-points t ′ > t. Thus, two

associates at t = 0 that diffuse very far from one another before

becoming associates again (in a potentially arbitrary cluster) are

not counted as temporally common.

Altogether, the counts in Equation 6 can be expressed

more formally as Φi,shared(t) = ∑ j 6=i Θi j(0)Θi j(t)γi j(t) and
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Φi,total(t) = ∑ j 6=i[Θi j(0)+Θi j(t)]−Φi,shared(t) where

Θi j(t)≡

{

1, i and j in same cluster at lag-time t

0, otherwise

where the instantaneous cluster analysis at each time is done in

the usual way. The factor γi j(t) enforces the rule concerning

temporal pairwise drift and is given by

γi j(t)≡

{

1, ∀ t ′ ≤ t,ri j(t
′)≤ L/2

0, otherwise

where L is the simulation box length and ri j(t) ≡ ‖rw
i j(0) +

∆ru
i j(t)‖ with rw

i j(0) the wrapped initial displacement vector be-

tween particles i and j and ∆ru
i j(t) the corresponding net cumu-

lative unwrapped displacement over lag-time t.

3 Results and discussion

3.1 Cluster structure

In Fig. 1, we compare RDFs obtained from the constrained

Monte Carlo simulations to those of MD simulations using

the IBI-optimized potentials. The g(r) profiles show very

good agreement over three orders of magnitude (demonstrat-

ing the successful application of the IBI approach), and also–

as expected–exhibit features that are consistent with clustering

and atypical of simple fluids. One such feature is the highly

structured, liquid droplet envelope extending over multiple par-

ticle diameters. This droplet region is terminated by a particle-

rarefied window, which, in a highly averaged sense, defines the

cluster center-to-surface distance and provides an intuitive divi-

sion of gtgt(r) into intracluster and intercluster particle correla-

tions. Intercluster gtgt(r) correlations are oscillatory, with rela-

tively long characteristic wavelengths set by the effective cluster

size deff, which is originally encoded during the reference con-

stained MC simulations (see Section 2.1). Importantly, deff also

controls the depth of the depletion window in gtgt(r), where the

depletion depth is greater when the repulsive-shell lengthscale

(deff) is larger. Intercluster repulsion at the COM level is essen-

tial towards achieving convergence in the IBI scheme, as in its

absence, we find that the intermediate IBI steps become unsta-

ble towards large scale aggregation. In addition, the thickness

of the repulsive layer needed for convergence grows with cluster

size (see Section 3.4).

Of course, convergence in g(r) alone does not guarantee

preservation of higher-order particle correlations, which could ‡

play an important role in clustering behavior. However, we

find that strong clustering emerges using the designed pair-

wise potentials, as evidenced by the representative simulation

snapshots shown in Figs. 2(a-c), the three corresponding CSDs

‡ Matching higher-order correlations is not strictly necessary for strong clustering

so long as the resultant set of many body correlations generated by the optimized

pair potential correspond to strongly clustered states.

η 0.02 0.04 0.06 0.08

n∗ 8 8 8

〈n〉 7.95 8.26 8.48

δn 2 2 2

n∗ 16 16 16 16

〈n〉 15.90 16.03 16.65 16.25

δn 3 3 3 3

n∗ 33 32 33

〈n〉 32.68 31.46 32.66

δn 4 4 5

Table 1. Average cluster size and polydispersity measures for all clus-

ter sizes (ntgt = 8, 16 and 32) and volume fractions.

in Figs. 2(d-f), and simulation movies of these systems (pro-

vided in the Supplementary Material). Visual inspection of

Figs. 2(a-c) reveals that the self-assembled clusters are (1)

highly-distinguishable (well-defined); (2) spherical and droplet-

like; and (3) similar in size to the enforced analogs in Fig. 1.

