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Systems at equilibrium like molecular or colloidal suspensions have a well-defined thermal energy kBT that quantifies the

particles’ kinetic energy and gauges how “hot” or “cold” the system is. For systems far from equilibrium, such as active matter, it

is unclear whether the concept of a “temperature” exists and whether self-propelled entities are capable of thermally equilibrating

like passive Brownian suspensions. Here we develop a simple mechanical theory to study the phase behavior and “temperature”

of a mixture of self-propelled particles. A mixture of active swimmers and passive Brownian particles is an ideal system for

discovery of the temperature of active matter and the quantities that get shared upon particle collisions. We derive an explicit

equation of state for the active/passive mixture to compute a phase diagram and to generalize thermodynamic concepts like the

chemical potential and free energy for a mixture of nonequilibrium species. We find that different stability criteria predict in

general different phase boundaries, facilitating considerations in simulations and experiments about which ensemble of variables

are held fixed and varied.

1 Introduction

Active matter systems like colonies of bacteria and self-

propelled synthetic microswimmers are a rich area of study for

soft matter. The fundamental and seemingly elementary abil-

ity of self-propulsion allows active systems to free themselves

from classical thermodynamic constraints and to control their

own motion and the surrounding environment. Their inher-

ently nonequilibrium properties engender intriguing behavior

such as spontaneous self-assembly and pattern formation1,2,

making active matter a fascinating but challenging system to

study.

Recently a new “swim pressure” concept was introduced—

namely, all active entities exert a unique mechanical pressure

owing to their self-motion3,4. This perspective was applied5

to predict the self-assembly of a suspension of active parti-

cles into regions of dense and dilute phases observed in both

experiments and simulations6–10. The usefulness of the me-

chanical pressure to illuminate active matter’s physical princi-

ples begs the question: what is the temperature of active mat-

ter? Do active swimmers “thermally equilibrate” with their

surroundings? Although it is clear that the mechanical pres-

sure can be quantified and is valid out of equilibrium, it is

uncertain whether the notion of a temperature exists and can

be explained in basic physical quantities.

To understand the temperature of active matter, we shall

first discuss a simple experiment involving passive Brownian

suspensions (i.e., no self-propulsion) which can be rigorously

related to conventional thermodynamic quantities like the tem-
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perature and free energy. Suppose we have a purely Brown-

ian suspension with thermal energy (kBT )H that is separated

by a thermally-insulated partition from another Brownian sys-

tem with a different temperature (kBT )C , as shown in Fig 1.

The partition is suddenly removed and the particles at differ-

ent temperatures are allowed to mix. The “hot” and “cold”

particles undergo many collisions, share their kinetic energy

with each other, and eventually equilibrate to a common tem-

perature (kBT )eq .

Now suppose we do the same mixing experiment with self-

propelled swimmers at two different activity levels. For sim-

plicity we consider self-propelled spheres of radii a that trans-

late with an intrinsic swim speed U0, reorient with a reori-

entation time τR, and experience a hydrodynamic drag fac-

tor ζ from the surrounding continuous Newtonian fluid. Their

motion can be described as a random-walk process for times

t > τR with a diffusivity Dswim = U2

0
τR/2 in two dimen-

sions (2D). Their characteristic “energy scale” is not the ther-

mal energy kBT = ζD0 where D0 is the Stokes-Einstein-

Sutherland translational diffusivity, but comes from their self-

propulsive activity, defined as ksTs ≡ ζDswim = ζU2

0
τR/2

(see later section for a more detailed treatment).

A system of “hot” active swimmers with (ksTs)H is ini-

tially separated from “cold” swimmers with (ksTs)C as shown

in Fig 1. When the partition is removed, the swimmers with

different activity levels spontaneously mix and undergo colli-

sions with each other. When a swimmer collides into another

swimmer, it displaces the body by its size a until they move

completely clear of each others’ trajectories. After the colli-

sion, each swimmer then continues its motion with the same

activity it had initially—there is no sharing of kinetic activ-
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Fig. 1 Schematic of the mixing process of purely Brownian

suspensions (top) and active systems (bottom) that are initially at

two different “temperatures.” The Brownian particles thermally

equilibrate their thermal energy kBT whereas the active swimmers

do not share their characteristic “energy scale” ksTs ≡ ζU2

0 τR/2.

ity (ksTs) upon collisions. This implies that the swimmers’

activity scale ksTs ≡ ζU2

0
τR/2 does not get shared via col-

lisions and thus does not “equilibrate” like the temperature of

a classical fluid kBT . This simple experiment already reveals

the richness and challenge to understand the “temperature” of

nonequilibrium active systems.

