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Dipolar Capillary Interactions between Tilted Ellipsoidal Particles Adsorbed
at Fluid-Fluid Interfaces

Gary B. Davies1, a) and Lorenzo Botto2, b)
1)Institute for Computational Physics, Allmandring 3, 70569 Stuttgart, Germany.
2)School of Engineering and Materials Science, Queen Mary, University of London, London E1 4NS,
United Kingdom.

Capillary interactions have emerged as a tool for the directed assembly of particles adsorbed at fluid-fluid
interfaces, and play a role in controlling the mechanical properties of emulsions and foams. In this paper,
following Davies et al. [Advanced Materials, 26, 6715 (2014)] investigation into the assembly of ellipsoidal
particles at interfaces interacting via dipolar capillary interactions, we numerically investigate the interaction
between tilted ellipsoidal particles adsorbed at a fluid-fluid interface as their aspect ratio, tilt angle, bond
angle, and separation vary. High-resolution Surface Evolver simulations of ellipsoidal particle pairs in contact
reveal an energy barrier between a metastable tip–tip configuration and a stable side–side configuration. The
side–side configuration is the global energy minimum for all parameters we investigated. Lattice Boltzmann
simulations of clusters of up to 12 ellipsoidal particles show novel highly symmetric flower-like and ring-like
arrangements.

PACS numbers: 68.05.-n, 47.11.-j, 47.55.Kf, 77.84.Nh

The study of capillary interactions between particles
adsorbed at fluid-fluid interfaces has attracted significant
attention in recent years. Capillary interactions play a
role in, for example, colloidal assembly,1–4 interface rhe-
ology,5–8 and emulsion/foam stability.9–11

Capillary interactions are caused by overlapping
particle-induced interface deformations. They can be
analysed in terms of different deformation modes, each
corresponding to separate terms in the multipole expan-
sion of the particle-induced capillary disturbance.12,13 A
particle whose weight is comparable to surface tension
forces (i.e. has a Bond number close to one) induces a
capillary monopole.

The interaction between capillary monopoles has been
studied extensively.14–17 Capillary monopoles can be eas-
ily experimented with by spreading millimetric particles
on planar fluid interfaces. The particles create downward
distortions proportional to the particle weight, driving
a phenomenon of capillary aggregation that is often re-
ferred to as the “Cheerios effect”.16

Quadrupolar capillary interactions can arise due to
particle geometry: for anisotropic particles, the interface
must deform in order to satisfy Young’s uniform contact
angle boundary condition.1 Surface roughness and sur-
face chemical heterogeneity also cause spherical particles
to deform the interface in a quadrupolar manner.18–22

A characteristic of both monopolar and quadrupolar
capillary interactions is that the strength of their interac-
tions cannot be dynamically tuned easily. For monopolar
interactions, the capillary force depends on the particle
weight, size, and surface-tension. For quadrupolar inter-
actions, the magnitude of the capillary force is propor-
tional to the surface tension and the size of the particle

a)Electronic mail: gbd@icp.uni-stuttgart.de
b)Electronic mail: l.botto@qmul.ac.uk

via a pre-factor that depends only on the contact angle
and the particle geometry. None of these properties can
be easily or precisely controlled during the course of an
experiment.

Recent work using spherical magnetic particles has sig-
nificantly improved the ability to control the assembly of
spherical particles at interfaces by tuning the interplay
between magnetic repulsion and monopolar capillary at-
tractions.2,23 However, until recently,24,25 control of the
assembly of ellipsoidal particles, which enable enable the
possibility of directed assembly due to their anisotropy,
has been lacking.

Davies et al.24,25 recently showed that, by applying
a magnetic field perpendicular to a fluid-fluid interface
covered with ellipsoidal particles with magnetic moments
aligned along their major-axes, the particles tilt and in-
duce dipolar capillary interface deformations.24,25 Their
simulations revealed that particles align with their near-
est neighbours side–side into chains, but chains face other
chains such that their particles arrange tip–tip. They
also observed straighter, more rigid chains as the par-
ticle tilt angles increased. Finally, they showed how to
switch off these dipolar capillary interactions by exploit-
ing a previously discovered first-order orientation phase
transition in which the particles flip from a tilted to a
vertical orientation at a critical dipole-field strength, Bc,
and corresponding critical tilt angle, ψc.