The CSDs, calculated using rcut = 1.25d∗, confirm that the opti-

mized potentials promote clusters of the desired sizes, as quan-

tified by both the characteristic maximum n∗

P(n∗)≡ maxnP(n) (7)

and the average value

〈n〉 ≡
∞

∑
n=1

nP(n) (8)

both listed in Table 1. We also note that the clusters are so

well defined that peaks corresponding to infrequently connected

clusters (two times primary cluster size) are also observed at

higher η (not visible for ntgt = 32).

To complement the size measures n∗ and 〈n〉, we also calcu-

late the peak-width δn according to

0.90 ≤
ntgt+δn

∑
n=ntgt−δn

P(n) (9)

which is the (one-sided) range in n about n∗ that accounts for

90% of the summated P(n) curve. As demonstrated in Ta-

ble 1, δn is of a reasonable size for all ntgt, with the ratio

δn/n∗ decreasing with increasing n∗ (intuitively, δn/n∗ → 0

in the thermodynamic, cluster-size limit). Finally, as is clear

from Figs. 2(d-f), these highly monodisperse clusters also co-

exist with a small but numerically detectable fraction of free

monomer, which can also be visually gleaned from Figs. 2(a-c)

and the three corresponding supplemental movies. This bifur-

cation of the system into two primary populations suggests a

similarity to liquid-vapor coexistence, albeit on the microscale.

∗We note that the appropriate choice of rcut is non-unique given the shapes of

u(r) (see Section 3.4); however, the clusters are sufficiently well-defined such

that various cutoffs rcut/d = [1.1,1.5] yield negligible differences in the CSDs.
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Fig. 2 (a-c) Simulation snapshots for ntgt = 8, 16, and 32, respectively, at a volume fraction of η = 0.06. (d-f) Cluster size distributions for ntgt = 8,

16, and 32, respectively, for various η .

While the CSD calculations clearly demonstrate that target

cluster sizes are reproduced and that minimal intrusive smaller

or larger objects are present, we also find that reproducing pair

structure carries over to some higher-order structural correla-

tions. Here, we specifically consider the local higher-order

bond-orientational order (BO) parameters57,58 q4, q6, w4, and

w6, which are understood to be strongly correlated with pair

structure for homogeneous disordered liquids and even glassy

packings61,62. In Fig. 3, we compare probability distributions

P(x) of these local BO parameters for constrained and optimized

systems of ntgt = 32 clusters at η = 0.06. For the latter case,

a distribution of cluster sizes is present. Therefore, to com-

pare clusters of similar size, we collect statistics over clusters

of instantaneous size n∗± δn (see Table 1) from the optimized

simulations. The intracluster higher-order correlations are in-

deed well preserved between two cases, though we note that

the observed agreement slightly diminishes as target cluster size

decreases (see Supplementary Material for ntgt = 8 and 16 cal-

culations), a trend likely related to the issues we discuss in the

following paragraph.

Beyond the cluster sizes (8 ≤ ntgt ≤ 32) considered in Figs. 1-

2, we also attempted the IBI approach to obtain pair potentials

u(r) that would generate smaller and larger amorphous clusters;

however, various challenges emerge in either limit. For clusters

of size ntgt < 8, we find that it is difficult for an isotropic pair po-

tential to generate well-differentiated amorphous clusters while

simultaneously suppressing similarly sized, ordered, intraclus-

ter configurations that cannot be easily penalized on the basis of

single length-scale. This type of issue arises in a minor way even

for ntgt = 8, as evidenced by the small n = 13 peak in the CSDs

of Fig. 2(d), which corresponds to clusters with a central seed

and 12 closely-packed neighbors (the sphere kissing number63).

