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Systems at equilibrium like molecular or colloidal suspensions have a well-defined thermal energy kg7 that quantifies the
particles’ kinetic energy and gauges how “hot” or “cold” the system is. For systems far from equilibrium, such as active matter, it
is unclear whether the concept of a “temperature” exists and whether self-propelled entities are capable of thermally equilibrating
like passive Brownian suspensions. Here we develop a simple mechanical theory to study the phase behavior and “temperature”
of a mixture of self-propelled particles. A mixture of active swimmers and passive Brownian particles is an ideal system for
discovery of the temperature of active matter and the quantities that get shared upon particle collisions. We derive an explicit
equation of state for the active/passive mixture to compute a phase diagram and to generalize thermodynamic concepts like the
chemical potential and free energy for a mixture of nonequilibrium species. We find that different stability criteria predict in
general different phase boundaries, facilitating considerations in simulations and experiments about which ensemble of variables

are held fixed and varied.

1 Introduction

Active matter systems like colonies of bacteria and self-
propelled synthetic microswimmers are a rich area of study for
soft matter. The fundamental and seemingly elementary abil-
ity of self-propulsion allows active systems to free themselves
from classical thermodynamic constraints and to control their
own motion and the surrounding environment. Their inher-
ently nonequilibrium properties engender intriguing behavior
such as spontaneous self-assembly and pattern formation'?,
making active matter a fascinating but challenging system to
study.

Recently a new “swim pressure” concept was introduced—
namely, all active entities exert a unique mechanical pressure
owing to their self-motion®*. This perspective was applied’
to predict the self-assembly of a suspension of active parti-
cles into regions of dense and dilute phases observed in both
experiments and simulations®'?. The usefulness of the me-
chanical pressure to illuminate active matter’s physical princi-
ples begs the question: what is the temperature of active mat-
ter? Do active swimmers “thermally equilibrate” with their
surroundings? Although it is clear that the mechanical pres-
sure can be quantified and is valid out of equilibrium, it is
uncertain whether the notion of a temperature exists and can
be explained in basic physical quantities.

To understand the temperature of active matter, we shall
first discuss a simple experiment involving passive Brownian
suspensions (i.e., no self-propulsion) which can be rigorously
related to conventional thermodynamic quantities like the tem-
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perature and free energy. Suppose we have a purely Brown-
ian suspension with thermal energy (kpT')y that is separated
by a thermally-insulated partition from another Brownian sys-
tem with a different temperature (kg7T')c, as shown in Fig 1.
The partition is suddenly removed and the particles at differ-
ent temperatures are allowed to mix. The “hot” and “cold”
particles undergo many collisions, share their kinetic energy
with each other, and eventually equilibrate to a common tem-
perature (kgT)cq.

Now suppose we do the same mixing experiment with self-
propelled swimmers at two different activity levels. For sim-
plicity we consider self-propelled spheres of radii a that trans-
late with an intrinsic swim speed Uy, reorient with a reori-
entation time 7r, and experience a hydrodynamic drag fac-
tor ¢ from the surrounding continuous Newtonian fluid. Their
motion can be described as a random-walk process for times
t > Tg with a diffusivity D**"™ = U271x/2 in two dimen-
sions (2D). Their characteristic “energy scale” is not the ther-
mal energy kT = (Dg where Dy is the Stokes-Einstein-
Sutherland translational diffusivity, but comes from their self-
propulsive activity, defined as kT = (D*¥'™ = (UZTgp/2
(see later section for a more detailed treatment).

A system of “hot” active swimmers with (ks7s) g is ini-
tially separated from “cold” swimmers with (k;Ts)c as shown
in Fig 1. When the partition is removed, the swimmers with
different activity levels spontaneously mix and undergo colli-
sions with each other. When a swimmer collides into another
swimmer, it displaces the body by its size a until they move
completely clear of each others’ trajectories. After the colli-
sion, each swimmer then continues its motion with the same
activity it had initially—there is no sharing of kinetic activ-
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Fig. 1 Schematic of the mixing process of purely Brownian
suspensions (top) and active systems (bottom) that are initially at
two different “temperatures.” The Brownian particles thermally
equilibrate their thermal energy k1" whereas the active swimmers
do not share their characteristic “energy scale” ksTs = CU3Tr /2.

ity (ksT) upon collisions. This implies that the swimmers’
activity scale kTs = (UZ7gr/2 does not get shared via col-
lisions and thus does not “equilibrate” like the temperature of
a classical fluid £pT'. This simple experiment already reveals
the richness and challenge to understand the “temperature” of
nonequilibrium active systems.

A simple multicomponent mixture of self-propelled parti-
cles with two different activities is an ideal system to dis-
cover and study this problem in greater detail. Previous stud-
ies have provided various interpretations of the temperature
in a nonequilibrium active matter system '3, We discuss a
new perspective by developing a mechanical pressure theory
for predicting the phase behavior of a mixture of active swim-
mers over the entire phase space of the system. Our theory
applies in general to a multicomponent suspension with swim-
mers of different activities, but perhaps the most straightfor-
ward and illuminating mixture is that of active self-propelled
particles and passive Brownian particles in a single solvent. In
this mixture we must treat active swimmers and passive parti-
cles as independent species, because their compositions vary
in space due to the phase-separating behavior of active suspen-
sions. This is true in general for multicomponent systems—in
a simple polymeric solution of polyethylene in benzene, the
polyethylene molecules do not all have the same number of
segments or molecular weight, and thus generally need to be
treated as different components. Experiments also often use
mixed solvents in which the solvent composition inside a poly-
mer coil (or gel) is in general different from the outer regions,
as certain solvent species preferentially remain inside (or out-
side) the polymer coil 4.

We consider a simple mixture of spherical active and pas-
sive Brownian particles with equal size a; the passive particles
translate by Brownian motion but are otherwise inactive (see
Appendix A for the equations of motion). We do not include
the effects of hydrodynamic interactions, and there is no po-
lar order of the swimmers or any large-scale collective motion
(e.g., bioconvection). We find that many new insights about
the temperature of active matter can be obtained from such a
simple system.