24–27 They did
not investigate the energy landscape for dipolar capillary
interactions in detail.

Newton et al.28 recently carried out Surface Evolver
(SE) simulations of tilted ellipsoidal particles adsorbed
at interfaces. Their highly accurate SE simulations char-
acterised the first-order phase transition much more ac-
curately than previous studies.24,26 They found that the
critical tilt angle decreases and the critical dipole-field
strength increases as the particle aspect ratio increases.
They also found that the critical dipole-field strength
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and critical tilt angle decrease as the particle becomes
less neutrally wetting. From an applications perspective,
perhaps their most interesting discovery was the signifi-
cant hysteresis that tilted ellipsoidal particles exhibit due
to the nature of the first-order phase transition.

In this paper, we numerically investigate the interac-
tion between two tilted ellipsoidal particles using Sur-
face Evolver.29 The tilting causes interface deformations
and hence capillary interactions between the particles.
We find that the features of these capillary interac-
tions, which are dipolar in nature, are quite different
from the more commonly studied case of monopolar and
quadrupolar capillary interactions.

An advantage of SE versus methods based on fixed
Eulerian grids such as lattice Boltzmann is its superior
accuracy in the evaluation of areas, and therefore surface
energies, due to its ability to use fine and non-uniform
surface meshes. On the other hand, simulating many
particles using SE is extremely challenging. Therefore, to
investigate many body effects, we use lattice Boltzmann
simulations to study the equilibrium configurations for
clusters of up to 12 ellipsoidal particles. The simulation
results enable us to discuss some of the local micro struc-
tural features present in the monolayers of ellipsoidal par-
ticles simulated by Davies et al. 24 and the limitations of
pair interaction predictions.

We show that the side–side configuration is indeed the
lowest energy configuration for two tilted ellipsoidal par-
ticles in contact. Additionally, we find that an energy
barrier exists between the side–side and tip–tip configu-
rations, and that this energy barrier increases with par-
ticle tilt angle. This increase in the free energy barrier
explains the increased rigidity of chains with increasing
tilt angle observed by Davies et al. 25 Finally, we the-
oretically develop a far-field pair potential between two
tilted ellipsoidal particles, which we validate with numer-
ical simulations.

I. METHODS

We simulate identical ellipsoidal particles having mi-
nor semi-axis R⊥, major semi-axis R‖, and aspect ratio
α = R‖/R⊥. When varying the aspect ratio, we keep the
particle minor axis radius constant, R⊥ = 1. The con-
tact angle is uniform and equal to 90◦. In the first part
of the paper pairs of ellipsoidal particles are simulated
in mirror-symmetric configurations as a function of the
tilt angle ψ, the bond angle φ, and the inter-particle sep-
aration r (Fig. 1). The corresponding minimal surface-
surface separation is rc.

To calculate the interaction energy, we measure the
total interface area A12 corresponding to a given parti-
cle configuration. The surface free energy for a particle
adsorbed at a fluid-fluid interface is 24,26,27,30–33

E = γ12A12 + γ1pA1p + γ2pA2p (1)

φ1 φ2
r

rc

R⊥

R‖

ψ fluid 1
fluid 2

Planar View

Side View

FIG. 1. Planar view of both particles and side view of a single
particle. The particles have aspect ratio α = R‖/R⊥, where
R‖ and R⊥ are the axes parallel and perpendicular to the
particle’s major axis, respectively. The particles are tilted
by an angle ψ with respect to the plane of the undeformed
interface, inducing a dipolar capillary deformation, separated
by a centre–centre distance r and surface–surface distance rc.
In our simulations, each particle has the same tilt angle, and
we measure the interaction energy of particles in a mirror
symmetric configuration (bond angles φ1 = φ2 = φ).

where γij and Aij are the surface energies and contact
areas between the ijth phases, respectively (i, j = {1:
fluid 1, 2: fluid 2, p: particle}). Young’s relation requires
that γ12 cos θ = γ1p − γ2p, where θ is the contact angle
calculated from fluid 2. Therefore, up to a constant, E =
γ12A12 + γ12 cos θA1p. In this paper we consider the case
θ = 90◦, for which the wetting energy contribution is zero
and E = γ12A12.