We found that the intrusion of ordered off-target clusters is most

prevalent when attempting to stabilize dimers (ntgt = 2), where

3-mers and 4-mers were always more highly favored. This is a

result of the minimalistic fluctuation (single particle) being of

order the size of the desired cluster (dimer) and the fact that

3-mers and 4-mers can assemble into objects with no discrimi-
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Fig. 3 Bond-orientational order probability distributions for ntgt = 32

at packing fraction η = 0.06. The filled grey and open red curves in-

dicate constrained and optimized simulations (using clusters with sizes

between n∗ ± δn), respectively. Analogous calculations for the two

other cluster sizes are available in the Supplementary Material.

natory length scales (triangles and pyramids respectively) for a

pair potential to disfavor. More generally though, larger (than

the target size) intrusive clusters must be ordered and closely

packed so as to utilize space more efficiently and avoid sam-

pling the growth limiting repulsions present in the potentials

(discussed in Section 3.4) optimized for the less space efficient

amorphous clusters.

On the other hand, attempts to generate potentials that stabi-

lize fluids of ntgt = 64 failed to converge for all η ≥ 0.02. It is

unclear whether ICs could be designed for clusters of this size

with a different choice of parameters in the target simulation

(e.g., we found that increasing deff resulted in a somewhat more

stable, though ultimately unsuccessful, optimization) or if this

failure is symptomatic of a fundamental limitation of a pair po-

tential to stabilize fluids of large ICs. Exploring and articulating

the limits of a pair potential to create given fluid architectures

remains an open question for future research.

3.2 Dependence on density

While the results above demonstrate that the IBI optimization

generates pair potentials that induce the desired clustering, we

next demonstrate that these potentials are also robust with re-

spect to changes in η via two complementary approaches. The

first is a comparison of the potentials optimized at specific val-

ues of η in the supplementary material. Overall insensitivity, in-

cluding the functional form, to density is found across all clus-

ter sizes–only a weak decrease in the overall amplitude of the

potentials with increasing η is observed. The second demon-

stration of insensitivity to density is demonstrated by simulating

optimized potentials generated for a particular η under either a

slow (quasi-equilibrium) expansion or compression. In the top

panel of Fig. 4, we plot CSDs for simulations of the u(r) po-

tential corresponding to ntgt = 32 at η = 0.06 at various termi-

nal (equilibrated via long runs between compressions) packing

fractions η = [0.02,0.12], where it is apparent that the CSDs

possess primary peaks (30 < n∗ < 35) centered near the original

targeted value.

Consistent with the notion that free monomer particles rep-

resent the “vapor” in a microscopic liquid-vapor coexistence,

as η decreases, the integrated amount of monomer and other

small aggregates increases (as expected from energy-entropy

compensation arguments) and the main peak in the CSD shifts

left relative to the original position. Notably, at the largest pack-

ing fractions, η = 0.10 and 0.12, secondary peaks emerge with

local maxima at n ≈ 2n∗, which can be attributed to configu-

rations where at least two particles from neighboring clusters

come within rcut of one another with some frequency. In fact,

for η = 0.12, there are multiple peaks in the CSD at appoxi-

mate intervals of n∗ extending out to n ≈ 6n∗ clusters, where

peak height is negatively correlated with n.

The robustness of n∗ and the appearance of features in the

CSDs at intervals of n∗ upon compression indicate that the clus-

ters in the IC systems remain well differentiated and of the pre-

ferred size despite greater proximity (and close contact). This is

in contrast to analogous CSD measurements for SALR mixtures

that form fluid (non-crystalline) clusters of similar characteris-

tic size at η = 0.06, which are shown in the bottom panel of

Fig. 4. (The SALR parameters were chosen to produce com-

parably sized clusters, n∗ = 35, at η = 0.06). First, it is clear

that, at the reference volume fraction η = 0.06, the SALR fluid

has a considerably broader distribution of cluster sizes than the

IC fluid, and monomer remains the dominant species (this is

true for any given reference η , except when generating highly

arrested percolating gel states). Moreover, the n∗ peak is consid-

erably more sensitive to changing η than in the IC systems, and

for η > 0.06, there is an increasingly wide distribution of com-

petitive cluster sizes. In other words, the clusters undergo con-

tinuous and unorganized growth with poor cluster distinguisha-

bility.