A simple multicomponent mixture of self-propelled parti-

cles with two different activities is an ideal system to dis-

cover and study this problem in greater detail. Previous stud-

ies have provided various interpretations of the temperature

in a nonequilibrium active matter system11–13. We discuss a

new perspective by developing a mechanical pressure theory

for predicting the phase behavior of a mixture of active swim-

mers over the entire phase space of the system. Our theory

applies in general to a multicomponent suspension with swim-

mers of different activities, but perhaps the most straightfor-

ward and illuminating mixture is that of active self-propelled

particles and passive Brownian particles in a single solvent. In

this mixture we must treat active swimmers and passive parti-

cles as independent species, because their compositions vary

in space due to the phase-separating behavior of active suspen-

sions. This is true in general for multicomponent systems—in

a simple polymeric solution of polyethylene in benzene, the

polyethylene molecules do not all have the same number of

segments or molecular weight, and thus generally need to be

treated as different components. Experiments also often use

mixed solvents in which the solvent composition inside a poly-

mer coil (or gel) is in general different from the outer regions,

as certain solvent species preferentially remain inside (or out-

side) the polymer coil14.

We consider a simple mixture of spherical active and pas-

sive Brownian particles with equal size a; the passive particles

translate by Brownian motion but are otherwise inactive (see

Appendix A for the equations of motion). We do not include

the effects of hydrodynamic interactions, and there is no po-

lar order of the swimmers or any large-scale collective motion

(e.g., bioconvection). We find that many new insights about

the temperature of active matter can be obtained from such a

simple system.

In the next section we further extend the mixing example

discussed above (Fig 1) by analyzing the effects of adding a

small concentration of passive Brownian particles into an ac-

tive system. We learn the quantities that “equilibrate” in an

active system by studying the collisions between a swimmer

and a passive particle . In Sec 3 we develop a simple mechani-

cal theory by identifying the different contributions that make

up the total active pressure of the mixture. Since active matter

is an inherently nonequilibrium system, we do not rely upon

the thermodynamic free energy or chemical potential to pre-

dict the phase behavior of the system. Unlike these thermody-

namic quantities, the mechanical stress (or pressure) is defined

out of equilibrium and can be used to analyze mechanical in-

stability of active matter. We then take our equation of state

to compute what would be the nonequilibrium analogs of the

free energy and chemical potential. Lastly, we analyze differ-

ent stability criteria, facilitating discussion about the variables

that may be held fixed and varied in experiments and computer

simulations.

2 Do active particles “thermally” equilibrate?

From the mixing process in Fig 1 we learned that the charac-

teristic activity scale of the swimmers do not equilibrate (i.e.,

(ksTs)H 6= (ksTs)C) unlike the thermal energy kBT of pas-

sive Brownian particles. To gain further insight into the quan-

tities that get shared in an active system, suppose now that we

have a dilute concentration of passive bath particles in a sea of

active swimmers. The motion and behavior of a passive bath

particles are influenced markedly by the swimmers’ reorienta-

tion Péclet number PeR ≡ a/(U0τR), a ratio of the swimmer

size a to its run length U0τR.

Swimmers with run lengths small compared to their size

(PeR ≫ 1) reorient rapidly and take small swim steps be-

having as Brownian walkers. When a swimmer takes a step

and collides into a bath particle, the passive particle gets a

displacement of order the swimmer’s step size ∼ O(U0τR).
After many such collisions, the change in the translational

diffusivity of the passive bath particle is (Dbath − D0) ∼
U0(U0τR)φa, where D0 = kBT/ζ is the Stokes-Einstein-

Sutherland diffusivity of an isolated bath particle and φa is

the area (or volume) fraction of the swimmers. In this limit

active swimmers repeatedly displace the bath particle by their
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pressure. The swim pressure is the “osmotic” pressure of ac-

tive particles.