To obtain the capillary energy when the particles are in
contact, we simulate the interface configuration for small
values of rc and extrapolate E to rc = 0 using quadratic
extrapolation.34 We calculate the centre–centre separa-
tion corresponding to rc = 0 using a bisection algorithm
that minimises the overlap between the ellipsoidal parti-
cles.

Using Surface Evolver,29 we calculate the equilibrium
interface shape that simultaneously satisfies the contact
angle boundary condition and the condition of mechani-
cal equilibrium of the particles.34,35 The Surface Evolver
code that evolves the interface and ensures the quality of
the grid is identical to that used in our previous papers
in which cylindrical particles and ellipsoidal particles at
interfaces were studied for the particular case of zero tilt
angle.34,35 The triangulation of the interface adopted is
more refined near the particle and coarser far from it.
Surface energies are computed by using in the last stages
of the surface evolution of the highest-order Lagrangian
interpolation offered by Surface Evolver (4th order). This
enables high accuracy in the evaluation of the areas.

The lattice Boltzmann simulations of clusters in
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Sec. II C are carried out using the same simulation al-
gorithm as described in Davies et al. 24,25 For these sim-
ulations, we simulate particles with aspect ratio α = 2.0.

We summarise the assumptions of our model as follows:
(i) the particle contact angles are 90◦(ii) in the SE sim-
ulations the tilt angle is imposed rather than induced by
a dipole-field interaction (iii) the magnetic dipole-dipole
interactions between the particles are neglected (iv) our
calculations concern only the capillary energies between
the particles: we do not include magnetic dipole-field in-
teractions in our energy calculations. Because the focus
of the current paper is on intrinsic effects due to capillary
interactions, we also ignore other colloidal interactions,
such as van der Waals and electrostatic interactions.

II. RESULTS AND DISCUSSION

A. Pair interaction: dependence on the bond angle for
particles in contact

Fig. 2a shows the capillary energy profile for two iden-
tical ellipsoidal particles with aspect ratio α = 2.0 in
contact in a mirror symmetric configuration (Fig. 1). We
plot the capillary energy as a function of the bond angle
φ = φ1 = −φ2 for tilt angles ψ = 5◦, 10◦, and 15◦. We
calculate the energy E with respect to the energy E0 cor-
responding to the side–side configuration, φ = 90◦. E0

therefore depends on the tilt angle.
Fig. 2a indicates the presence of a local energy mini-

mum for particles in the tip–tip configuration (φ = 0◦)
and a global energy minimum for particles in the side–
side state (φ = 90◦). The capillary energy is not mono-
tonic: an energy barrier exists that peaks at an angle
φmax and depends on the particle tilt angle for a given
aspect ratio. The qualitative features in Fig. 2 are charac-
teristic of all aspect ratios α and tilt angles ψ investigated
in this paper.

The capillary torque T = −∂E∂φ resisting bond-bending

corresponding to Fig. 2a is shown in Fig. 2b. As the bond
angle increases from φ = 0◦ the torque is negative but
increasing until it reaches T = 0 at φ = φmax. Therefore,
particles with bond angles larger and smaller than φmax
will rotate into the side–side and tip–tip state, respec-
tively.

Fig. 3 shows how φmax changes with respect to the
tilt angle for several different aspect ratios. For a given
tilt angle, increasing the aspect ratio results in a smaller
value of φmax and therefore to a narrower energy well
for the tip–tip configuration. This suggests that longer
ellipsoidal particles require a smaller angular perturba-
tion to destabilise the tip–tip state. For all aspect ratios,
φmax decreases monotonically as the tilt angle increases.
Larger external torques (which can be achieved by in-
creasing the dipole-field strength, B, for example) cause
larger tilt angles, which will therefore make the side–side
configuration even more favourable.

In addition, Fig. 3 indicates a larger reduction in
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FIG. 2. Energy (a) and torque (b) profiles as a function of
the bond angle (φ = φ1 = −φ2) for particles in contact with
aspect ratio α = 2.0 and tilt angles ψ = 5◦ (red triangles),
10◦ (green squares), and 15◦ (blue circles). The energy pro-
file in (a) shows that there is an energy barrier between the
metastable tip–tip configuration (φ = 0◦) and the global en-
ergy minimum side–side configuration (φ = 90◦). The magni-
tude of the energy barrier increases with increasing tilt angle.