These dichotomies in cluster size-specificity and differentia-

tion at higher η between IC and SALR systems exhibiting amor-

phous clusters coincides with another behavioral difference: the

clusters in the IC systems, while remaining as distinguishable

entities with intracluster fluidity, self-organize at the COM level

into crystalline superlattices for η ≥ 0.08, indicating the density

range where the liquid state of clusters becomes thermodynam-
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Fig. 4 (upper) CSDs corresponding the potential optimized for ntgt =
32 at η = 0.06 at volume fractions ranging from 0.02 → 0.12. (lower)

CSDs calculated for an SALR potential (χ = 5.7, Q = 0.2, ξ = 2.0)

that yields clusters with size n∗ ≈ 32 at η = 0.06, used for the same

series of volume fractions.

ically unfavorable (or even unstable).† In contrast, the SALR

fluid remains disordered at the cluster level for all η . The abil-

ity of the amorphous clusters in the IC system to self-assemble

into a lattice strongly supports the interpretation of clusters as

renormalized entities. Superlattice formation also attests to the

notable monodispersity posessed by the clusters as the presence

of polydispersity inhibits crystalline phases (for kinetic and/or

thermodynamic reasons64,65).

While the η at which the IC clusters form superlattices is, at

first glance, quite low, we note that the effective packing frac-

tions ηeff of the whole clusters (treating them as renormalized

objects; see Section 2.1) are considerably higher. For monodis-

perse clusters of n∗ = 32, ηeff ≈ 0.44 at η = 0.08 and ηeff ≈ 0.55

at η = 0.10, conditions which approximately correspond to

those at which crystallization is induced in simple fluids dom-

inated by steep interparticle repulsions64,65. Incidentally, this

tendency toward COM crystallization makes it difficult to ob-

tain convergence in the IBI scheme at similarly high effective

packing fractions.

† Based on preliminary investigation, the crystalline superlattice types we observe

are sensitive to system size, as is expected given the small number of clusters in

most of the systems we examine (e.g., Ncluster = 64 for N = 2048 and ntgt = 32).

Further research on the crystal phase, while beyond the scope of this initial

fluid-state study, is an interesting topic for future work.

3.3 Cluster persistence and particle motions

In Fig. 5, we consider the temporal cluster persistence and

single-particle (i.e., monomer) dynamics of IC (n∗ = 32 and

SALR n∗ ≈ 32 systems, where the FSAC correlation function

profiles Φ(t) quantitatively demonstrate that the IC systems ex-

hibit signficantly longer cluster “lifetimes” than their SALR

counterparts. To wit, as shown in Fig. 5(a), the half-life val-

ues t1/2 (i.e., times at which Φ(t) = 0.5) of the IC systems are

approximately an order of magnitude or more greater than the

values for SALR systems for given packing fractions. We con-

sider this strong cluster fidelity a byproduct of generating highly

monodisperse spherical clusters (and vice versa) like those illus-

trated in Fig. 2. If, instead, clusters are frequently exchanging

constituents with each other or the monomer “vapor”, they will

tend to exhibit rather highly fluctuating (and/or instantaneously

non-spherical) interfaces. Thus, instantaneous configurations

will appear less superficially monodisperse and CSD profiles

will be necessarily broader. This notion is consistent with the

CSDs in Fig. 4, where the less exchange-prone IC systems ex-

hibit much greater size-specificity than the SALR mixtures (one

can also compare the cluster snapshots in Fig. 2 with those in

Fig. 4 of a previous publication31).

In terms of density dependence, we observe that cluster per-

sistence is negatively correlated with η for all ntgt cluster sizes

considered, as typified by the ntgt = 32 results shown in Fig. 5.

This is easily understood by considering that increasing η nec-

essarily places clusters in close proximity, where their internal

density fluctuations help facilitate the transfer of monomers be-

tween clusters. This qualitative effect is, of course, relevant for

both IC and SALR systems, though the precise nature of the

density-dependence differs due to the relative monodispersity

and sphericity of the IC clusters.