A dilute system of purely active swimmers exerts an ‘ideal-

gas’ swim pressure given by Πswim = naζU
2

0
τR/2 =

naksTs in 2D3. The swim pressure is a single-particle self

contribution in which the relevant length scale (i.e. moment

arm) is the swimmers’ run length U0τR. As discussed earlier

the ratio of the swimmer size a to the run length U0τR is the

reorientation Péclet number PeR ≡ a/(U0τR), and this pa-

rameter impacts the phase behavior of active systems5. For

large PeR the swimmers take small swim steps and behave

as Brownian walkers, exerting the swim pressure Πswim =
naζU

2

0
τR/2 = naksTs for all concentrations.

For small PeR the swimmers have large run lengths and un-

dergo many collisions with passive particles and other swim-

mers in a time τR. The average distance traveled by a swim-

mer between reorientation events is reduced and the same is

true for the swim pressure. Extending the results for a purely

active system5, we take (for small PeR)

Πswim = naksTs

(

1− φ− 0.2φ2
)

, (2)

where na is the number density of active swimmers, ksTs ≡
ζU2

0
τR/2 is the characteristic ‘energy scale’ of a swimmer.

Inside the parenthesis of Eq 2 is the total area fraction be-

cause both active and passive particles hinder the run length

of an active swimmer. Recall our discussion from Sec 2 that

the displacement induced by a swimmer is the same whether

it collides into another swimmer or a passive particle. For a

dilute system φ → 0 we recover the ‘ideal-gas’ swim pres-

sure Πswim = naksTs. As the area fraction increases, both

passive and active particles collide and obstruct the motion of

swimmers, decreasing the run length and therefore the swim

pressure. The decrease in Πswim is the principle destabiliz-

ing term that facilitates a phase transition in active systems.

This is fundamentally different than a purely Brownian system

where repulsive interactions (e.g., excluded volume) necessar-

ily increase the pressure and has a stabilizing effect. Recall the

concept that a passive Brownian particle with the thermal en-

ergy kBT is equivalent to a “swimmer” with PeBR → ∞. In

this work we focus on small PeR since this is the limit that

engenders interesting phase behavior in active matter.

Figure 3 confirms that all data from BD simulations col-

lapse onto Eq 2. To better understand Eq 2, we can analyze the

limits for large and small concentrations of active swimmers

relative to passive particles. Expanding the swim pressure for

small φd/φa = (1− xa)/xa, we find

Πswim = naksTs

(

1− φa − 0.2φ2

a

)

−

naksTs(1 + 0.4φa)φd +O

(

φd

φa

)2

. (3)
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Fig. 3 Swim pressure exerted by active swimmers in a mixture as a

function of the total area fraction φ = φa + φd for different values

of active composition xa = φa/φ and fixed

PeR ≡ a/(U0τR) = 0.1. Subscripts “a” and “d” refer to active and

passive particles, respectively. The solid curve is the mechanical

theory Eq 2 and the symbols are BD simulations. The swimmer

activity ksTs ≡ ζU2

0 τR/2.

The first term on the right is the swim pressure for a purely

active system, and the second term is the leading-order cor-

rection of the hindrance provided by passive particles. As ex-

pected, it is a 2-body correction of an active swimmer collid-

ing into a passive particle, ∼ naφd.

In the other limit of small concentration of active swimmers

relative to passive particles (i.e., small φa/φd = xa/(1−xa)),
we find

Πswim = naksTs

(

1− φd − 0.2φ2

d

)

+O

(

φa

φd

)2

. (4)

Unlike the large active concentration limit, the reduction in

the swim pressure is caused entirely by the sea of passive par-

ticles. Due to the small concentration of swimmers, a swim-

mer exerts the self-term ‘ideal-gas’ swim pressure naksTs but

does not hinder the motion of other active swimmers.