φmax for larger aspect ratios as the tilt angle increases.
For example: a particle with aspect ratio α = 3 has
φmax ' 22.5◦ for ψ = 5◦ and φmax decreases to 5◦ for a
tilt angle ψ = 45◦, a difference of approximately 17.5◦.
For aspect ratio α = 1.5, the equivalent change in the
value of φmax is only ≈ 10◦. This indicates that particles
with smaller aspect ratios have a larger range of bond
angles that lead to a tip–tip configuration than particles
with larger aspect ratios. Since the behaviour of tilted
ellipsoidal particle monolayers in which the aspect ratio
varies has not yet been investigated, this prediction could
provide a hint of novel structures in such systems.

In Fig. 4 we characterise the magnitude of the energy
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FIG. 3. Bond angle maximum φmax for which the torque is
zero as a function of the tilt angle. φmax decreases as the tilt
angle increases for all aspect ratios α. The smaller the aspect
ratio, the smaller the change in bond angle maximum as the
tilt angle increases, suggesting that particles with smaller as-
pect ratios have greater possibility to achieve the metastable
tip–tip configuration. The filled symbols represent tilt angles
beyond the critical tilt angle at which the particle flips into
the vertical state.

barrier separating the side–side and tip–tip minima by
taking the difference between the global energy maximum
and minimum, ∆EB = Emax − Emin. For a given tilt
angle, the energy barrier ∆EB increases as the aspect
ratio increases. It also increases as the tilt angle increases
for a given aspect ratio. For aspect ratio α = 3.0, ∆EB
increases until it reaches a maximum at tilt angle ψ ≈ 40◦

before decreasing. However, we note that ψ = 40◦ is
larger than the critical angle ψc at which the particle
transitions into the vertical state when a constant torque
is applied.24,26,28 In our simulations, we fix the tilt angle
so that angles larger than ψc are therefore permitted; for
clarity, in Fig. 3 and Fig. 4 values with filled symbols
correspond to ψ > ψc.

For the same particle shape, dipolar and quadrupo-
lar capillary interactions share some qualitative fea-
tures. For instance, in the case of ellipsoidal particles,
the side–side configuration is the global energy mini-
mum for both quadrupolar and dipolar capillary interac-
tions.34 However, for ellipsoidal particles inducing capil-
lary quadrupoles the interaction energy depends mono-
tonically on the bond angle, while an energy barrier
is present for ellipsoidal inducing capillary dipoles, as
shown in Fig. 2.

Botto et al. 34 found an energy barrier for cylindrical
particles inducing quadrupolar interactions. They at-
tributed this feature to the fact that pairs of cylindrical
particles in contact subject to a bond-bending deforma-
tion must “hinge” at the point of contact, leading to an
increased separation between the flat faces of the parti-
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FIG. 4. Dependence of the magnitude of the energy barrier
∆EB = Emax −Emin on the tilt angle, ψ. The energy barrier
magnitude increases with tilt angle for all aspect ratios. For a
given tilt angle, a larger aspect ratio results in a larger energy
barrier. Filled symbols represent tilt angles greater than the
critical tilt angle, ψc, for that aspect ratio.

cles as the bond angle increases. In our case, the energy
barrier is rooted in completely different physical features,
namely the anisotropic interface distortion induced by
tilting.

B. Pair interaction: dependence on inter-particle
separation

In this section, we present a pair potential between
polar capillary dipoles. The derivation is analogous to
that used by Stamou et al.19 in their study of quadrupolar
interactions, but we replace quadrupoles with dipoles.
We invoke the superposition principle, valid in the far-
field, which assumes that the interface deformation at
any point on the interface is simply the sum of the dipolar
interface deformations created by particle A and particle
B:

hA,B = HA,B cos(φ− φA,B)

(
Rc
r

)
(2)

where HA,B are the amplitudes of the dipolar distor-
tions, Rc is the nominal contact line radius, r is the
centre–centre separation, and φA,B are the particle bond
angles. To summarise, Eq. (2) represents the dipole term
of the multipolar expansion of the fluid-fluid interface
deformation assuming (i) small meniscus slopes and (ii)
negligible pressure jump across the interface.