In the next section we further extend the mixing example
discussed above (Fig 1) by analyzing the effects of adding a
small concentration of passive Brownian particles into an ac-
tive system. We learn the quantities that “equilibrate” in an
active system by studying the collisions between a swimmer
and a passive particle . In Sec 3 we develop a simple mechani-
cal theory by identifying the different contributions that make
up the total active pressure of the mixture. Since active matter
is an inherently nonequilibrium system, we do not rely upon
the thermodynamic free energy or chemical potential to pre-
dict the phase behavior of the system. Unlike these thermody-
namic quantities, the mechanical stress (or pressure) is defined
out of equilibrium and can be used to analyze mechanical in-
stability of active matter. We then take our equation of state
to compute what would be the nonequilibrium analogs of the
free energy and chemical potential. Lastly, we analyze differ-
ent stability criteria, facilitating discussion about the variables
that may be held fixed and varied in experiments and computer
simulations.

2 Do active particles “thermally” equilibrate?

From the mixing process in Fig 1 we learned that the charac-
teristic activity scale of the swimmers do not equilibrate (i.e.,
(ksTs)g # (ksTs)c) unlike the thermal energy kT of pas-
sive Brownian particles. To gain further insight into the quan-
tities that get shared in an active system, suppose now that we
have a dilute concentration of passive bath particles in a sea of
active swimmers. The motion and behavior of a passive bath
particles are influenced markedly by the swimmers’ reorienta-
tion Péclet number Per = a/(UyTr), a ratio of the swimmer
size a to its run length Uy7g.

Swimmers with run lengths small compared to their size
(Per > 1) reorient rapidly and take small swim steps be-
having as Brownian walkers. When a swimmer takes a step
and collides into a bath particle, the passive particle gets a
displacement of order the swimmer’s step size ~ O(UpTr).
After many such collisions, the change in the translational
diffusivity of the passive bath particle is (D**" — Dg) ~
Uo(UoTR)¢a, Where Dy = kpT/( is the Stokes-Einstein-
Sutherland diffusivity of an isolated bath particle and ¢, is
the area (or volume) fraction of the swimmers. In this limit
active swimmers repeatedly displace the bath particle by their
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run length Uy7gr, which allows the bath particle to sense the
activity or ‘temperature’ of the swimmers via collisions. In
other words, the bath particle behaves as a ‘thermometer’ of
the active suspension '?, where the collisional displacements it
receives from the swimmer can be used to infer the swimmers’
characteristic ‘energy scale’ kT, = (U3Tr/2. This activity
scale is analogous to the thermal energy kg7, the kinetic ac-
tivity of passive Brownian particles, which can also be probed
by analyzing the collisions between two passive particles. In
this sense a suspension of swimmers with small run lengths
UypTr < a behaves similarly to a purely Brownian suspension
with an effective ‘temperature’ k,7,. For active Brownian
particles, this contribution is in addition to the thermal kT
that gets shared as usual as a result of translational Brown-
ian motion. However, one would not be able to distinguish
between the two contributions because the dynamics of swim-
mers with Peg >> 1 is equivalent to that of passive Brownian
particles. If we placed active swimmers that behave identi-
cally to passive Brownian particles behind an osmotic barrier,
we would not be able to distinguish one from the other. In this
sense a Brownian particle can be interpreted as a “swimmer”
having an extreme value of the reorientation Péclet number
Peg — 0.

The swim activity k,7, can also be understood by com-
paring the statistical correlation of the self-propulsive swim
force, F*'™ = (U, = (Uyq where q is the unit ori-
entation vector specifying the swimmer’s direction of self-
propulsion, to that of the Brownian force, F' B The swim force
correlation (F*i () F=im (1)) = ((Up)2(q(t)a(¥))) =
(CU)? exp(—(t — t')/7r) turns into a delta-function correla-
tion (FsWim () Fswim (i)} ~ ((Up)?rrd(t—t') as T — 0.
Recall that as 7g — 0 the active swimmers behave as ran-
dom Brownian walkers, which have the white noise statistics
FB()FB (') = 2kgT(6(t — t') where the overline indicates
an average over the solvent fluctuations. A comparison of
these two correlations again suggests that the swimmers’ ki-
netic activity can be interpreted by ks Ts = (UG TR /2.

For swimmers with run lengths large compared to their size,
(Per < 1), we observe a different behavior. Colliding into
a bath particle, the swimmer continues to push the bath par-
ticle until it moves completely clear of the swimmer’s trajec-
tory. The bath particles receive a displacement of ~ O(a)
upon colliding with a swimmer, not the run length Uy7gr.
Therefore the length scale associated with collisions is the
swimmer size a, and the change in the long-time diffusiv-
ity of the bath particles (D**" — Dy) ~ Ujag¢,. Unlike
the limit of Per > 1 discussed above, here the bath parti-
cles cannot probe the activity or ‘temperature’ of the swim-
mers because it only receives a displacement of its size a,
even though the swimmers actually diffuse with their swim
diffusivity D*“"™ ~ UZ7r. The ratio of the two diffusivities
(Dbt — Dg) ) D*Wi™ ~ Upad, /(U3TR) = ¢oPer, suggest-
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Fig. 2 Long-time self diffusivity of a passive particle as a function
of the total area fraction for different values of the active swimmer
fraction z,. The known Brownian diffusivity Dy was subtracted
from the results. The solid line is the analytical theory and symbols
are Brownian dynamics (BD) simulations. All data collapse onto a
single curve when the diffusivity is scaled with Upaz, /2.

ing that the reorientation Péclet number Per = o/ (UgTg) is
the quantity that gets shared between the swimmers via colli-
sions for small Peg?”. This implies that the swimmers’ energy
scale kT, = (UZTr/2 does not get shared in the collisions
and thus does not represent the ‘temperature’ in the classical
sense.

The bath particles’ entirely different behavior for large and
small Pepg reveals the richness and challenge to understand-
ing the ‘temperature’ of nonequilibrium active systems. This
marked change in the quantity that gets shared in active sys-
tems is due to the capability of swimmers to have run lengths
UyTr that can be small or large compared to their size a. This
is a key fundamental difference between the swimmers’ activ-
ity k;Ts and the thermal energy kpT'. In a classical molecu-
lar fluid, kT is always the quantity that equilibrates because
the displacements of a passive Brownian particle are always
small compared to its size a (or any other length scale), i.e.
PeB = a/(UpTp) — oo where Ug = Dy/a is the char-
acteristic speed of a Brownian step and 7p is its momentum
relaxation timescale.