3.2 Interparticle (collisional) pressure

In addition to the swim pressure, which is a single-particle

contribution to the mechanical pressure, there is also an in-

terparticle (or collisional) pressure arising from interactions

between the particles. Since two bodies are required for an in-

teraction (or collision for a hard-sphere potential) and the rel-

evant length scale is the particle size a, the interparticle pres-

sure scales as ΠP ∼ n2ζU0a
3 ∼ nksTsPeRφ, fundamentally
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Recently Stenhammar et al20 conducted Brownian dynamics

simulations of a mixture of active and passive Brownian par-

ticles and used a kinetic model to locate the phase boundaries.

The kinetic model based upon Redner et al8 accurately pre-

dicts many regions of phase space, but due to the theory’s in-

herent assumptions the lower spinodal boundary is not well

characterized.

Our theory is based upon the new ‘swim pressure’ perspec-

tive which accurately predicts the phase behavior of a system

of active swimmers3–5. Others have subsequently used the

swim pressure to study phase-separating active systems25,26.

We now have Eq 1, an equation of state that allows us to pre-

dict the phase behavior of the active/passive mixture.

Interpreting the total density derivative of the ac-

tive pressure as a global mechanical instability,

(∂Πact/∂φ)xa,Ts,PeR = 0, we can identify the regions

of stability in the phase diagram. This is a purely mechanical

definition of the spinodal and does not rely upon thermody-

namic arguments. As shown by the red curve in Fig 5. Our

prediction agrees well with Stenhammar et al’s20 simulation

data. Here the spinodal and the simulation data correspond

to a global dense/dilute-phase separation based upon fluc-

tuations in the total particle–active plus passive–density.

This is different from the phase separation that may occur

locally within each phase, as commonly seen in immiscible

polymer mixtures. There are no adjustable parameters in the

comparison.

Compared to a purely active swimmer system, onset of

phase transition occurs at lower PeR when passive particles

are present. For xa = φa/φ = 0.5 shown in Fig 5, phase tran-

sition is possible for PeR . 0.025, compared to PeR . 0.04
for a purely active system xa = 1. Therefore, given a fixed

total area fraction the presence of passive particles makes it

more difficult for phase separation to occur, which may be an

important consideration in the design of experiments of active

systems.

In Sec 2 we discussed that the reorientation Péclet num-

ber PeR is the quantity that gets shared upon collisions be-

tween swimmers for PeR ≪ 1. Using the swimmer activ-

ity ksTs ≡ ζU2

0
τR/2, we can rewrite PeR ≡ a/(U0τR) =

ζU0a/(2ksTs), which is interpreted as the interactive energy

of the swimmer (ζU0)a to its swim activity scale ksTs. In Fig

5 phase separation becomes possible for small PeR, or large

ksTs. In contrast, phase transition in a classical thermody-

namic system is usually driven by attractive enthalpic interac-

tions and becomes possible for small kBT (low temperatures).

If ksTs is interpreted as the “temperature” of active matter, Fig

5 suggests that mixtures of active and passive particles may

exhibit a lower critical solution temperature (LCST) transi-

tion27, commonly seen in thermosensitive polymer systems28.

The LCST phase transition is dominated by entropy—as PeR
decreases (ksTs increases), the run length of the swimmer in-

φ = πa2n

P
e R

=
a
/
(U

0
τ
R
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10
�2

10
�1

Π
a
ct
φ
/
(n

a
k
s
T
s
)

0.07

0.21

0.66

2.1

6.67

21.22
Stenhammar, Wittkowski, Marenduzzo, Cates (2015)

xa = 0.5

Fig. 5 Phase diagram in the PeR − φ plane in 2D for a fixed active

swimmer composition xa = 0.5. The colorbar shows the active

pressure scaled with the swim activity ksTs = ζU2

0 τR/2. The open

and filled symbols are simulation data of Stenhammar et al 20 with a

homogeneous and phased-separated state, respectively. The solid

and dashed red curves are the spinodals delineating the regions of

stability based upon fluctuations in the total particle density and the

thermodynamic definition, respectively.

creases, and the particle becomes effectively larger in size and

has less space available for entropic mixing5. However, be-

cause PeR is the quantity that gets shared upon collisions for

PeR ≪ 1 (and not the activity ksTs), the activity ksTs does

not play the same role as the thermal energy scale kBT in

LCST phase transitions of polymer mixtures. This further ver-

ifies that the “temperature” of active matter is an elusive quan-

tity that does not have a direct mapping to the temperature of

an equilibrium system.