However, an additional consideration when comparing the

persistence and monodisperity of IC and SALR clusters is

whether the SALR systems are allowed to form microcrystalline

clusters (a phase change), as opposed to the amorphous clus-

ters considered in Fig. 5(a). In prior work, we showed via

time-lag snapshots that single-component SALR models tend

to form crystalline clusters with greater temporal persistence

than slightly size-polydisperse (at the monomer level) mixtures

that thwart crystallization31. In Fig. 5(b), this is shown quan-

titatively for n∗ ≈ 32 clusters at η = 0.125, where we find the

single-component SALR clusters exhibit t1/2 values orders of

magnitude longer than amorphous clusters of the SALR mix-

tures. These crystallized clusters also display half-lives much

longer than even their IC counterparts: for example, recalling

that increasing density accelerates the FSAC decay rate, the

single-component n∗ ≈ 32 SALR clusters at η = 0.125 exhibit

t1/2 ≈ 104, which is comparable to that of n∗ = 32 IC clusters

at only η = 0.04. Given the orders of magnitude discrepancy

in t1/2 between the single-component and mixture SALR mod-

els, it seems reasonable to ascribe the qualitative differences in

cluster monodispersity and persistence to the microcrystallinity

in the former, as opposed to the modest perturbation to the liq-
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Fig. 5 (a) Cluster persistence (FSAC) correlation function Φ(t) for

n∗ = 32 IC systems (unfilled symbols) and n∗ ≈ 32 SALR mix-

tures (filled symbols) at packing fractions η = 0.02 (diamonds), 0.04

(squares), and 0.06 (triangles). The attractive strengths χ in the Equa-

tion 5 potentials at the three packing fractions are χ = 6.1, 5.9, and

5.7, respectively, and the repulsions are defined by Q = 0.2 and ξ =
2.0. (c) Single-particle mean-squared displacements (MSDs) for the

same IC and SALR systems in (a). Insets (b) and (d) compare data

for amorphous (mixture) and microcrystallizing (single-component)

SALR models with n∗ ≈ 32, where the potentials are defined by

χ = 5.4, Q = 0.2, ξ = 2.0 and χ = 6.0, Q = 0.5, ξ = 2.0, respec-

tively. Note that for visual clarity, lines trace all available data in each

panel while symbols do not.

uid state resulting from the weak polydispersity that we have

employed. ‡

Comparing Figs. 5(a) and 5(c), we observe that trends in

amorphous cluster persistence are complemented by the single-

particle mean-squared displacement (MSD) profiles, where par-

ticle motions comprise both intracluster diffusion and slaved

motion due to diffusion of entire clusters. First, we note that

the IC systems show slower single-particle dynamics relative to

SALR mixtures, presumably because the slaved-motion effect

persists out to longer timescales. Interestingly, for the IC sys-

tems, we also find the emergence of transient plateaus in the

MSD profiles by η = 0.06 for ntgt = 32 (and slightly higher η
for smaller ntgt). (A similar plateau also emerges for the highly

persistent clusters associated with the single-component micro-

crystallizing SALR system; see Fig. 5(d).) Such a feature is

typically observed in the context of cooperative glassy single-

particle dynamics in dense and or supercooled fluids64,65. For

these systems, on the other hand, it is intuitive that this sig-

nature is a consequence of the whole-cluster ηeff being much

larger than η for systems of well-defined spherical clusters (as

described in Section 3.2).

Thus, even for rather low packing fractions η < 0.08, the

presence of persistent and highly distinguishable clusters of an

appreciable size (e.g., n∗ > 16) drives the emergence of coop-

erative whole-cluster dynamics, which is then reflected on the

single-particle level. In other words, the η-range over which ICs

truly diffuse around one another in a fluid-like manner is quite

small. In contrast, no such shoulders in the MSDs emerge for

the amorphous SALR cluster phases up to and above η = 0.20

(not shown), pointing to the quite rapid exchange and reformu-

lation of clusters in non-crystallizing SALR fluids (provided the

short-range attractions are not so strong as to generate dynami-

cally arrested gel phases).