Moreover, the swimmers must continuously collide with the
passive particle to impart information about their kinetic activ-
ity, ks Ts—even after many collisions, the passive particle only
possesses kT units of thermal energy once all collisions stop.
This is in stark contrast with a molecular or kinetic fluid parti-
cle that is able to completely transmit its kinetic activity to an-
other particle upon collisions. If a molecular fluid particle with
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initially zero activity is placed inside a container full of fluid
particles with energy kpT, the inactive particle would collide
repeatedly and eventually attain the thermal energy kpT. Fur-
thermore, it will keep its kgT activity even when the other
particles are removed. In contrast, a passive particle would
cease to move (aside from its translational Brownian motion)
if active swimmers are removed because of the damping due to
the solvent. In this sense the temperature of an active nonequi-
librium fluid is not well defined, as each swimmer has its own
unique intrinsic kinetic activity that does not get shared and
equilibrated”.

In pursuant of the discussion above we conducted
Brownian dynamics (BD) simulations (see Appendix)
and computed the long-time self diffusivity D" =
(1/2) limy_y o0 d{xga4)/dt, Where x4 is the position of the
passive bath particles. As shown in Fig 2, for small Pegr we
indeed find that D**** = Dy + Upag, /2 fits the data for all
¢ < 0.4. At higher ¢ the passive particles are trapped into
clusters by the swimmers and D?*" decays to 0. Figure 2
suggests that the parameter Peg gets shared upon swimmer
collisions and not the scale k7.

Finally, an important concept here is that the departure in-
duced by a swimmer is the same whether it collides into a
passive particle or into another active swimmer. In both cases
the displacement due to the collision is the swimmer size a
(for small Peg), and this is the key idea underlying the me-
chanical theory which we explain below.

3 Mechanical theory

Our theory applies in general to a mixture of active swimmers
with different activity levels, but here we focus on a mixture of
active swimmers and passive particles. Since a passive particle
behaves equivalently to an “active” particle with a very small
reorientation time and step size, this system corresponds to
the limiting case of a mixture of one group of swimmers with
a finite, nonzero Peg and another group of “swimmers” with
Per — oo. The general case is a mixture of active swimmers
with two different, finite Pe% and PedR. However, the active
and passive limit is interesting from an experimental perspec-
tive because a mixture of passive and active particles is easy
to make. Mixtures of swimmers with different, finite Peg are
difficult to analyze between of the inherent variations in activ-
ity in living organisms and in synthetic self-propelled particles
due to fabrication defects.

We are now in a position to derive a simple mechanical pres-
sure theory to predict the phase behavior of a mixture of active
and passive particles. The total active pressure of the mixture
is given by

Tect — stim + Hap + HdP —+ nk)BT, (1)

where TIS%4™ {g the ‘swim pressure, Hap and HdP are the in-
terparticle pressure contributions of the active swimmer and
passive particle, respectively, and nkgT is the Brownian os-
motic pressure. It is permissible to add the separate contribu-
tions of the pressure in what appears to be a superposition; this
is true in general for molecular, Brownian and active systems.
Equation 1 is the additional pressure contribution due to the
particles (both active and passive); the solvent pressure p; is
arbitrary and constant in our analyses.

In general TT1%! is a function of (¢, x4, Peg, ksTs, kgT),
where ¢ is the total area fraction (¢ = ¢, + @q), ¢q and @q4
are the area fractions of the active and passive particles, re-
spectively, x, = ¢,/¢ is the active swimmer composition,
the reorientation Péclet number Per = a/(UyTg) is the ratio
of swimmer size a to its run length UyTr, kT = CU3TR/2 s
the swimmers’ characteristic ‘energy scale’ as discussed ear-
lier, and kT is the thermal energy. We can also express the
active pressure using the area fractions of the active and pas-
sive particles, T1°°*(¢y, ¢a, Per, ksTs, kgT). To reduce the
number of parameters, we take equal size active and passive
particles a, = aq = a and assume that swimmer reorien-
tation is thermally induced so that the translational and re-
orientational diffusivities are related via the Stokes-Einstein-
Sutherland expressions: (Dg/a?)/7r = 4/3. Thus the ratio
of the thermal energy to the swim activity is kgT/(kTs) =
8Pe% /3. This is not a requirement; one can also vary a swim
Péclet number, Pe; = Upa/Dy in addition to the reorienta-
tion Péclet number Peg = a/(UyTr).

We now explain the independent pressure contributions in
detail below. The theory is presented for 2D, but it is straight-
forward to generalize to 3D.

3.1 Swim pressure of active swimmers, 1™

The swim pressure is defined as the first moment of the swim
force TI**" = —n,(x - F*™)/2 (in 2D), where n, is
the number density of swimmers and the angle brackets de-
note an average®. It is permissible for computing the stress
to interpret the self-propulsion of an active swimmer as aris-
ing from a swim force, F**" = (U, where U, = Upg;
Uy is the swimming speed and q is the unit orientation vector
defining the swimmer’s direction of self-propulsion. Physi-
cally, F¥¥*™ represents the force required to prevent an active
swimmer from moving, for example by optical tweezers. The
origin of the swim pressure stems from the notion that con-
fined self-propelled bodies exert a pressure on the container
boundaries as they collide into the surrounding walls. The
same notion applies to molecular gases that collide into the
container walls to exert a pressure or to colloidal solutes that
collide into a semipermeable membrane to exert an osmotic

1 This however does not imply that the intrinsic swimming mechanism gener-
ates a long-range (1/7) Stokes velocity field as does an external force 1617,
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pressure. The swim pressure is the “osmotic” pressure of ac-
tive particles.

A dilute system of purely active swimmers exerts an ‘ideal-
gas’ swim pressure given by II*¥'™ = n, (Utgp/2 =
nqksTy in 2D3. The swim pressure is a single-particle self
contribution in which the relevant length scale (i.e. moment
arm) is the swimmers’ run length UyTr. As discussed earlier
the ratio of the swimmer size a to the run length Uy7g is the
reorientation Péclet number Perp = a/(UyTr), and this pa-
rameter impacts the phase behavior of active systems®. For
large Per the swimmers take small swim steps and behave
as Brownian walkers, exerting the swim pressure 115%™ =
naCUZTR/2 = nyksTs for all concentrations.