5 Limits of active pressure

Recent experiments by Kümmel et al21 analyzed the phase

behavior of a mixture of passive particles with a small con-

centration of active swimmers (φa ≈ 0.01). They observed

swimmers gathering and compressing the passive particles

into clusters. By varying the concentration of passive parti-

cles, they observed a phase separation of the mixture even at

very small active swimmer concentrations.

Our BD simulations agree qualitatively with the experi-

ments21. The active swimmers create tunnels in the sea of

passive particles, which open a path for other trailing swim-

mers to move through. This leads to the formation of large

clusters composed of purely passive particles and individual

swimmers moving in the dilute phase, as shown in simulation

images in Fig 6. Based upon our mechanical theory, there is
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One-phase Two-phase

Fig. 6 Phase diagram in the PeR − φ plane in 2D for different

active swimmer compositions xa = φa/φ. The solid curves are the

spinodals delineating the regions of stability based upon fluctuations

in the total particle density. The two-phase region diminishes as xa

decreases. Steady-state images from BD simulations are shown for

PeR = 0.01, xa = 0.05 at φ = 0.35 (left) and φ = 0.6 (right),

corresponding to a homogeneous and phased-separated state,

respectively. The red and white circles are the active and passive

particles, respectively.

an equality between the Brownian collisional pressure of the

dense passive clusters and the swim pressure of the dilute ac-

tive swimmers compressing the crystals. A video of the BD

simulation is available in the Supplement.

To model these observations, it is instructive to analyze the

limits of the active pressure for large and small concentrations

of active swimmers relative to passive particles. Since the me-

chanical pressure exerted by a system of purely active swim-

mers and purely Brownian particles are known, we can inter-

rogate the effect of adding a small amount of passive or active

particles into the suspension. This may be particularly useful

for further experimental pursuits of active/passive mixtures.

In the limit of small active swimmer concentration relative

to passive particles, the active pressure is

Πact = Πosm +Π′′(φd, Ts, P eR)φa +O

(

φa

φd

)2

, (7)

where the first term on the right is the osmotic pressure of a

purely Brownian suspension:

Πosm = ndkBT (1 + 2φdg(φd)) , (8)

and the second term in Eq 7 is

Π′′(φd, Ts, P eR) = naksTs

(

1− φd − 0.2φ2

d

)

/φa+

2nd

[

4

π
ksTsPeR + 2kBT

(

2 +
φd

2φ0

g(φd)

)]

g(φd)+

ndkBT/φd. (9)

In this limit, the swim pressure and swimmers’ interparticle

collisions appear in the leading-order correction. Taking the

global density fluctuation ∂Πact/∂φ = 0, we find that the

spinodal qualitatively agrees with the experiments of Kümmel

et al21—a lower spinodal boundary of φ ∼ 0.45 and the diver-

gence of the interparticle pressure near close packing. A phase

diagram in the PeR − φ plane for different active swimmer

compositions is shown in Fig 6. As xa decreases the spin-

odal curve lowers to smaller PeR because phase separation

becomes more difficult to observe with a smaller fraction of

swimmers. For smaller xa, the Brownian crystals have more

time to melt and dissolve into a homogeneous system, and

hence the swimmer must have a small PeR that is in commen-

surate with the small xa. Kümmel et al21 report phase separa-

tion in swimmers with PeR ≈ 0.04, but our theory suggests

that PeR must be smaller (PeR . 0.01) for phase separation

to be possible at the small concentration of active swimmers

used in their study.