3.4 Optimized potentials

In Fig. 6, we turn our attention to the pair potentials u(r) that

result from the IBI optimization to yield ICs, showing partic-

ular examples for various ntgt at η = 0.04 (all 10 potentials–3

for ntgt =8 and 32, and 4 for ntgt = 16–are provided in Sup-

plementary Material). The sensitivity of the potentials to den-

sity is minimal§ and, in all cases, the potential is dominated by

a broad attractive basin terminated by a repulsive barrier that

falls off quickly about its maximum at rrep. As demonstrated in

Fig. 6(d), the lengthscale rrep is intimately related to the cluster

size, as it is directly proportional to the average cluster radius

of gyration 〈R〉 extracted from the constrained simulations and

has virtually no dependence on η for a fixed cluster size. Inter-

‡ Note that slight polydispersity of the constituent monomers does not preclude

the formation of highly monodisperse clusters, as evidenced by a many-body

model that generates ICs 50.

§ Increasing density leads to a small, overall amplitude decrease in the pair-

potential. This insensitivity is nontrival when the effective volume fraction, ηeff,

for each of the target clusters is considered. A true η range of 0.02 → 0.6 cor-

responds to 0.08 → 0.24 for n = 8 and 16 and 0.11 → 0.33 for n = 32.
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Fig. 6 (a-c) Representative examples at η = 0.04 of the IBI optimized

pair potentials which yield the target radial distribution functions for

n =8, 16 and 32 respectively. (d) Optimized potential rrep values and

their corresponding target simulation average radii of gyration 〈R〉 val-

ues for all densities studied. The linear fit (as indicated by the dashed

line) is constrained such that rrep(0) = 0.

estingly, this direct proprotionality between rrep and 〈R〉 incor-

porates the physically intuitive constraint that rrep must vanish

when 〈R〉= 0. This implies that the cluster sizes 8≤ n∗ ≤ 32 fall

in the “large-cluster” asymptotic limit where the discrete nature

of the particles comprising the clusters is unimportant.

To understand how these pair potentials strongly limit cluster

growth to create renormalized objects, we turn to Fig. 7, where

we show that the broad attractive wells drive local densification

while the repulsive barriers collectively generate strong repul-

sive coronas around the aggregates. Fig. 7(a) shows the average

potential energy that a particle placed in or near an n = 32 clus-

ter experiences as a function of distance from the cluster COM

using the pair potential optimized at η = 0.06. We calculate

this interaction by averaging over particle positions from a sim-

ulation of an isolated cluster and either include or exclude the

hard-core component (r < d) from the calculation, where the

latter is done to provide a highly averaged measurement for the

intracluster environment. From the former, it is clear that before

any particle approaches the cluster sufficiently closely to sample

the very steep effective potential derived from excluded volume

effects, it “sees” an additional repulsive barrier at larger r that,

in effect, terminates growth. From the latter, we see that the

particles which comprise the cluster are situated within a spher-

ical attractive region by way of comparision to the extent of the

radial density profile of the cluster (Fig. 7(b)).

In Fig. 7(c), we show a representative two-dimensional slice

of the potential energy landscape for a single n = 32 cluster

configuration, which illustrates that the repulsive corona is in-

stantaneously quite strong (2kBT ≤ U(x,y) ≤ 6kBT ) and has a

thickness comparable to the cluster radius. This latter observa-

tion can be understood as follows: Fig. 7(d) shows an appro-

priately scaled schematic of a cluster that is also aligned with

the heat map in panel (c), where we show the potential due to

the red-colored particle as a heat map. To the right, the repulsive

barrier of the highlighted particle roughly coincides with the op-

posite edge of the cluster, building in size specificity. However,

the isotropic nature of the pair potential necessitates that this

same particle also contributes repulsions in the opposite direc-

tion, where its repulsive barrier approximately coincides with

the “outer” edge of the repulsive corona. This slaving of the

outermost cluster repulsion range to cluster size may explain an

outcome of the IBI optimizations: as ntgt was increased, thicker

protective shells surrounding the clusters (as quantified by deff)