For small Pep, the swimmers have large run lengths and un-
dergo many collisions with passive particles and other swim-
mers in a time 7. The average distance traveled by a swim-
mer between reorientation events is reduced and the same is
true for the swim pressure. Extending the results for a purely
active systems, we take (for small Peg)

5™ =,k Ty (1 — ¢ — 0.2¢°) 2

where n, is the number density of active swimmers, kT =
CUZ7R/2 is the characteristic ‘energy scale’ of a swimmer.
Inside the parenthesis of Eq 2 is the total area fraction be-
cause both active and passive particles hinder the run length
of an active swimmer. Recall our discussion from Sec 2 that
the displacement induced by a swimmer is the same whether
it collides into another swimmer or a passive particle. For a
dilute system ¢ — 0 we recover the ‘ideal-gas’ swim pres-
sure [I15%" = n k., Ts. As the area fraction increases, both
passive and active particles collide and obstruct the motion of
swimmers, decreasing the run length and therefore the swim
pressure. The decrease in II***™ is the principle destabiliz-
ing term that facilitates a phase transition in active systems.
This is fundamentally different than a purely Brownian system
where repulsive interactions (e.g., excluded volume) necessar-
ily increase the pressure and has a stabilizing effect. Recall the
concept that a passive Brownian particle with the thermal en-
ergy kpT is equivalent to a “swimmer” with Pe® — oo. In
this work we focus on small Peg since this is the limit that
engenders interesting phase behavior in active matter.

Figure 3 confirms that all data from BD simulations col-
lapse onto Eq 2. To better understand Eq 2, we can analyze the
limits for large and small concentrations of active swimmers
relative to passive particles. Expanding the swim pressure for
small ¢4/d, = (1 — 24) /x4, we find

9™ = n kT (1 — ¢ — 0.292) —

2
naksTs(l + 0.4¢a>¢d + @) (j)d> . (3)

Lo = ¢a/¢
0.35f 01— ,
03 2 —Jswim — TLaksn(l —¢— ()2¢2)
= 031 % % Eq (2)
=2 025; 09 ©

0.1 02 03 04 05 06 0.7 08
b = ma’n

Fig. 3 Swim pressure exerted by active swimmers in a mixture as a
function of the total area fraction ¢ = ¢4 + ¢4 for different values
of active composition z, = ¢, /¢ and fixed

Per = a/(UpTr) = 0.1. Subscripts “a” and “d” refer to active and
passive particles, respectively. The solid curve is the mechanical
theory Eq 2 and the symbols are BD simulations. The swimmer
activity ksTs = CUZTR/2.

The first term on the right is the swim pressure for a purely
active system, and the second term is the leading-order cor-
rection of the hindrance provided by passive particles. As ex-
pected, it is a 2-body correction of an active swimmer collid-
ing into a passive particle, ~ n,¢4.

In the other limit of small concentration of active swimmers
relative to passive particles (i.e., small ¢, /¢ = x4/ (1—24)),
we find

2

"™ = n kT (1 — ¢ — 0.2¢3) + O <¢> @
bd

Unlike the large active concentration limit, the reduction in

the swim pressure is caused entirely by the sea of passive par-

ticles. Due to the small concentration of swimmers, a swim-

mer exerts the self-term ‘ideal-gas’ swim pressure n, k7T but

does not hinder the motion of other active swimmers.

3.2 Interparticle (collisional) pressure

In addition to the swim pressure, which is a single-particle
contribution to the mechanical pressure, there is also an in-
terparticle (or collisional) pressure arising from interactions
between the particles. Since two bodies are required for an in-
teraction (or collision for a hard-sphere potential) and the rel-
evant length scale is the particle size a, the interparticle pres-
sure scales as II” ~ n2CUya® ~ nk,T, Per¢, fundamentally
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different from the swim pressure. Furthermore, the interparti-
cle pressure monotonically increases with concentration for a
repulsive potential and helps stabilize a system. The competi-
tion between the destabilizing effect of the swim pressure and
the stabilizing effect of the interparticle (or collisional) pres-
sure controls the phase behavior of active systems. For clar-
ity we split the interparticle pressure into two contributions—
collisions induced by active swimmers and passive particles
separately.

3.2.1 Active swimmer, I, Extending the nonlinear
microrheology analysis?, the collisional pressure contribution
for active swimmers (for small Pepg) is

4
k' =n, —kT.Per +2kpT| ¢9(0), (5)

a

where kpT is the thermal energy and ¢(¢) is the pair-
distribution function at contact. The first and second terms in
the bracket are the collisional pressures due to self-propulsion
and Brownian fluctuation, respectively. The former scales as
~ nan¢Upa® whereas the latter scales as ~ n,n¢(Dy/a)a®;
the characteristic Brownian speed Dy/a replaces the swim
speed Uy in the collisional pressure arising from thermal
noise. We again use the total area fraction in Eq 5 since
the active swimmers impart the same departure whether they
collide with a passive or an active particle. Rigorously,
the pair-distribution function is different for each pair, i.e.,
Gaa(®), gaa(d), etc, but we assume that they are all the same
and equal to g(¢) since we have taken a, = a4. We adopt
g9(9) = (1 — ¢/po) ! where ¢y is the area fraction at close
packing (¢o = 0.9 in this study)>'®.

3.2.2 Passive particle, IT5. The collisional pressure con-
tribution of a passive particle is given by

4
HdP =Ny ;ksTSPeRxa + 2ICBT‘ (bg((b) (6)

The first term in the brackets is the interparticle pressure due
to collisions with active swimmers, which scale as n4n,(Uy ad
because these collisions are induced only by the active swim-
mers. The second term is the usual Brownian collisional pres-
sure. Unlike Eq 5 we see that the collisional pressure of
passive particles has an additional dependence on the active-
swimmer fraction x,. If there are no active swimmers (i.e.,
x, = 0) then Eq 6 reduces to the usual collisional pressure of
Brownian hard-spheres '°.

Figure 4 graphs the sum of the collisional pressures of the
contributions from both active and passive particles as a func-
tion of the total area fraction. We see a dependence on the
composition of active swimmers z, especially at high area
coverage. We assume that swimmer reorientation is thermally

R °|
' 0.1 o — 17 =TI, + 11§ 3
0.70 03 4 Eq (5) + (6) ’
06 oo o |
Eo.s— ]
S04 :
03 :
0.2 —
0.1¢ —
0 01 02 03 04 05 06 07 08

¢ = mwa’n

Fig. 4 Collisional pressure exerted by active and passive particles
" = 11F 4 117 for fixed Per = a/(UpTr) = 0.1 as a function of
the total area fraction ¢ = ¢4 + ¢4 and different values of active
composition . = ¢a/¢. The solid curve is the mechanical theory
Eq 5 plus Eq 6 for z, = 0.3, and the symbols are BD simulations.
We take the swimmer reorientation to be thermally induced so that
kpT/(ksTs) = 8Pe%/3.

induced so that the translational and reorientational diffusiv-
ities are related via the Stokes-Einstein-Sutherland expres-
sions, (Dy/a?)/Tr = 4/3, and the ratio of the thermal energy
to the swim activity is kg7'/(ksTs) = 8Pe% /3.