Calculating the interface area corresponding to the su-
perposition of two dipoles, and assuming small slopes,
gives the following polar dipole pair potential:
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FIG. 5. The dependence of the maximal contact line height
difference, H, on the tilt angle for a single isolated particle
with several different aspect ratios, α. We normalise the con-
tact line height by R⊥(α − 1), finding a scaling law for the
small tilt angle regime, ψ < 20◦.

E = 2πγ12HAHB
R2
c

r2
cos(φA + φB). (3)

In the system we consider here where the bond angles
are symmetric φA = −φB and in the far field the am-
plitude of the particle-induced interface distortions are
identical H = HA = HB , the interaction energy becomes

E = 2πγ12H
2R

2
c

r2
(4)

It is desirable to express the maximal contact line
height deformation H in terms of the tilt angle ψ, since
this is the parameter imposed in our simulations and
would be easier to measure experimentally. Fig. 5 shows
the maximum contact line height difference, H, as a func-
tion of tilt angle, ψ, for a single isolated particle. H is the
difference between the maximum and minimum contact
line heights, as shown in Fig. 5. We normalise the contact
line height by R⊥(α− 1), leading to a data collapse and
corresponding scaling law for the small tilt-angle regime,
ψ < 20◦. Therefore, in this regime we can write:

H ' R⊥(α− 1)ψ. (5)

where ψ is measured in radians. The constant −1 in
Eq. (5) takes into account the anisotropy of the particles:
if the particles become spherical (α → 1) we expect the
interface to remain completely flat as the particle tilts.
Using this scaling law in Eq. (5) we can derive a pair
potential for ellipsoidal particles with small tilt angles
by substituting this expression into Eq. 4. If we also
define an average contact line radius Rc = 1

2 (R⊥ + R‖)

that takes into account the anisotropy of the ellipsoidal
particle, we obtain:

E ' π

2
γ12R

4
⊥(α2 − 1)2

ψ2

r2
(6)

In Fig. 6 we plot the capillary interaction energy be-
tween two ellipsoidal particles with tilt angle ψ = 5◦ as
their centre-centre separation r varies for different as-
pect ratios in both their side–side state (red symbols)
and tip–tip state (blue symbols). For each configuration,
we compare with our theoretical model in Eq. (6) (green
lines).

We find good quantitative agreement between our the-
oretical model (Eq. (6)) and our numerical data. Asymp-
totically, the interaction energy conforms to the 1/r2

power law predicted by Eq. (6). We found similar agree-
ment for tilt angles up to ψ = 20◦, in accordance with the
valid range of tilt angles for our scaling law in Eq. (5).

In the near-field (small inter-particle separations r),
there is a strong deviation from the 1/r2 power law
which we attribute to the importance of higher order
multipoles that has also been observed for capillary
quadrupoles.13,36 We find that the side–side configura-
tion has a lower energy than the tip–tip configuration
for all centre-centre separations, which corroborates our
findings in Fig. 2a showing the side–side state to be the
global energy minimum for particles in contact.

The attractive force on each ellipsoidal particle is −∂E∂r .
From Fig. 6, we see that the attractive force at contact for
the side–side orientation is smaller than that predicted
by the superposition approximation, but of the same or-
der of magnitude. The superposition approximation can
therefore give estimates of attractive forces for ellipsoidal
particles inducing capillary dipoles with an O(1) error,
acceptable in many practical calculations.

Experimentally, capillary dipoles could be studied by
using an external magnetic field to apply a torque to rod-
like interfacial colloids. The strength of the field should
be chosen to enforce a sufficiently large interface defor-
mation for a given magnetic permittivity of the particles.
Calling Me the external torque on the particles, the con-
dition for a sufficiently large deformation is obtained by
equating the magnitude of the external torque Me to the
capillary torque γ12L

2 resisting tilting, where L is the
characteristic particle size. Taking L = 1µm, and us-
ing the surface tension of a water-air interface we obtain
Me ∼ 7 × 10−14Nm. This torque should be achievable
with a strong magnet (e.g. B ' 100G and a magnetic
moment of 3× 10−10emu37).