In the other limit of large active swimmer concentration rel-

ative to passive particles, we expect phase behavior similar to

those observed in purely active suspensions5. The passive par-

ticles can act as nucleation sites for cluster formation, which

may spark an earlier onset of phase separation. The active

pressure has the form

Πact = Πact(φa, φd = 0, Ts, P eR)+Π′(φa, Ts, P eR)φd+

O

(

φd

φa

)2

, (10)

where the first term on the right is the active pressure for a

purely active swimmer suspension5 (i.e., Eq 1 with φd = 0):

Πact(φa, φd = 0, Ts, P eR) = naksTs

(

1− φa − 0.2φ2

a

)

+

na

(

4

π
ksTsPeR + 2kBT

)

φag(φa) + nakBT, (11)

and the second term in Eq 10 is

Π′(φa, Ts, P eR) = −naksTs (1 + 0.4φa)+

na

(

4

π
ksTsPeR + 2kBT

)(

2 +
φa

φ0

g(φa)

)

g(φa)+

nakBT/φa. (12)

As expected the leading-order correction to the swim and in-

terparticle pressures scales as ∼ naφd. As shown in Fig 6,
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Page 8 of 13Soft Matter



the spinodal curve for xa ≈ 1 remains high because phase

separation is dominated by the hindered motion of the active

swimmers.

6 ‘Thermodynamic’ quantities

Thermodynamic quantities like the chemical potential and free

energy are defined only for equilibrium systems. However,

standard macroscopic mechanical balances can be applied to

define quantities that are nonequilibrium analogs for active

systems3,5. Here we extend the derivation of the nonequilib-

rium free energy and chemical potential to mixtures of active

and passive particles, and interpret these quantities as a natural

extension for nonequilibrium systems.

The virtual work done by an external mechanical force (i.e.,

stress) due to an infinitesimal change in the system volume δV
is given by δW = −ΠδV where Π is the applied mechanical

pressure. One can interpret this virtual work as the change in

Helmholtz free energy of the system due to an applied me-

chanical stress, as is commonly done in elasticity theory29.

Upon carefully imposing incompressibility of the solvent, one

can relate the nonequilibrium free energy to the mechanical

pressure of a multicomponent mixture as14

Π = −f +

Nc
∑

i=1

φi

∂f

∂φi

+ f(0), (13)

where Nc is the number of species in the mixture and f(0) is

the free energy density of the pure solvent (which is arbitrary

and constant in our analysis). We interpret Eq 13 as the defini-

tion of the free energy for nonequilibrium active systems with

Πact in place of Π. For our two-component (plus the solvent)

system, we have Nc = 2 and the nonequilibrium free energy

fact(φa, φd, Ts, P eR) can be defined as

Πact + fact = φa

∂fact

∂φa

+ φd

∂fact

∂φd

. (14)

The general solution is

fact(φa, φd, Ts, P eR) =
ksTs

υ

[

φa log φa − φaφ

(

φ

10
+ 1

)

−

4PeRφ0φa log(φ0 − φ)

(

1

π

(

1 +
φd

φ

)

+
4φ

3φa

PeR

)]

+

kBT

υ
(φa log φa + φd log φd) , (15)

where υ ≡ πa2 is the projected area of a particle. This defi-

nition for the nonequilibrium free energy agrees with the true

thermodynamic free energy for molecular or colloidal solutes

in solution (i.e., fact(φa = 0, φd, Ts, P eR) = fosm)14. To

gain further insight into the free energy, in the Appendix we

analyze the limits of fact for our mixture for large and small

concentrations of active swimmers relative to passive parti-

cles.

As done previously for a purely active system3, we can

derive the nonequilibrium chemical potential for multicom-

ponent mixtures using purely mechanical arguments (see Ap-

pendix C). For a mixture of active and passive particles, it is

given by

na

∂µact
a

∂φ
+ nd

∂µact
d

∂φ
= (1− φa − φd)

∂Πact

∂φ
. (16)

Again this expression agrees with the rigorous thermodynamic

definition of the chemical potential for mixtures of molecular

solutes in solution14. The chemical potential for each species

i in a multicomponent system can thus be obtained from

µact
i = υi

[

∂fact

∂φi

−Πact

]

, (17)

where the reference states were absorbed into the free energy.

We can invoke Eqs 15 and 1 to obtain the chemical potential

for the active (µact
a ) and passive (µact

d ) species.