4 Phase behavior

Experiments and computer simulations have shown that a sus-
pension of purely active particles may self-assemble into re-
gions of dense and dilute phases, resembling an equilibrium
liquid-gas coexistence® 1. The source of this phase separa-
tion is that swimmers collide and obstruct each others” move-
ment, causing large clusters to form at sufficiently high con-
centrations !>, Now, if this active system also contained pas-
sive Brownian particles, recent computer simulations?® and
experiments >! have shown that the composition of passive par-
ticles inside the dense cluster phase is generally larger than
that in the dilute phase, as they tend to stay inside the cluster
once they are pushed into one by an active swimmer. In con-
trast, the active swimmers prefer to swim freely in the dilute
phase because their activity allows them to escape the dense
clusters.

Theory and simulations have produced phase diagrams for a
suspension of purely active swimmers*®1322-2* but a mixture
of active and passive particles is yet to be thoroughly analyzed.

6| Journal Name, 2010, [vol],1-13
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Recently Stenhammar et al?° conducted Brownian dynamics

simulations of a mixture of active and passive Brownian par-
ticles and used a kinetic model to locate the phase boundaries.
The kinetic model based upon Redner et al® accurately pre-
dicts many regions of phase space, but due to the theory’s in-
herent assumptions the lower spinodal boundary is not well
characterized.

Our theory is based upon the new ‘swim pressure’ perspec-
tive which accurately predicts the phase behavior of a system
of active swimmers3>. Others have subsequently used the
swim pressure to study phase-separating active systems 2>,
We now have Eq 1, an equation of state that allows us to pre-
dict the phase behavior of the active/passive mixture.

Interpreting the total density derivative of the ac-
tive pressure as a global mechanical instability,
(O11%¢* /O, .. Pey, = 0, we can identify the regions
of stability in the phase diagram. This is a purely mechanical
definition of the spinodal and does not rely upon thermody-
namic arguments. As shown by the red curve in Fig 5. Our
prediction agrees well with Stenhammar et al’s?° simulation
data. Here the spinodal and the simulation data correspond
to a global dense/dilute-phase separation based upon fluc-
tuations in the total particle-active plus passive—density.
This is different from the phase separation that may occur
locally within each phase, as commonly seen in immiscible
polymer mixtures. There are no adjustable parameters in the
comparison.

Compared to a purely active swimmer system, onset of
phase transition occurs at lower Per when passive particles
are present. For x, = ¢,/¢ = 0.5 shown in Fig 5, phase tran-
sition is possible for Per < 0.025, compared to Peg < 0.04
for a purely active system x, = 1. Therefore, given a fixed
total area fraction the presence of passive particles makes it
more difficult for phase separation to occur, which may be an
important consideration in the design of experiments of active
systems.

In Sec 2 we discussed that the reorientation Péclet num-
ber Pepr is the quantity that gets shared upon collisions be-
tween swimmers for Pep < 1. Using the swimmer activ-
ity ksTs = CUZTR/2, we can rewrite Peg = a/(UyTg) =
CUpa/(2ksTs), which is interpreted as the interactive energy
of the swimmer (¢Up)a to its swim activity scale k;Ts. In Fig
5 phase separation becomes possible for small Peg, or large
ksTs. In contrast, phase transition in a classical thermody-
namic system is usually driven by attractive enthalpic interac-
tions and becomes possible for small k57" (low temperatures).
If k4T is interpreted as the “temperature” of active matter, Fig
5 suggests that mixtures of active and passive particles may
exhibit a lower critical solution temperature (LCST) transi-
tion?’, commonly seen in thermosensitive polymer systems %
The LCST phase transition is dominated by entropy—as Per
decreases (kT increases), the run length of the swimmer in-

21.22

Marenduzzo, Cates (201

6.67

01 02 03 04 05 06 0.7 0.8
b = ma’n

Fig. 5 Phase diagram in the Per — ¢ plane in 2D for a fixed active
swimmer composition £, = 0.5. The colorbar shows the active
pressure scaled with the swim activity kT = CUSTR /2. The open
and filled symbols are simulation data of Stenhammar et al*® with a
homogeneous and phased-separated state, respectively. The solid
and dashed red curves are the spinodals delineating the regions of
stability based upon fluctuations in the total particle density and the
thermodynamic definition, respectively.

creases, and the particle becomes effectively larger in size and
has less space available for entropic mixing®. However, be-
cause Pep, is the quantity that gets shared upon collisions for
Per < 1 (and not the activity ks7%), the activity k7T does
not play the same role as the thermal energy scale kg7 in
LCST phase transitions of polymer mixtures. This further ver-
ifies that the “temperature” of active matter is an elusive quan-
tity that does not have a direct mapping to the temperature of
an equilibrium system.

5 Limits of active pressure

Recent experiments by Kiimmel et al?! analyzed the phase
behavior of a mixture of passive particles with a small con-
centration of active swimmers (¢, ~ 0.01). They observed
swimmers gathering and compressing the passive particles
into clusters. By varying the concentration of passive parti-
cles, they observed a phase separation of the mixture even at
very small active swimmer concentrations.

Our BD simulations agree qualitatively with the experi-
ments?'. The active swimmers create tunnels in the sea of
passive particles, which open a path for other trailing swim-
mers to move through. This leads to the formation of large
clusters composed of purely passive particles and individual
swimmers moving in the dilute phase, as shown in simulation
images in Fig 6. Based upon our mechanical theory, there is

This journal is © The Royal Society of Chemistry [year]
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0.01

One-phase Two-phase

0.3 0.4 0.5 0.6 0.7 0.8 0.9
¢ = ma’n

Fig. 6 Phase diagram in the Per — ¢ plane in 2D for different
active swimmer compositions x, = ¢4 /¢. The solid curves are the
spinodals delineating the regions of stability based upon fluctuations
in the total particle density. The two-phase region diminishes as z,
decreases. Steady-state images from BD simulations are shown for
Per =0.01,2, = 0.05 at ¢ = 0.35 (left) and ¢ = 0.6 (right),
corresponding to a homogeneous and phased-separated state,
respectively. The red and white circles are the active and passive
particles, respectively.

an equality between the Brownian collisional pressure of the
dense passive clusters and the swim pressure of the dilute ac-
tive swimmers compressing the crystals. A video of the BD
simulation is available in the Supplement.