In Eq. (3) the capillary potential was calculated as a
function of the dipole amplitude H. It is useful to ex-
press the interaction energy E in terms of Me directly.
To do so, we use the fact that E ' −PA · ∇hB , where
PA = ez ×Me,A is the capillary dipole moment induced
by particle A, and hB is the interface deformation in-
duced by B evaluated at the centre of A; ez is the unit
vector normal to the undisturbed interface.38 The field
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FIG. 6. Dependence of the pair interaction energy on the
particle centre-centre separation, r, for particles in the side–
side (red symbols) and tip–tip orientation (blue symbols) for
aspect ratios α = 1.5, 2.0, and 2.5. The green lines are the
predictions of our theoretical model in Eq. (6). We see good
agreement between the model (lines) and the data (symbols)
for large inter-particle separations, but strong deviations in
the near-field due to higher order multipoles. The side–side
state (ψ = 90◦) is lowest in energy for all inter-particle sepa-
rations.

hB depends linearly on the corresponding dipole moment
according to hB = 1

2πγ12r
PB · r̂, where r̂ is the unit vector

along the line connecting A to B. The pair interaction
is thus of the order of E ∼ 1

2πγ12r2
M2
e . For a parti-

cle of nominal radius L the capillary interaction energy
between two particles at contact can thus be roughly es-
timated as E ∼ 1

8πγ12L2M
2
e . We have E ∼ γ12L

2 when

Me ∼ γ12L2. The predicted interaction energies can thus
amount to several millions kBT for micron-size particles
and be substantial also for nanoparticles (for common
fluid combinations γ12 is in excess of 10kBT/nm2). By
tuning the ratio Me/(γ12L

2), which is the characteristic
Bond number for the torque, the dipolar capillary inter-
action energy can be reduced to any desired magnitude.

Lateral magnetic interactions are expected to compete
under certain conditions with lateral capillary forces, but
this competition is outside of the focus of the current
paper. Magnetic interactions are sensitive to material
properties and magnetisation procedures in a way that is
difficult to model, so we have resolved to study capillary
interactions independently of the source of the particle
tilt, which could conceivably be achieved in many distinct
ways.

C. Many-Body Effects

It is interesting to compare the results and predictions
of the current paper with the results of Davies et al. 25 ,
who studied the steady-state structures of monolayers of

tilted ellipsoidal particles. They found that the particles
had a tendency to form chains of particles in a side–side
configuration, suggesting a deep energy minimum corre-
sponding to that state. This result agrees with our simu-
lation for pairs of ellipsoidal particles in contact (Fig. 2a).

The curvature of the chains depended on the dipole-
field strength and therefore the tilt angle (which are lin-
early related for sub-critical dipole-field strengths B <
Bc

24,26): the chains became straighter with increasing
external field magnitude. This observation is compatible
with our numerical results for particle pairs: the flexi-
bility of a chain can be related to the curvature of the
energy well for the side–side configuration.34 Our results
show that the energy well curvature increases as the tilt
angle increases (Fig. 2).

In addition to chains, Davies et al. 25 observed other
local structures: particle triplets located at the intersec-
tion between two linear chains arranged with their tips
close to each other so as to form sharp “bends”; particle
triplets arranged in star-like structures; and closed rings
formed by clusters of 7-8 particles.

To study these structures without the complications
associated with large particle numbers, we carried out
lattice Boltzmann simulations of small clusters formed by
N = 3, 4, 5, 6, and 12 particles. The particles have aspect
ratio α = 2.0 and we applied an external tilting torque
of magnitude half that required to make the particles flip
into a vertical orientation with their major axes normal to
the interface. Starting from a random initial placement
of ellipsoidal particles adsorbed at the interface, we let
the system achieve steady-state for several random initial
configurations. We show the most frequently achieved
steady-state structures in Figure 7 for a given number of
particles.

For N = 3, we find a star-like configuration charac-
terised by ellipsoidal particles with their tips in contact
and their axes diverging from a point. This structure,
which evidently respects the symmetries of the 3-particle
system, is similar in appearance to some of the local con-
figurations seen in Davies et al. 25 Note that the ground
state structure for three ellipsoidal particles interacting
as capillary quadrupoles is a straight chain, closely fol-
lowed by a triangular structure in which each particle tip
is in contact with another particle tip.39 This configura-
tion is different from that in Fig. 7a.