From the thermodynamics of mixtures, the stability crite-

rion using the free energy is given by det(∂2f/∂φi∂φj) =
014. For our system this reduces to

(

∂2fact

∂φ2
a

)(

∂2fact

∂φ2

d

)

−

(

∂2fact

∂φa∂φd

)2

= 0. (18)

This gives us the reorientation Péclet number as a function of

the active and passive concentrations, PeR = PeR(φa, φd).
The dashed curve in Fig 5 is the spinodal curve using Eq

18 for a fixed active swimmer fraction xa = 0.5. This spin-

odal boundary does not agree with the simulation data of Sten-

hammar et al20, as Eq 18 predicts a different phase boundary

than those observed in a simulation. The simulations reflect a

global dilute/dense phase separation based upon fluctuations

in the total particle (both active and passive) density. In con-

trast, Eq 18 interrogates the stability of the free energy due to

fluctuations in the active particle concentration while keeping

the passive particle concentration fixed, and vice versa.

This facilitates an important consideration in both experi-

ments and simulations about which variables are held fixed

and varied. Depending on the ensemble of variables that are

held fixed (active swimmer density, composition, etc), the the-

ory predicts in general different phase boundaries. To produce

a phase diagram in a simulation, one typically fixes the over-

all swimmer composition xa and swimmer PeR, and varies

the total area fraction φ or vice versa. This corresponds to a

global dense/dilute-phase separation based upon fluctuations

in the total particle density, which is well described by the

mechanical instability criterion (∂Πact/∂φ)xa,Ts,PeR = 0, as

shown by the red solid curve in Fig 5.
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PeR.

In our model we neglected hydrodynamic interactions be-

tween the particles, which may contribute additional terms

such as the “hydrodynamic stresslet”30 to the active pressure.

We also did not consider the effects of polar order and align-

ment of the swimmers, which are not necessary for phase-

separating systems.
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Appendix

A: Micromechanical equations of motion

The active particle dynamics are governed by the N -particle

Langevin equation

0 = −ζU + F swim + F P +
√

2ζ2D0ΛT (A1)

dθ

dt
=

√

2

τR
ΛR (A2)

where U is the translational velocity, ζ is the hydrodynamic

drag factor, F swim ≡ ζU0 = ζU0q is the self-propulsive

swim force, U0 is the swim speed, θ specifies the swimmers’

direction of motion q = (cos θ, sin θ), F P is the interparticle

force between the particles to enforce no overlap, ΛT and ΛR

are unit random normal deviates, τR is the orientation time of

the swimmer, and D0 is the Stokes-Einstein-Sutherland trans-

lational diffusivity. The passive Brownian particles are gov-

erned by the same equation but without the self-propulsive

force:

0 = −ζdUd + F P +
√

2ζ2dD0ΛT , (A3)

where the subscript “d” indicates a passive particle. For sim-

plicity in this work we considered spherical particles with the

same size for active and passive particles so that ζ = ζd. The

left-hand side of Eqs A1 and A3 is zero since inertia is neg-

ligible for colloidal suspensions. A more detailed discussion

concerning the origin of the swim force and the role of hydro-

dynamic interactions is available elsewhere17.

B. Limits of active free energy

To gain further insight into the free energy, we analyze the

limits of fact for our mixture system for large and small con-

centrations of active swimmers relative to passive particles.

Expanding the active free energy for small ǫ = φd/φa =

(1 − xa)/xa, we find in the limit of large active concentra-

tion

fact = fact(φa, φd = 0, Ts, P eR) + f ′(φa, Ts, P eR)φd+

kBT

υ
φd log

(

φd

φa

)

+O(ǫ2), (B1)

where υ ≡ πa2 is the projected area of a particle and the first

term on the right is the active free energy for a purely active

system5:

fact(φa, φd = 0, Ts, P eR) =
ksTs

υ
φa [log φa−

φa

(

φa

10
+ 1

)

− 4PeRφ0 log(φ0 − φa)

(

1

π
+

4

3
PeR

)]

+

kBT

υ
φa log φa, (B2)

and the second term in Eq B1 is

f ′(φa, Ts, P eR) =
ksTs

υ

[

−φa

(

φa

5
+ 1

)

−

4PeRφ0

(

log(φ0 − φa)−
φa/φ0

1− φa/φ0

)(

1

π
+

4

3
PeR

)]

+

kBT

υ
log φa. (B3)

Expanding the swim pressure for small ǫ′ = φa/φd =
xa/(1 − xa), we find in the limit of small active concentra-

tion

fact = fosm + f ′′(φd, Ts, P eR)φa+

1

υ
(kBT + ksTs)φa log

(

φa

φd

)