To model these observations, it is instructive to analyze the
limits of the active pressure for large and small concentrations
of active swimmers relative to passive particles. Since the me-
chanical pressure exerted by a system of purely active swim-
mers and purely Brownian particles are known, we can inter-
rogate the effect of adding a small amount of passive or active
particles into the suspension. This may be particularly useful
for further experimental pursuits of active/passive mixtures.

In the limit of small active swimmer concentration relative
to passive particles, the active pressure is

2
[Iect — [rosm 4 H//(qf)daTs; PeR)¢a +0 (ZG) s @)
d

where the first term on the right is the osmotic pressure of a
purely Brownian suspension:

IM°™ = ngkpT (1 + 2¢49(¢aq)) , ®)

and the second term in Eq 7 is
(¢4, Ty, Per) = naksTy (1 — da — 0.207) /$at
4
2ng | —ksTsPer + 2kpT 2+ ﬁg(<¢>d) 9(¢a)+
m 2¢0
nakpT/¢a. (9)

In this limit, the swim pressure and swimmers’ interparticle
collisions appear in the leading-order correction. Taking the
global density fluctuation 911%¢* /3¢ = 0, we find that the
spinodal qualitatively agrees with the experiments of Kiimmel
et al2!—a lower spinodal boundary of ¢ ~ 0.45 and the diver-
gence of the interparticle pressure near close packing. A phase
diagram in the Perp — ¢ plane for different active swimmer
compositions is shown in Fig 6. As z, decreases the spin-
odal curve lowers to smaller Per because phase separation
becomes more difficult to observe with a smaller fraction of
swimmers. For smaller x,, the Brownian crystals have more
time to melt and dissolve into a homogeneous system, and
hence the swimmer must have a small Pep that is in commen-
surate with the small z,,. Kiimmel et al?' report phase separa-
tion in swimmers with Per =~ 0.04, but our theory suggests
that Per must be smaller (Per < 0.01) for phase separation
to be possible at the small concentration of active swimmers
used in their study.

In the other limit of large active swimmer concentration rel-
ative to passive particles, we expect phase behavior similar to
those observed in purely active suspensions>. The passive par-
ticles can act as nucleation sites for cluster formation, which
may spark an earlier onset of phase separation. The active
pressure has the form

HaCt = HaCt(Qbaa ¢)d = 0, Tsa PeR) +H/(¢aa Ts> PeR)de‘i’

da > ’
(@) ( — |, (10)
Pa
where the first term on the right is the active pressure for a
purely active swimmer suspension® (i.e., Eq 1 with ¢4 = 0):

HaCt(¢a7 (bd — O7T87 PeR) = naksTS (1 - ¢a - 02(252) +

Na (j_ksTsPeR + 2k3T> bag(da) +nakpT, (11)
and the second term in Eq 10 is
'(¢a, Ts, Per) = —naksTs (14 0.4¢4) +
e (jksTsPeR " 2kBT> (2 ¥ ¢“g(¢>a)> 960+

Po
nakBT/¢a- (12)

As expected the leading-order correction to the swim and in-
terparticle pressures scales as ~ ng¢4. As shown in Fig 6,
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the spinodal curve for z, ~ 1 remains high because phase
separation is dominated by the hindered motion of the active
swimmers.

6 ‘Thermodynamic’ quantities

Thermodynamic quantities like the chemical potential and free
energy are defined only for equilibrium systems. However,
standard macroscopic mechanical balances can be applied to
define quantities that are nonequilibrium analogs for active
systems>>. Here we extend the derivation of the nonequilib-
rium free energy and chemical potential to mixtures of active
and passive particles, and interpret these quantities as a natural
extension for nonequilibrium systems.

The virtual work done by an external mechanical force (i.e.,
stress) due to an infinitesimal change in the system volume 6V
is given by W = —II§V where 11 is the applied mechanical
pressure. One can interpret this virtual work as the change in
Helmholtz free energy of the system due to an applied me-
chanical stress, as is commonly done in elasticity theory?.
Upon carefully imposing incompressibility of the solvent, one
can relate the nonequilibrium free energy to the mechanical

pressure of a multicomponent mixture as 4
N,
Y
M= — ) 0), 13
f*;%qsﬁf() (13)

where N is the number of species in the mixture and f(0) is
the free energy density of the pure solvent (which is arbitrary
and constant in our analysis). We interpret Eq 13 as the defini-
tion of the free energy for nonequilibrium active systems with
I1%¢* in place of II. For our two-component (plus the solvent)
system, we have N, = 2 and the nonequilibrium free energy
F2¢q, da, Ts, Per) can be defined as

6faCt afact
D%, + ¢a 900 (14)

Hact 4 fact — ¢a

The general solution is

ksTs
1N as bas T, Per) = = [m 10g ¢a — Pad (ff) +1
tPensusaton(on - 0) (= (14 %) + 3% Per) | +

R A Y L)
where v = 7a? is the projected area of a particle. This defi-
nition for the nonequilibrium free energy agrees with the true
thermodynamic free energy for molecular or colloidal solutes
in solution (i.e., f* (¢, = 0, dq, Ts, Per) = fo5™ . To
gain further insight into the free energy, in the Appendix we

)_

analyze the limits of f%¢! for our mixture for large and small
concentrations of active swimmers relative to passive parti-
cles.

As done previously for a purely active system?, we can
derive the nonequilibrium chemical potential for multicom-
ponent mixtures using purely mechanical arguments (see Ap-
pendix C). For a mixture of active and passive particles, it is
given by

8ugct alugct B aHact
Na 90 + ng 0 —(1_¢a_¢d)T¢- (16)

Again this expression agrees with the rigorous thermodynamic
definition of the chemical potential for mixtures of molecular
solutes in solution 4. The chemical potential for each species
1 in a multicomponent system can thus be obtained from

act
it = v R{ ra H“C’f] : (a7

where the reference states were absorbed into the free energy.
We can invoke Eqs 15 and 1 to obtain the chemical potential
for the active (u2°") and passive (1%") species.