As the particle number increases to N = 5, 6, and 12,
we observe the formation of polygonal rings of particles.
For N = 12, we observe a 4-sided structure: two ellip-
soidal particles arranged in a side-by-side configuration
form each side with a small bond angle between them.
The ellipsoidal particles located at each of the four cor-
ners are slightly offset from the structure, forming a con-
figuration that is reminiscent of the sharp “bends” found
between rectilinear chains in Fig. 3 of Davies et al. 25 In-
terestingly, we did not observe completely straight chains
of side–side ellipsoidal particles for small particle num-
bers, even when simulated the particles initially arrange
side–side rather than randomly. A larger number of par-
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(a) N = 3 (b) N = 4 (c) N = 5 (d) N = 6 (e) N = 12

FIG. 7. Lattice Boltzmann simulations: equilibrium clusters observed for aspect ratio α = 2.0 and intermediate external field
strength (B = 0.5Bc). These novel clusters could form the basis for unique colloidal molecules. The fact that the particles
do not form side–side chains shows that many-body interactions and the presence of higher-order multipoles for particles in
contact significantly affect the interaction between tilted ellipsoidal particles.

ticles is evidently needed for the closed chains observed
in Fig. 7 to open, producing the initial stage of formation
of a percolating network.

A benefit of the dipolar capillary interaction mode is
the tunability of the interactions. Not only can the cap-
illary interactions between particles be tuned by varying
the tilt angle of the particles, but there is significant free-
dom in the choice of dipole-field strength based on the
specific properties of the particle, such as its material
and the nature of its magnetism e.g. ferromagnetic or
paramagnetic, as well as its dipole orientation.

It is feasible that one could construct a particle in
which magnetic dipole-dipole interactions are negligible
compared to capillary dipole-dipole interactions, which
is the regime this paper focusses on, or one in which
magnetic dipole-dipole interactions compete with capil-
lary dipole-dipole interactions. This latter situation is
extremely interesting, and has not yet begun to be ex-
plored. The ground state structures investigated in this
paper are likely to be significantly altered if the two in-
teractions compete, and this opens up the possibility of
discovering even more interesting monolayer structures
and properties based on the competition between these
two forces.

III. CONCLUSIONS

In this paper we numerically studied the interactions
between ellipsoidal particles that tilt with respect to a
fluid-fluid interface. Tilting induces dipolar interface de-
formations and corresponding dipolar capillary interac-
tions. We showed that dipolar capillary interactions be-
tween pairs of ellipsoidal particles have unique features in
comparison with the more studied quadrupolar capillary
interaction (between ellipsoidal particles).

For ellipsoidal particles, the side–side configuration is
the global energy minimum for both quadrupolar and
dipolar interactions, but we found that the dipolar inter-
actions present an energy barrier that is absent in the
case of quadrupolar capillary interactions.34 Addition-

ally, we found that the magnitude of this energy bar-
rier increases, and the depth of the energy well for the
metastable tip–tip configuration decreases, as the tilt an-
gle increases.

We developed a theoretical model describing the far-
field interaction between two tilted ellipsoidal particles.
We found excellent agreement between our model and
the numerical data for large particle separations, vali-
dating our model, and strong deviations in the near-field
as observed in previous studies of quadrupolar capillary
interactions.36

Pair interaction results may be insufficient to describe
the structures formed at fluid-fluid interfaces due to cap-
illarity, because of the non-linear and many-body nature
of these interactions. To get insights into many-body
effects, we carried out lattice Boltzmann simulations of
small clusters formed by 3, 4, 5, 6, and 12 ellipsoidal
particles. For small clusters, the simulated arrangements
have regular symmetries, and the structures we observe
are similar to the local particle arrangements found in
particle monolayers by Davies et al. 25 As the number
of particles increases, polygonal rings appear to form.
Therefore, as the surface coverage of particles increases,
we expect a transition from a microstructure comprising
isolated symmetric clusters to one comprising chains of
different degrees of curvature.

LB acknowledges EU funding from Marie Curie CIG
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