+O(ǫ′2), (B4)

where the first term on the right is the osmotic pressure of a

purely Brownian suspension:

fosm =
kBT

υ
φd [log φd − φ0 log(φ0 − φd)] , (B5)

and the second term in Eq B4 is

f ′′(φd, Ts, P eR) =
kBT

υ
[log φd + 2φ0 log(φ0 − φd)] +

ksTs

υ

[

log φd − φd

(

φd

10
+ 1

)

−
8

π
PeRφ0 log(φ0 − φd)

]

.

(B6)

The influence of the swim pressure and swimmers’ interparti-

cle collisions are felt in the correction term.
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C. Mechanical derivation of the chemical potential for

multicomponent systems

The number density of an Nc-component system‡ satisfies the

conservation equation

∂n

∂t
+

Nc
∑

i=1

∇i · ji = 0, (C1)

where ji = niui = ni〈u〉 + jreli is the particle flux of

species i, jreli = ni(ui − 〈u〉) is the flux of species i rela-

tive to the suspension average velocity 〈u〉, which is defined

as 〈u〉 =

Nc
∑

i=1

φiui+(1−φ)uf , and ui and uf are the number

averaged velocity of swimmer species i and fluid at a contin-

uum point, respectively. The total volume (or area) fraction

of the particles is φ =

Nc
∑

i=1

φi. Incompressibility requires the

suspension-average velocity (particles plus the fluid) to satisfy

∇ · 〈u〉 = 0.

We apply an averaged macroscopic mechanical momentum

balance to obtain an expression for jreli . Following the stan-

dard Irving-Kirkwood approach, we obtain

0 = −

Nc
∑

i=1

niζi(ui − 〈u〉) +∇ · σact, (C2)

where σact = σswim + σP is the active stress and the left-

hand side is zero since inertia is negligible for colloidal sys-

tems. Using the relative flux jreli = ni(ui − 〈u〉) we arrive at

a relationship between the active particle flux and gradients in

the active stress:

Nc
∑

i=1

ζij
rel
i = ∇ · σact. (C3)

We did not rely upon the notion of a thermodynamic chemical

potential or the free energy to arrive at this expression.

We can use our mechanical derivation to define a nonequi-

librium chemical potential by analogy to the quantity whose

gradient would drive a flux:

jreli = −
ni

ζi (1− φ)
∇µact

i , (C4)

where again φ =

Nc
∑

j=1

φj . This definition is analogous to

that of a thermodynamic system where the relative flux is

‡There are Nc + 1 total components, including the solvent

driven by gradients in the thermodynamic chemical poten-

tial. Substituting Eq C4 into Eq C3 and using the definition

Πact ≡ −tr σact/2, we arrive at

Nc
∑

i=1

ni

∂µact
i

∂φ
= (1− φ)

∂Πact

∂φ
. (C5)

For a two-component (active and passive) system, we have

na(∂µ
act
a /∂φ) + nd(∂µ

act
d /∂φ) = (1 − φa − φd)∂Π

act/∂φ,

as given in the main text.

This relationship between the chemical potential and pres-

sure is equivalent for a system of passive Brownian particles

and active swimmers with small τR. We thus interpret µact as

a natural definition and extension of the chemical potential for

nonequilibrium systems.

Comparison to thermodynamics. From equilibrium ther-

modynamics14, the chemical potential of species i for a mul-

ticomponent system is given by

µi = υ

(

∂f

∂φi

−Π

)

, (C6)

where υ is the volume (or area) of a particle. The free energy

is related to the osmotic pressure by

φa

∂f

∂φa

+ φd

∂f

∂φd

= f +Π. (C7)

Taking the density derivative of both Eqs C6 and C7 and

combining the results, we obtain

na

∂µa

∂φ
+ nd

∂µd

∂φ
= (1− φa − φd)

∂Π

∂φ
, (C8)

which is identical to Eq 16 of the main text, a result obtained

using a mechanical derivation.

Therefore the mechanical derivations of the stress, momen-

tum balance, and flux are in full agreement with thermody-

namics.
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