From the thermodynamics of mixtures, the stability crite-
rion using the free energy is given by det(0? f/0¢;0¢;) =
0'#. For our system this reduces to

2 ract 2 ract 2 ract 2
(o) (o)~ () =0 o®
997, 963 0¢a0¢a
This gives us the reorientation Péclet number as a function of
the active and passive concentrations, Per = Peg(dq, ¢d)-

The dashed curve in Fig 5 is the spinodal curve using Eq
18 for a fixed active swimmer fraction x, = 0.5. This spin-
odal boundary does not agree with the simulation data of Sten-
hammar et al?°, as Eq 18 predicts a different phase boundary
than those observed in a simulation. The simulations reflect a
global dilute/dense phase separation based upon fluctuations
in the total particle (both active and passive) density. In con-
trast, Eq 18 interrogates the stability of the free energy due to
fluctuations in the active particle concentration while keeping
the passive particle concentration fixed, and vice versa.

This facilitates an important consideration in both experi-
ments and simulations about which variables are held fixed
and varied. Depending on the ensemble of variables that are
held fixed (active swimmer density, composition, etc), the the-
ory predicts in general different phase boundaries. To produce
a phase diagram in a simulation, one typically fixes the over-
all swimmer composition z, and swimmer Pep, and varies
the total area fraction ¢ or vice versa. This corresponds to a
global dense/dilute-phase separation based upon fluctuations
in the total particle density, which is well described by the
mechanical instability criterion (0TI /0¢),, 1. per = 0, as
shown by the red solid curve in Fig 5.

This journal is © The Royal Society of Chemistry [year]
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In the experiments of Kiimmel et al?!, the active swim-

mer area fraction (¢, = 0.01) and Péclet number (Pe =
Upv/Tr/Dy = 20) were held fixed, and the passive par-
ticle area fraction (¢4) was varied. The ensemble of vari-
ables that we fix and vary must therefore be considered when
we predict of the phase behavior of active mixtures. It is
likely that one can conduct an experiment or simulation where
the phase behavior agrees with the thermodynamic spinodal
det(9%f/0¢;0¢;) = 0 (red dashed curve in Fig 5). There re-
mains much more to the phase portrait than the existing studies
and our mechanical theory have revealed.

7 Conclusions

We developed a simple mechanical theory to address an im-
portant question in active matter: do active particles ther-
mally equilibrate, and if so, what is the quantity that gets
shared upon collisions? We found that the swimmers’ activ-
ity kTs = CUZ7r/2 does not have the same properties of
the thermal energy kgT. The swimmers’ capability to have
run lengths Uy7xr small or large compared to their size a (and
other length scales in the problem) distinguishes them from
passive Brownian particles whose step size is always smaller
than any other length scale in the system.

We discovered that for Peg = o/(UyTr) < 1 the quantity
that gets shared upon collisions is Peg, not the scale k7.
This was seen in the simple mixing experiment in Fig 1 and
from analyzing the motion of a passive particle as a probe to
measure the kinetic activity of the swimmers (k;75). The no-
tion of the swimmers’ energy kT and/or Peg being shared
via collisions is an interesting concept that may facilitate fur-
ther theoretical and experimental studies.

Another fundamental difference between an active system
and a classical fluid was found by observing the motion of a
passive particle in a sea of active swimmers. Even after under-
going many collisions with swimmers, the passive bath parti-
cle ceases to move (aside from its translational Brownian mo-
tion) if the swimmers are removed because of the damping by
the solvent. In contrast, a passive bath particle placed inside
a classical molecular or colloidal solution keeps its kg7 ac-
tivity even when the other particles are removed. Because the
swimmers must continuously collide into the passive bath par-
ticle to impart information about their kinetic activity, there is
no “thermal equilibration” that takes place in an active suspen-
sion.

To understand the temperature and phase behavior of active
matter, we studied a mixture of active and passive Brownian
particles. Our theory applies more generally to a mixture of
active systems with different activities. In fact, we showed that
a passive Brownian particle behaves equivalently to a “swim-
mer” with Per — o, so the active/passive mixture corre-
sponds to a limiting case of a mixture of active systems with

different activities. A swimmer that takes small steps and re-
orients rapidly is indistinguishable from a purely Brownian
particle if it is placed behind an osmotic barrier. For a mixture
of active particles with different, finite Pe g, we would simply
write the swim and collisional pressures for each individual

species Peg), Peg), etc. The total active pressure of the sys-
tem is a sum of the contributions from all species, as in Eq
1.

By understanding the dependence of the active swimmer
composition x, and the total area fraction ¢ in each of the
active pressure contributions, we obtained an explicit equa-
tion of state for the active/passive mixture. The key princi-
ple in deriving the equation of state was that a swimmer im-
parts the same displacement whether it collides into another
swimmer or a passive particle. We found that the swim pres-
sure decreases with increasing area fraction and is the desta-
bilizing term that leads to a phase separation in active sys-
tems. In contrast, the interparticle (collisional) pressure in-
creases monotonically with the area fraction and helps to sta-
bilize the suspension from phase separation. The competition
between these two effects is determined by the reorientation
Péclet number, Pegr = a/(UyTr). The spinodal specifies the
regions in the phase diagram where these two opposing ef-
fects cancel precisely, and these regions were identified in the
Pep — ¢ space for our mixture.

We corroborated our theory with recent simulations?® and
experiments?! of active/passive mixtures. Our simple model
may be a useful tool for predicting phase behavior in both ex-
periments and simulations, as many regions of phase space are
difficult to explore because of experimental and computational
challenges of covering the parameter space.

We found that different stability conditions give rise to dif-
ferent phase boundaries, facilitating considerations in simu-
lations about which variables are held fixed and varied. The
derivative of our active pressure with respect to the total area
fraction predicts accurately the global dense/dilute phase tran-
sitions observed in simulations. To predict the local phase
separation within the dense or dilute phase (as in immiscible
polymer mixtures), a different stability criterion is required.
Finally, we extended the mechanical theory to determine the
nonequilibrium chemical potential and free energy for a mix-
ture of active and passive species.