were required in the constrained simulations in order to stabilize

the subsequent IBI scheme. While not precluding the existence

of cluster forming pair interactions that do not obey such size-

thickness slaving; the above interpretation suggestive that the

most “reasonable” pair interactions capable of generating clus-

ters do.

Interestingly, our pair potentials may be experimentally real-

izable via charged-monolayer protected gold nanoparticles, as

demonstrated by Alexander-Katz and coworkers66. At the level

of the pair free energy change between two such particles along

a radial coordinate, they found from van der Waals, electrostatic,

phobic and entropy contributions that a wide attractive basin fol-

lowed by a repulsive hump can be realized. Importantly many

tunable parameters exist in this experimentally realizable sys-

tem making this a promising avenue for future research.

3.5 Influence of long-range interactions

While the main features of the potentials occur on the order of

a few particle diameters in length, all of the optimized pair po-

tentials also possess weak, oscillating, longer ranged tails. In

the interest of simplifying the optimized potentials, we consider

the impact of eliminating these tails by cutting and shifting the

ntgt = 16 optimized potentials at the first minimum beyond the

main repulsive hump (as labeled in Fig. 6(c)).¶

In Fig. 8(a), we compare the CSDs corresponding to both the

fully optimized and the truncated potential for η = 0.04: both

potentials result in a clustered system that is fluid at both the

intra- and inter-cluster level, indicating that the longer-ranged

tail is not a strict requirement for IC-like behavior. However, the

truncated potential yields clusters that are, on average, smaller

(n∗ = 14) than ntgt as well as less size-specific, as evident from

the nearly two orders of magnitude increase in the CSD minu-

¶ One cannot simply arrive at a chopped potential by applying IBI with an arbi-

trarily short cutoff. Any RDF that results from optimizing with a poorly chosen

cutoff need not even satisfactorily match the target RDF because the method will

be “ill-conditioned”. On the other hand, truncating the fully optimized potential

acts like a perturbation to the “correct” result.
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the intercluster radial distribution function (panel b). Data in panels
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averaged.
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CSD and RDF respectively (b) Evolution of the cut potential CSD from

panel (a) with modest temperature rescaling.

mum between the n = 1 and primary n∗ peaks. Nonetheless,

more ideal clustering behavior can be restored by decreasing

temperature by less than 0.2kBT , as shown in Fig. 8(b). These

changes with T can be understood in the context of shifting the

microscale liquid-gas co-existence towards the liquid side (i.e.,

favoring clusters over monomers) upon cooling. Overall, these

observations support the notion that while the longer-ranged tail

modulates the cluster-to-monomer ratio (and thus the monodis-

persity of the aggregates), it is not required to form ICs; thus,

cluster formation in our systems is predominantly a result of the

competitive broad attraction well and repulsive hump.

The RDFs for the full and truncated potentials are compared

in Fig. 8(c). The obvious depression of the intercluster de-

pletion region suggests that upon truncation, we effectively in-

crease the repulsive footprint of a cluster. As a result, interclus-

ter crystallization will likely be harder to avoid. This is con-

firmed in Fig. 9 as the cut potentials associated with both of the

higher density cases (η = 0.06 and 0.08) formed superlaticces.

Interestingly, the superlattice states have much better cluster

definition and size preservation than the two lower density sys-

tems, η = 0.02 and 0.04, that remained as IC fluids. Whether the

enhanced cluster preservation is a byproduct of crystallization
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Fig. 9 Effect of cutting and shifting the ntgt = 16 optimized potentials

on the CSD for all volume fractions.

or simply higher densities (less void space) is not entirely clear.