Extension of our theory to 3D and for different particle size
ratios is straightforward. In 3D the characteristic activity scale
becomes kT = CUFr/6 instead of (U3 Tr/2 due to the ex-
tra degree of freedom. For a mixture of particles with different
sizes a and b, the pair-distribution function adjusts to different
collision pairs gae (@), gaa(®), etc because now the particle-
particle separation at contact is different. For a polydispersed
active system, the large clusters are no longer crystalline and
are less stable than those in a monodisperse system. There-
fore the two-phase region in Fig 5 shrinks and shifts to smaller

0
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Pe R-

In our model we neglected hydrodynamic interactions be-
tween the particles, which may contribute additional terms
such as the “hydrodynamic stresslet” " to the active pressure.
We also did not consider the effects of polar order and align-
ment of the swimmers, which are not necessary for phase-
separating systems.
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Appendix

A: Micromechanical equations of motion

The active particle dynamics are governed by the N-particle
Langevin equation

0=—CU+ F*"™ + F¥ + /202Dy Ar (AD)
do 2
@t~ \ e (A2)

where U is the translational velocity, ¢ is the hydrodynamic
drag factor, F*“'"™ = (U, = (Uyq is the self-propulsive
swim force, Uy is the swim speed, 6 specifies the swimmers’
direction of motion g = (cos 6, sin #), F'*" is the interparticle
force between the particles to enforce no overlap, A7 and Ar
are unit random normal deviates, 7 is the orientation time of
the swimmer, and D is the Stokes-Einstein-Sutherland trans-
lational diffusivity. The passive Brownian particles are gov-
erned by the same equation but without the self-propulsive
force:

0=—CUs+ F" +

2¢iDoAr, (A3)

where the subscript “d” indicates a passive particle. For sim-
plicity in this work we considered spherical particles with the
same size for active and passive particles so that ( = (4. The
left-hand side of Eqs Al and A3 is zero since inertia is neg-
ligible for colloidal suspensions. A more detailed discussion
concerning the origin of the swim force and the role of hydro-
dynamic interactions is available elsewhere !’

B. Limits of active free energy

To gain further insight into the free energy, we analyze the
limits of %! for our mixture system for large and small con-
centrations of active swimmers relative to passive particles.
Expanding the active free energy for small ¢ = ¢q4/d, =

(1 — x4)/xq, we find in the limit of large active concentra-
tion

fot = £ ¢a, pa = 0,Ts, Per) + f'(¢a, Ts, Per)pat

FoT patos (jd)W( ). (B

where v = wa? is the projected area of a particle and the first
term on the right is the active free energy for a purely active
system>:

faCt(¢a7¢d - 07T€7P6R) =

[1Og ¢a -

1 4
-+ P€R>:| +
T 3

kT
%qba log ¢a, (B2)

Da (% + 1) — 4Per¢olog(do — ¢a) (

and the second term in Eq B1 is

L (50
4Perdo (10g(¢0 = ¢a) — %) (i + §P€R>:| +

5L o e (B3)

fl((ybast; PGR)

Expanding the swim pressure for small € = ¢,/dq =
Zq/(1 — x,), we find in the limit of small active concentra-
tion

f(l('f fO@m +fl/(¢d7T57PeR)¢a
(@T+kTwu%($>+ow% (B4)
d
where the first term on the right is the osmotic pressure of a
purely Brownian suspension:

kT

fom = 7¢d [log ®a — Po 10g(¢0 ¢d)] ) (B5)

and the second term in Eq B4 is

F2T og 0 -+ 260 low(6y — 64)] +

¢d
10

f’l(¢d7T‘JaP6R) =
kT

[10&’; ¢d — bd ( ) - %Pemﬁo log(¢o — ¢a)

(B6)

The influence of the swim pressure and swimmers’ interparti-
cle collisions are felt in the correction term.

This journal is © The Royal Society of Chemistry [year]
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C. Mechanical derivation of the chemical potential for
multicomponent systems

The number density of an N.-component system?* satisfies the
conservation equation

NC
n .
—+ ) Vi-j; =0, (C1)
i=1
where j;, = nju; = ni(u) + j7% is the particle flux of
species i, 57 = n;(u; — (u)) is the flux of species i rela-

tive to the suspension average velocity (u), which is defined

Z d)zuz""

averaged veloc1ty of swimmer species ¢ and fluid at a contin-
uum point, respectively. The total volume (or area) fraction

—¢)uy, and u; and uy are the number

Ne

of the particles is ¢ = Z ¢;. Incompressibility requires the
i=1

suspension-average velocity (particles plus the fluid) to satisfy

V- {(u) =0.

We apply an averaged macroscopic mechanical momentum
balance to obtain an expression for JTEl Following the stan-
dard Irving-Kirkwood approach, we obtain

N
- Z nzCz(uz -
i=1

where 0%t = g™ + g is the active stress and the left-
hand side is zero since inertia is negligible for colloidal sys-
tems. Using the relative flux 57 = n;(u; — (u)) we arrive at
a relationship between the active particle flux and gradients in
the active stress:

w)) + V- ot (C2)

Z erel ct. (C3)

We did not rely upon the notion of a thermodynamic chemical
potential or the free energy to arrive at this expression.

We can use our mechanical derivation to define a nonequi-
librium chemical potential by analogy to the quantity whose
gradient would drive a flux:

.rel i act
Ji -V (4
' Gi(l—9)
N(‘.
where again ¢ = Z ¢;. This definition is analogous to
j=1

that of a thermodynamic system where the relative flux is

1 There are N, + 1 total components, including the solvent

driven by gradients in the thermodynamic chemical poten-
tial. Substituting Eq C4 into Eq C3 and using the definition

et = —tr o2t /2, we arrive at
N,
c a‘uact aHact
i =(1- C5
; nige = 1= (C5)

For a two-component (active and passive) system, we have
10 (02t 09) + na(Ou /9) = (1 — b — Ga)ONI*! /06,
as given in the main text.

This relationship between the chemical potential and pres-
sure is equivalent for a system of passive Brownian particles
and active swimmers with small 7z. We thus interpret p%* as
a natural definition and extension of the chemical potential for
nonequilibrium systems.

Comparison to thermodynamics. From equilibrium ther-
modynamics 4, the chemical potential of species i for a mul-
ticomponent system is given by

of
:u’L (8¢1 ) ’ (C6)

where v is the volume (or area) of a particle. The free energy
is related to the osmotic pressure by

of of
¢aa¢a+¢da¢

Taking the density derivative of both Eqs C6 and C7 and
combining the results, we obtain

= f+1L (C7)

a,ua 8/1%1_
aa¢+ ey (1 —¢a ¢d)a¢ (C8)

which is identical to Eq 16 of the main text, a result obtained
using a mechanical derivation.

Therefore the mechanical derivations of the stress, momen-
tum balance, and flux are in full agreement with thermody-
namics.
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