However, we do note that, in general, crystallization in systems

of predominantly repulsive particles requires a high level of

monodispersity. This is something our emergent (not quenched

in) cluster entities can adaptively realize in order to explore

more thermodynamically desirable, crystalline regions of phase

space. In stark contrast, the fluid state does not have any natural

propensity towards well-defined, monodisperse clusters, (poly-

dispersity and disorder is favored) thus making the design of an

IC fluid all the more compelling.

4 Conclusions

In this paper, we demonstrated a novel application of standard

inverse design methodology, namely, the targeted fabrication of

liquid state structure. This approach was successfully applied to

discover a new class of pair potentials that stabilize ideal clus-

ter (IC) fluids, comprised of long-lived, monodisperse, spherical

fluid droplets with good center of mass mobility. As compared

to equilibrium fluids of amorphous clusters generated via SALR

potentials, the IC fluid states of the designed potentials dis-

played much greater size-specificity (i.e., more sharply peaked

CSDs) with cluster sizes that were less sensitive to changes in

overall density. Furthermore, using a new measure for cluster

lifetime, the ICs were shown to persist longer than comparably

sized amorphous SALR clusters and to maintain their identities

on timescales relevant for cluster diffusion.

The ability of the optimized potentials to stabilize ICs can be

understood in terms of their general features: the broad (rather

than short-range) attractive wells allow for many particles to

closely pack before the relatively narrow repulsive barriers are

sampled. Moreover, the repulsive barrier directly encodes the

scale for aggregation (as evidenced by the proportionality of the

barrier lengthscale rrep and cluster radius 〈R〉) and furnishes the

individual clusters with well-defined repulsive shells. By con-

trast, only from a Fourier-space perspective can a preferential

length scale for ordering be gleaned from SALR potentials31.

It seems intuitive that this disparity between the IBI-optimized

and SALR potentials is responsible for the former’s enhanced

cluster size-specificity (even under compression). While there

is a continuum of possible SALR functional forms that could

in principle yield ideal clusters, our results suggest the opposite

given that (1) the IBI scheme did not result in SALR potentials,

and (2) no pairwise SALR fluids have been reported that display

IC-like behavior for small cluster sizes (though low density sys-

tems of large clusters, albeit with significant free monomer, have

been seen35).

In addition to their broad attractive basins and sharp repulsive

barriers, the optimized potentials also possessed weak longer-

ranged oscillatory tails; however, these tails were found to be

non-essential for IC formation. Upon truncating the optimized

potentials beyond the repulsive barrier, systems still displayed

IC-like behavior, though with slightly reduced size-specificity

(tending toward n∗ < ntgt). To intentionally steer the IBI opti-

mization towards shorter-ranged potentials, it may be fruitful to

modify the constrained MC simulations to reproduce the gen-

eral features of the g(r) profiles associated with the truncated

potentials. For instance, because truncating the potential en-

hanced the intercluster depletion region, one might choose (1)

a stronger radius of gyration constraints to densify the clusters

and/or (2) larger repulsive cluster shells to better separate the

clusters. Optimizing for the resulting gtgt(r) profiles may then

naturally yield short-ranged potentials.

In closing, our success at optimizing for IC fluids demon-

strates the impressive flexibility of pair potentials for generating

intricate multiscale architectures. Even greater flexibility could

be achieved by the inverse design of more complex patchy, or

fully angularly dependent potentials; however, new schemes for

solving the inverse statistical mechanics problem must be de-

veloped. An interesting application of such a method would be

to extend our current results to a patchy particle model where

the greater degrees of freedom, while adding complexity, would

likely allow for practically simpler (though likely of similar spa-

tial range) interactions. More generally, liquid-state inverse de-

sign also opens the door to discovery of new kinetically arrested

materials: given the propensity for the clusters to act as renor-

malized objects (e.g., COM crystallization), this could include

glasses or gels of supraparticles created by quenching or com-

pression out of the fluid state.
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